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Abstract 

The interpolated FIR (IFIR) technique has been 
shown to be very useful in designing narrow band 
lowpass filters. The IFIR filters enjoys significant 
saving in the number of multipliers and can be 
implemented efficiently. In the case when an desired 
filter (non-IFIR) is given as in some applications, 
e.g., matched filters, we propose the use of IFIR 
filers to approximate the desired filter. An iterative 
approach to the design of IFIR approximation filters 
in the least square sense will be presented. 

1. INTRODUCTION 

An Interpolated FIR (IFIR) filter P ( z )  is a filter 
of the form G ( z L ) F ( z )  [1]. The implementation 
of P ( z )  can be done efficiently as the cascade of 
G ( z L )  and F ( z )  (Fig. 1). The number of multipli- 
ers needed in the cascade implementation is approx- 
imately 1/L times that in direct implementation of 
P ( z ) .  In addition, IFIR design also has advantages 
in the design phase. Traditionally the emphasis of 
the design has been given to considerations in the 
frequency domain, e.g., passband and stopband rip- 
ples; given the specifications, G ( z )  and F ( z )  can be 
separately design so that P ( z )  = G ( z L ) F ( z )  meets 
the specifications. 

Fig. 1. Cascade implementation of IFIR filters. 

Let h(n)  be a given FIR filter with orkcr N. 
Suppoise we are to approximate it using an IFIR 
filter p(72) of the form 

P ( z )  = G ( z L ) F ( z ) ,  

for some appropriately chosen integer L to be 
discussed later. Then the coefficients of p ( n )  are 
related to g(n)  and f ( n )  by 

p ( n )  = g(m) * f ( n  - L m ) .  
m 

Assuming h(n) and p ( n )  have the same order, then 
N g  and N J ,  the order of g(n)  and f(n) respectively, 
satisfy 

The cri1,erion of approximation to be considered 
here is the mean square error 4, given by 

LNg + N J  = N .  

The expression of 4 consists of nonlinear terms of 
g(n) amd f(n). To find optimum f ( n )  and g(n) 
that minimize the mean square error 4,  complicated 
nonlineatr optimization is inevitable. 

On the other band, if f(n) is fixed, we can show 
that a unique g ( n )  will minimize 4 (to be shown 
in Sec. 2). Furthermore we will show that this 
solution can be obtained in closed form in terms 
of the coefficients of h(n )  and f ( n ) .  Similarly for 
a fixed g(n) we can find f(n) in closed form such 
that 4) .is minimized. This motivates the idea of 
optimizing g(n)  and f(n) iteratively. That is, we 
first initialize f(n) and find the optimum g(n) ,  then 
we come back to optimize f(n). This procedure can 
be repeated until a satisfactory 4 is achieved. 

For the application of discrete time matched 
filters in communications, a matched filter h(n )  is 
given [a] .  The implementation advantage of IFIR 
filters can be exploited if h(n) can be approximated 
by an IFIR matched filter p ( n ) .  This is usually the 
case if the frequency response of the matched filter 
has a narrow band nature. 
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2. THE ITERATIVE APPROACH 

For convenience we first express all the functions 
in vector forms and relate them through matrix 
operatiosns. Let 



Also let g'(n) be the expanded version of g(n) ,  i.e., 

s =  

{ ; ( n / ~ ) ,  if n = L ~ C ,  
1 otherwise. s ' ( 4  = 

-1 0 0 . . .  0 -  
0 0 0 . . .  0 
0 1 0  . . .  0 

0 0 1 . . .  0 

- 0  0 0 . . .  1- 

0 0 0 . . .  0 , 

Then p ( n )  = g'(n) ;I; f ( n )  and p ( n )  can be regarded 
as the output of the filter f ( n )  when g'(n) is the 
input. The relation p ( n )  = Cg'(m) t f(n - m) can 
be written in the matrix form p = Fg', where F is 
of dimension N x (LN,  + 1) given by 

0 . . .  
f (0)  ' ' ' 

The matrix F has LN,  + 1 columns and each column 
consists of the vector f and L N ,  + 1 zero entries; we 
call F the expanded matrix of the vector f with 
respect to an input of length LN,  + 1. Observe that 

g' = [g(O) 0 . . . 0 - 
L-i zeros 

g(1) 0 . . . g(Ng)IT 

can be expressed as g' = Sg, where S is a ( L N g  + 
1) x ( N ,  + 1) matrix defined as 

with 0 denoting the (Ng  - 1) x 1 zero vector. Then 

p = Fg' = (FS)g. (1) v 
A 

It follows that the mean square error qf~ is, 

(2) 
1 

N q!J = -(h - Ag)T(h - Ag). 

It can be verified that both F and S have full 
rank and their product A = FS also has full rank. 
This property ensures that an optimum g(n) which 
minimizes the mean square error 4 can be found in 
closed form, as we will see next. 

Let us recall the following linear algebra problem 
[3]: Consider an m x 1 vector a and a full rank 

matrix T of dimensions m x n and m > n. Then 
the quantity (a - Tb)T(a - Tb) is minimized if b 
is given by 

b = T'a, 

where T' is the left inverse of T, defined as 

T' = ( T ~ T ) - ~ T ~  

By the same token, the mean square error q!J as given 
in (2) is minimized if g is the vector h premultiplied 
by the left inverse of A.  Summarizing we have the 
following lemma. 

l"zu 1. Let h(n )  be an FIR filter with order 
N .  Suppose p ( n )  is an IFIR filter of the same order 
and P ( z )  = G ( z " ) F ( z ) ,  where F ( z )  is a fixed filter. 
Then q!J = k Ih(n) - p ( n )  l 2  is minimized if 

g = (ATA)-'ATh, 

where A is as defined in (1) 

Even if h and p have large orders, g can have small 
order for large L ;  so the inversion of ATA is easy. 

Similarly p ( n )  = f ( n )  * g'(n) can be expressed 
as p(n )  = Cg/(n - m)f (n ) .  So the vector p also 
assumes the form 

p = Bf,  

where B the N x ( N f  + 1) expanded matrix of 
g'(n) with respect to an input of length N f  + 1. 
It can be verified that B has full rank and the 
optimum solution of f ( n )  is given by the closed form 
f = (BTB)-'BTh. The design procedures can be 
summarized as follows. 

Design procedures 

1. Choose an appropriate L according to the mag- 
nitude response of If(&"). 

2.  Initialize f(n). 

3 .  Set g = (ATA)-'ATh. 

4. Set f = (BTB)-lB*h. 

After a few iterations, the changes in g ( n )  and 
f(n) are insignificant, then we stop iterating. Two 
comments on the initialization are in order, 

1. Choice of L .  Suppose h(n)  has stopband edge 
around T I M .  Then L can be chosen as large 
as 3M/4. In this case, the results of the 
optimization are very good in general and a mean 
square error smaller than l o p 7  can be achieved 
in all our experiments. 



2. The order of f(n) has a significant effect on 
the results of optimization. A small N f  does 
not yield very good results; as a rule of thumb, 
an N f  in the range between 215 and 4L is 
usually appropriate. However, the initialization 
of f(n) does not notably affect the convergence 
of oDtimization. A simDle initialization. for 

From t h e  above quadratic form of g ,  we see that 
4 is minimized if g = a t ,  where t is an eigen 
vector associated with the smallest eigen value of 
the matrix Qg. The value of a will be determined 
according to the constraint p(n0)  = h(n0). 

In a similar manner, for a fixed g ,  the mean 

example f(n) = 1.0, for n = O , 1 , .  . . , N f ,  can 
be used. 

Remark. The filters designed through this ap- 
proach are IFIR. They approximate narrow band 
lowpass filters very well. But the, savings yielded, 
however, depends on the bandwidth of the lowpass 
filters to be approximated. 

3. EIGENFILTER DESIGN AND INCORPORA- 
TION OF FREQUENCY-DOMAIN CRITERION 

The eigenfilter approach lends itself well to  the 
incorporation of frequency domain considerations 
such as passband and stopband ripples [4][5]. We 
will formulate the least square problem in Sec. 2 as 
an eigenfilter problem and then derive an objective 
function 4' that  reflects both time and frequency 
domain errors. 

The first step of the problem is: For a given f ,  
how can we find g through eigenfilter approach such 
that p is a good approximation of h? To facilitate 
the use of eigen technique, an additional condition 
will be incorporated in the optimization. More 
precisely, we will find g such that p approximates 
h in the least square sense subject to the constraint 
that p ( n 0 )  = h(no), where no is such that h(n0) # 0. 

Let us define the error vector e ,  

e = h - p  

The mean square error is 4 = &eTe. Because 
p ( n 0 )  = h(no) # 0 ,  the error vector can be written 
as e = p(no)h/h(no) - p. Observe that p ( n 0 )  = 
vTp, where vT is an appropriate vector. This 
relation gives the vector e the following form, 

Using p = Ag as in (1) we have 

( 3 )  

s, 
Therefore, the mean square error 4 is 

(4) 

square error 4 can be expressed as the quadratic 
form of' f', say 4 =: $fTQFQff.  The optimization 
can be performed iteratively like in Sec. 2 until a 
sufficiently small $5 is reached or the optimization 
converges. Notice that the solution of g(n) thus 
obtained is different from the least square solution 
using the left inverse technique described in Sec. 2; 
the eigen solutions may not be a,s good as left inverse 
solutions. 

Incorpcration of frequency-domain criterion 

For iz given f the objectives in the passband and 
stopband can be expressed as quadratic forms of g 
similar to that in (4). The Fourier transform E(ej") 
of the eiroic function e(n) = h(n )  - p ( n )  can be 
obtained as 

E(€ j" )  =. e T c ( P ) ,  c ( 2 " )  z [ 1 ,-jw . . .  € - N j w  I T  

Suppose the filter h(n)  has passband edge wp and 
stopband edge w,. The amount of error in the 
passband is 

Using e I= Qgg in ( 3 ) ,  we have 

.- 
Q P  

The aniount of error in the stopband is 

In a sirnilar manner, expressing E, as the quadratic 
form of g,  we have I ,  = g T Q s g .  Now we have an 
objective that incorporates the time and frequency 
domain error, 

It c , m  be verified that all three matrices Q p ,  
Qs and QFQ, are symmetric and positive semi 
definite, so the solution of g(n)  that minimizes 4' 
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can always be identified. When g is given, similar 
expression for 4' can be derived and an optimum f 
can be obtained. As in previous section, iterative 
optimization can be continued until the solution 
converges, 

4. DESIGN EXAMPLE 

PVe now present an example to  demonstrate that the 
proposed iterative left inverse optimization produce 
very good IFIR approximations of narrow band 
filters. 

Example 1. Iteratave le f t  anverse approach. Con- 
sider a lowpass filter h(n )  of order N = 236 with 
magnitude response IH(ej")l as shown in Fig. 2(a). 
The stopband edge of h(n) is around 7r/10. A choice 
of L = 6 or 7 should be appropriate as discussed in 
Sec. 2.  We choose L = 6 and N f  = 14 ( N f  M 2.5L) ,  
then we have Ng = 37. The impulse response of 
the resulting IFIR filter p ( n ) ,  after 25 iterations, is 
shown in Fig. 2(b) together with h(n ) .  The mean 
square error in this case is 2.7 x lo-', The mag- 
nitude responses of P(e j " )  and H ( d " )  are shown 
in Fig. 2(c); magnitude responses in dB scale are 
shown Fig. 2(d). 
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Fig. 2.  (a) The magnitude response of the 
filter H(e3") ;  (b) The impulse responses of h(n)  
and the IFIR filter p ( n ) ;  (c) The magnitude 
response of H ( e j " )  and P(ej")  in dB. 

The total number of multipliers needed is N f  + 
Ng + 2 = 53, which is around i N  in this case; the 
number of arithmetic operations needed is reduced 
approximately by a factor of 4. We see from the dB 
plots that, P(ej")  has larger stopband ripples than 
H ( e i " ) .  However in communication applications, 
like matched filtering, the time domain agreement 
(demonstrated in Fig. 2(b)) is far more important 
than frequency response quality. In the case when 
frequency response does need to be ,emphasized, a 
tradeoff between time domain error and frequency 
domain error can be provided by the eigen approach 
discussed in Sec. 3. 
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