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Abstract. It is known that a continuous time 
signal z(t)  with Fourier transform X ( Y )  band-limited 
to 1.1 < 8 / 2  can be reconstructed from its samples 
z(Ton) with To = 27r/@. In the case that X ( Y )  consists 
of two bands and is band-limited to vo < 1.1 < v0+0/2, 
successful reconstruction of z(t) from z(T0n) requires 
that these two bands be located properly. When the 
two bands are not located properly, Kohlenberg showed 
that we can use a Periodically Nonuniform Sampling 
(PNS) scheme to recover z(t). In this paper, we show 
that PPJS scheme can be generalized and applied to a 
wider class. Further generalizations will be made to 
two-dimensional case and discrete-time case. 

1. I ~ ~ O D U ~ O N  

It is well-known that successfd reconstruction of a 
continuous-time bandpass signal z(t) (Fig. 1) from 
samples z(nTo), where To = 2r/0, depends on the 
relative positions of these two bands fl]. A necessary 
and sufficient condition is that, the band edge YO must 
be an integer multiple of @/2. It can be shown that a 
much wider class of signals with total bandwidth 8 can 
be recovered from samples at nTo . To be more specific, 
define the support of X ( Y )  (denoted by Supp(X(v)))  
to be the set of frequencies for which X ( V )  # 0. Then 
z(t) can be obtained from z(nT0) if and only if no two 
frequencies in Supp(X(v)) overlap under modulo 8 
operation [2]. Such signa~s are called aliasfree(T0) and 
their supports are r e f e ~ r ~ d  to as aliasfree(T0) zones. 

When the two bands of X ( V )  (Fig. 1) are not prop- 
erly located, Koh erg [3] proposed a peE~od~ca~~y 

approach to recover z(t)(Fig. 2 
with L = 2). In this scheme two sets of samples, 
z(nT) and z(nT & d l ) ,  where T = 2T0, as shown . 
Fig. 3, are used. The average sampling rate is still 
Then z(t) can be rec~nstructed by properly choosing 
dl and the synthesis filters f o ( t )  and f l ( t )  131. This 
is called periodically nonuniform sampling of second 
order (PNS(2)), [4], for there are two sets of uniform 
samples involved. Recently, general Lth order peri- 
odically nonuniform sampling (~NS(L))  for such two 
bands signals has been considered in [5]. 

In discrete time case, sampling is replaced by dec- 
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imation. PNS(L) sampling retains L sets of samples, 
z ( M n  + do), z(Mn + d l ) ,  . . e, z ( M n  + d t - 1 )  or the 
doth, dlth, ..., dL-lth polyphase components [SI. 
In [?I, PNS(L) sampling and reconstruction has been 
considered for a subclass of L-band signals. The 
subclass addressed therein are those whose frequency 
supports are the union of L bands, each band with 
bandwidth 27r/M and band edges at integer multiples 
of 2a/M. Such a &ban sequence z(n) can be 
reconstructed from its first L polyphase components, 
i.e., z(Mn), z (Mn + l), - - e, z (Mn + L - 1) [7]. 

In this paper, we will generalize the results in [3] 
and [7] to a wider cllass of signals in terms of frequency 

will show that from PNS(L) samplles we 
can reconstruct signals in the class U(T,  L), which is 
the collection of signals whose supports are the union of 
L non over~app~ng ~ l i a s f r ~ (  

be addressed. We 

always be r econs~~c ted  

pQlyphase ~ Q m ~ Q ~ n t S .  

ort of X ( Y )  (denoted by Supp(~(v)}) is 
defined as the set of f r ~ q ~ e n  
2. A set S is called an 
frequencies in S overlap un 

3. The notation U(T,  L) r e p E ~ e ~ t s  the collection of 

sampling of Lth order ~PPJ~(L) )  for the class U(T, L). 
In PNS(L) sampling of z(t>, there are 6, sets of ~ ~ p l e s ,  
.(.a), z(nT -!- d l ) ,  ., z(nT + &-I). Referring to 
Fig. 2, the sampling rate is B = 2n/T in each channel 

Throughout this paper, we will assume that &asfree(T) sets 

contain only finitely many intervals. 
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and the average sampling rate is La, which is the total 
bandwidth of z(t). We will show that these L sets of 
uniform samples can be used to reconstruct z(t) .  

In the !th channel, y l ( t )  contains the samples 
x(nT + &); Yt(v) consists of shifted versions of X ( v ) ,  

e the total bandwidth of x ( t )  is La and the 
g rate is a in each channel, serious aliasing 
in yc(t). To be more quantitative, we fist 
on the support of X ( v )  into L non overlapping 

(2’) sets, {Si)?’’. Define Xi(v) t o  be the part 

0, otherwise. of X ( v )  on Si, i.e., Xi(.) = 

the set Si, &(Y) contains Xi(.) and L - 1 shifted 
, one from each Xm(v), m # i. Suppose the 

amounts are respectively &(v)u, h(v )u ,  . . . , 
@~-1(v)u. Because Xi(.) are non overlapping, it can 
be verified that for v E Supp{X(v)},  

* 

Notice that ai(u) thus defined are piecewise constant 
because Supp{X(v)} is the union of finitely many 
intervals. 

A U(T,L) signal z(t) can be 
recovered from its PNS(L) samples if and only if the 
equation below has a solution f(v) for every v 

1 [8]. 

A( v)f (v) = Teo (1) 
where A(v) is 

[A(v)]ot = [A(v)]to = 1, 
[A(v)]it = e-jfl*(”)dcu, 

0 5 f? 5 L - 1 
1 5 i , L  5 L - 1 

f(v) = [Fo(v) F l ( 9  . , .F~-l(v)]~ and the vector 

A nonsingular A(v) will yield unique solutions for 
the synthesis filters Ft(v). If we choose dt = MI, A(Y) 
becomes a Vandermonde matrix; the nonsingularity 
condition becomes much more tractable. 

I [8]. Consider a Gr(T,L) signal z(t). 
There always exist constant 4, 0 < f? < L and 
synthesis filters F‘(v), 0 5 L < L such that ~ ( t )  = 

E,, x(nT + d t ) f . ( t  - nT) (with do = 0 in this 
expression). In particular, the choice 

eOis[l 0 ... 01 . 

di = l d l ,  1 = 1,2,  . . . , L - 1, 

leads to a Vandermonde A(v), which is nonsingular if 

# 

for all integer n. The existence of such dl is guaranteed. 
In this case, f(v) = [Fo(v) . . . F~-l(v)]* is given by, 

where eo =[I o ... O]*. 
The synthesis filters thus obtained are 

pi(.) and can be verified to  be piecewise 
constant [SI. 

lbo-dimnsional(2D) case. The aliasfree(T) prop 
erty and aliasfree(T) zones can be defined as in 1D 
case. But now the sampling period T is a 2 x 2 nonsin- 

matrix and the samples are located on the lattice 
ned by T, i.e., located at Tn for all integer vec- 

tors n. It can be shown that 2D U(T,L) signals can 
be recovered from PNS(L) samples, Tn, Tn + t i l ,  . . . , 
Tn + dL-1. A result similar to that presented in T h e  
orem 1 can be derived. 

In discretetime PNS(L) sampling (Fig. 4) the to- 
tal amount of data after decimation is LIM times 
the original input; the nonuniform sampling scheme 
makes sense only for L < MI which will be assumed 
throughout this paper. In 1D continuous-time case, we 
saw that the class U ( T ,  L) allows reconstruction from 
PNS(L) samples. In this section, a parallel theorem for 
1D discretetime U ( M ,  L) signals will be developed. 

The signal yt(n) is the polyphase component 
z(nM + 4) and &(U) can be expressed in terms of 
shifts of X(w) ,  

27r 
M 

M-1 

k=O 
M 

The U ( M ,  L )  nature of X ( w )  implies that only L terms 
in the above summation are nonzero. In particular, on 
the support of X(w) ,  X ( w )  and L - 1 shifted copies of 
X ( w )  are nonzero. Let us denote these shifted copies 

2. A 1D discrete-time U ( M ,  L)  signal z(n) 
can be recovered from L of its polyphase components 
if and only if the equation to follow has a solution for 
every v E Supp{X(w)} .  

byX(w-%pi(w)), i =  1 , 2 , . - . , L - l .  
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where e: = [ 1 0 . . . 01 and the matrix A ( w )  is 
given by 

[A(w)]oL = [A(w)]Lo = 1, 

[A(w)]il = e-jG;jSt(w)df,  

0 I e I L - 1 

1 <_ ;,e 5 L - 1 I 

Observe that the matrix A(w) is a L x L sub- 
matrix of the M x M DFT matrix, WM given by 
[WM]mn = 0 5 m,n < M .  Notice that 
any L x L sub-matrix of WM obtained by retaining 
the first L columns of WM and some L rows of WM 
is a nonsingular Vandermonde matrix. So the choice 
d~ = e,  = 1,2, .  . ., L - 1, leads to  a nonsingular 
Vandermonde A(w). Unique solutions of {F‘(w)} can 
be obtained from (2). The theorem below follows. 

Theorem 2 [8]. A 1D discrete-time U ( M ,  L) signal 
z(n) can be recovered from its first L polyphase 
components, z(Mn), z(Mn + l), . . . , z(Mn + L - 1)m 

4. TWO-DIMENSIONAL 
SAMPLING AND RECONSTRUCTION 

For 2D discrete-time signals, aliasfree(M) property, 
aliasfree(M) zone and U(M, L) can be defined in the 
same manner, where M is a 2 x 2 nonsingular integer 
matrix. Similar to 1D case, a necessary and sufficient 
condition for reconstructing 2D U(M, L) signals can be 
derived. 

Lemma 3. A 2D discrete-time U(M, L) signal z(n) 
can be recovered from L of its polyphase components 
if and only if the equation to follow has a solution for 
every w E Supp{X(w)}.  

A(U) p 0 ( w )  F~(w) . . . F L - ~ ( ~ ) I ~  = Tea, (3) 

where the matrix A(@) is given by 

[A(w)]ot = [ A ( ~ ) ] L O  = 1, 0 I 5 L - 1 

In 1D case, we can always choose df such that 
A(w) is a nonsingular Vandermonde matrix for every 
w E Supp{X(w)}.  However, it is not always possible to 
do so in 2D case. In fact, the above equation may not 
have a solution for some w E Supp{X(w)} and hence 
x(n) can not be reconstructed from L of its polyphase 
components. To explain this, we take a closer look at 

Themutrices A(w)and W(g). It can be verified that 
A(w) is a L x L sub-matrix of a JM x JM matrix W(g), 
called the generalized DFT matrix (possibly with some 
row and column exchanges), where JM = I det MI. The 
elements of W(g) are given by 

A ( 4 -  

where N(M) denotes the set of integer vectors of the 
form Mx, x E [O 1)2. Let A be the Smith form of 

M [GI, A = [: . It can be shown that when 

m,, and kj are properly ordered, W(g) = Wxo @ Wx,, 
where WX denotes a A x X DFT matrix and 8 denotes 
the Kronecker product. The Kronecker product of two 
matrices A and B is defined as 

IJGKL 

Unlike 1D DFT matrices, W(g) is not Vander- 
monde in general; nor are its L x L sub-matrices ob- 
tained by retaining the first L columns and some L 
rows. The natural question to ask next is whether a 
particular set of {dt} will make A(w) nonsingular for 
all w E Supp{X(w)}. In teFms of the generalized DFT 
matrix W(g), the question can be recast as follows: 
can we find L columns of W(g) such that for arbitrar- 
ily chosen L rows of W(S), the resulting sub-matrix is 
always nonsingular? The answer is unfortunately, no. 
Although for every WO E Supp{X(w)}, there always 
exist {dl} such that A(w0) is nonsingular, the same 
dr may yield a singular A(w1) for a different frequency 
vector w1. To follow is an example which demonstrates 
that there are cases when (3) is not solvable with fre- 
quency independent {df). 

Example 1. Consider a discrete-time 2D U(M, 2) 

signal z(n), where M = [ 0” i] and I det MI = 4. The 

four vectors in N(M) are 

Order ki E N(M?) by letting ki = m, then W(g) is 

r l  1 1 1 1  

The support of X(w) ,  as shown in Fig. 5,  consists 
of two aliasfree(M) zones, SO and 5’1 with 5’1 being the 
union of three regions &, RI, and Rz. Because L = 2, 
we only have one beta function, /3(w). Observe that 
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So for w E &, A(w) is a sub-matrix of W(9) obtained 
by first keeping the 0th and 1st rows of W(9) and two 
columns W(g). That is. A(w) is a 2 x 2 sub-matrix of 

, I  

[ :l 
obtained by keeping two columns. 

As to which two columns depends on. the choice of dl . 
For w E &, (3) has a solution only if dl is nl or n3. 

If (3) has a solution in each Ri, then 

nl or n3, W E  Ro 
d1= n2 or n3, w e  RI { nl or n 2 ,  w E R2. 

There is no commonsolution of dl for the three regions; 
(3) does not have a solution for all w in the support of 
X(w) .  Therefore z(n) cannot be reconstructed from 
two of its polyphase components. 

class ofU(M, L). Although it is not always 
reconstruct a U(M, L) signal from L of its 

polyphase components, it is always possible to  do so 
when the Smith form A of M = UAV is 

In this case the generalized DFT matrix W(g) is 
the JM x JM DFT matrix WJ, . Similar to  the 
reconstruction of 1D U ( M , L )  signals, choose dl = 
.RJ [ 0 1IT. Then the matrix A(w) will be nonsingular 
for all w E Supp{X(w)}  and by (3) we can invert A(w) 
to  obtain the synthesis filters. 
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Fig. 1 Bandlimited signal with two 
bands and total bandwidth 0 = 2u. 

Pi. 2 Illustration of Lth order 
periodically nonunifom sampling. 

Fig. 3 Recons(rUcti0n by using second 
order periodically nonunifom sampling. 

and recons(truction in discrete-time case. 

Fig. 5 -Example 1. A U(M, 2) signal that cannot 
be reconstructed from two of its polyphase components. 
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