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Abstract

Recently there has been considerable interest in the

design of optimal paraunitary filter banks for a given

class of inputs. In this paper we address a number of

practical considerations associated with the design and

implementation of optimal paraunitary filter banks.

1. INTRODUCTION

In the design of subband coders, it is of interest to

maximize the coding gain of the filter bank for a given

class of input signals. For the case of paraunitary

filter banks (PUFB), it is well known that the coding

gain is the ratio of the arithmetic and geometric means

of the subband variances [1]. It has recently been

shown that this ratio is maximized if the analysis

filters are such that the decimated subbands satisfy two

properties, namely majorization and decorrelation [2].

It has further been shown that these two properties

can be satisfied by designing each analysis filter to be

an optimum energy compaction filter [3], [4], for an

appropriate partial power spectrum defined from the

input [5]. The study of optimal PUFB has therefore

become an interesting topic recently.

In this paper we will discuss several new consider-

ations in the design and implementation of these com-

paction filters. Of particular interest is the tree struc-

ture implementations of M -channel optimum PUFB,

where M is a power of 2. We will show that the use of

tree structures usually leads to a loss of coding gain. An

example of optimal PUFB that is not realizable using

tree structures will be given. We will present a cod-

ing gain formula for tree structures of PUFB, which will

allow us to compute easily the coding gain increment

for an additional split. We will also review a condition

called permissibility, which is a property that has to be

satisfied by the analysis filter passbands of any practi-

cal filter bank. We will show that optimum compaction

filters do not, in general, satisfy this property. Thus the

filter bank which maximizes the coding gain may not be
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of practical use in some cases.

We will make the same standard assumptions about

input signals and subband quantizers as in [2]. For

example, the input signal x(n) will be assumed to be

a zero-mean wide sense stationary process with power

spectral density (psd) Sxx(ω). (See [2] for a more

detailed description of these assumptions.)

2. REVIEW OF OPTIMAL
PARAUNITARY FILTER BANKS [2],[5]

Consider the M -channel filter bank in Fig. 1. Suppose

the filter bank is paraunitary. With σ2
x denoting the

input variance and σ2
xi

denoting the subband variances,

the coding gain G is given by

G =
σ2
x(∏M−1

i=0 σ2
xi

)1/M
,

assuming optimal bit allocation. For a given input psd

Sxx(ω), the variances σ2
xi

depend only on the analysis

filters. If the filters are optimized such that the coding

gain is maximized, the filter bank is called optimal.

Necessary and sufficient conditions for optimality. It

has been shown that an M -channel PU filter bank is

optimal for a given input if and only if the decimated

subbands satisfy the following two properties.

1. The subband processes xi(n) are uncorrelated, that

is, E[xi(n)x∗
k(m)] = 0 for i �= k, and for all n,m.

2. Suppose the subbands have been numbered such

that σ2
x0

≥ σ2
x1

≥ · · · ≥ σ2
xM−1

. Then for all ω,

Sx0x0(ω) ≥ Sx1x1(ω) ≥ · · · ≥ SxM−1xM−1
(ω). (1)

In this case, the set of power spectra {Sxkxk
(ω)} is

said to satisfy the majorization property.

For a fixed input psd, a filter bank satisfies these

two properties has been successfully constructed. The

construction process is greatly facilitated by the intro-

duction of optimal compaction filters [3], which are dis-

cussed next.
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Optimal compaction filters

Fig. 2 shows a filter H(ω) that can be viewed

as an M -fold decimation filter. Consider designing

H(ω) such that the output variance σ2
y is maximized

subject to the constraint that |H(ω)|2 is Nyquist(M),

i.e.
∑M−1

k=0 |H(ω − 2πk/M)|2 = M , for all ω. The

solution H(ω) will be called an optimum compaction

filter. The construction of optimal solutions has been

established in [3],[5]. The process is as follows.

For every frequency ω0 ∈ [0, 2π/M) define the M

alias frequencies ωk = ω0 + 2πk/M , where 0 ≤ k ≤
M − 1. Compare the values of Sxx(ω) at these M

frequencies {ω0+2πk/M}. Let L be the smallest integer

such that Sxx(ωL) is a maximum in the set. Design

H(ωk) =
√
Mδ(k − L).

Then the filter H(ω), now completely defined on [0, 2π),

is the compaction filter for the input Sxx(ω).

Construction of optimal PUFB

It turns out the optimal PUFB for a given input can

be obtained by solving successively M optimal energy

compaction problems one at a time.

First we choose H0(ω) to be the optimal com-

paction filter for Sxx(ω). Define a new psd S
(1)
xx (ω) by

peeling off the part of Sxx(ω) that falls into the pass-

band of H0(ω), i.e.,

S(1)
xx (ω) = Sxx(ω)(1 −H0(ω)/

√
M).

(The scale factor 1√
M

is inserted for H(ω) =
√
M in

its passband.) Then choose H1(ω) to be the optimal

compaction filter for S
(1)
xx (ω). We continue this peeling

off process S
(k)
xx (ω) = S

(k−1)
xx (ω)(1−Hk−1(ω)/

√
M) and

define the next analysis filter to the compaction filter for

the partial spectrum S
(k)
xx (ω). It can be verified that the

resulting filter bank is the optimal PUFB for the input

Sxx(ω).

3. CODING GAIN OF TREE STRUCTURED
PARAUNITARY FILTER BANKS

The coding gain of a tree structured filter bank (TSFB)

can be expressed in terms of the coding gains of the

member filter banks. For example, the coding gain G

of the two-level TSFB (Fig. 3) is related to the coding

gain, G0, of the first level FB and the coding gains, G1

and G2, of the second level FB by G = G0

√
G1,0G1,1.

Theorem 1. Consider the two-level TSFB in Fig. 3.

Let the three member filter banks have coding gains

respectively G0, G1,0 and G1,1. Then the coding gain G

of the overall TSFB is

G(dB) = G
(dB)
0 +

1

2
(G

(dB)
1,0 + G

(dB)
1,1 ). (2)

Proof: By the coding gain formula for PUFB,

G = σ2
x

/(
3∏

i=0

σ2
x1,i

)1/4

This can be rewritten as

G =
σ2
x

σx0
σx1

(
σ2
x0

σx1,0
σx1,1

)1/2 (
σ2
x1

σx1,2
σx1,3

)1/2

We identify the three terms on the right hand side of

this equation as G0,
√
G1,0 and

√
G1,1, respectively.

Writing the expression in dB, we arrive at (2).

This result can be generalized to TSFB of more

than two levels with member FB of more than two chan-

nels. For example, suppose FB1,1 in the second level has

M channels and a further split is introduced to each

subband. Let these M filter banks have coding gain

G2,0, G2,1, . . . , G2,M−1. Then following a similar proce-

dure we can show that the coding gain of the three-level

TSFB is given by

G(dB) = G
(dB)
0 +

1

2
(G

(dB)
1,0 + G

(dB)
1,1 ) +

1

2M

M−1∑
i=0

G
(dB)
2,i .

The coding gain (dB) increment of the additional splits

is 1
2M

∑M−1
i=0 G

(dB)
2,i .

Remark. From the above expression, we can observe

one property of the terminal FB (member FB that have

no further split in their subbands). A terminal FB does

not affect the coding gains of other FB in the previous

levels. So to maximize the coding gain of the TSFB,

it is necessary that the terminal FB be optimal for its

input psd.

4. TREE STRUCTURE AND OPTIMAL PUFB

In this section we focus on the class of tree structured

PUFB. First we present an example to show that the

class of TSFB does not contain all the optimal PUFB.

Using tree structure in general leads to a loss of coding

gain.

An optimal PUFB that is not a tree

Consider an input psd as shown in Fig. 4(a).

Fig. 4(b) shows the corresponding optimal analysis

filters H0(ω), H1(ω), H2(ω), and H3(ω). Such a
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frequency stacking can not be achieved by using TSFB.

To show this, suppose this is the overall analysis

bank of a four-channel TSFB with two levels (Fig. 3).

Because the first compaction filter H0(ω) has support

[0, π/2), the analysis filter H0,0(ω) of FB0 should

contain [0, π/2). For decimation of 2, the aliasing

frequency of ω0 ∈ [0, π/2) is ω0 + π, which falls into the

range [π, 3π/2). So H0,0(ω) can not contain [π, 3π/2);

at most two of the four optimal filters can have energy in

this region. But from Fig. 4(b) we see that three of the

optimal filters have energy in this region. Therefore, the

optimal filters can not be obtained from a tree structure.

The use of tree structure PUFB does not in general

yield the maximum coding gain achievable by PUFB.

Given a tree, suppose we design the member FB such

that each is optimal for its input psd (i.e., tree structure

of optimal building block PUFB). This, in general, will

not yield the maximum coding gain for the given tree.

Recall the construction of optimal compaction filters for

a M = 2m0 channel PUFB. For each set of aliasing

frequencies {ωk}, M(M − 1)/2 comparisons among

{Sxx(ωk)} are required for majorization property in (1).

In a tree structure of optimal PUFB, we can verify that

only M comparisons are conducted among {Sxx(ωk)},
not enough for testing majorization condition.

Example 1. Tree structure of optimal building block
PUFB. Suppose the input psd Sxx(ω) of the two-level

TSFB Fig. 3 is as shown in Fig. 5(a). Consider the

following two choices of TSFB.

(i) Let the FB in the first level be the optimal PUFB

for the input Sxx(ω) and let the FB in the second

level be respectively the optimal PUFB for Sx0x0
(ω)

and Sx1x1(ω). Fig. 5(b) shows the resulting TSFB

analysis bank. The subbands variances are respec-

tively 9, 4, 5, and 2. In this case the coding gain of

the TSFB is G(i) = 20
(360)1/4 .

(ii) Choose the first-level analysis bank as in Fig. 5(c)

and the second-level FB to be the optimal PUFB

for Sx0x0
(ω) and Sx1x1

(ω). Then the subbands

variances are respectively 9, 6, 3, and 2. The

coding gain of the TSFB is G(ii) = 20
(324)1/4 , which

is greater than G(i). In this case G(ii) is also the

coding gain of the optimal PUFB.

Remark on optimal tree structured PUFB. In Exam-

ple 1, suppose in the interval (3π/4, π), the height of

Sxx(ω) is 2 instead of 1. We can verify that tree struc-

ture of optimal PUFB is the optimal PUFB. Using the

filters in Fig. 5(b) for the first level yields less gain. This

shows that to obtain optimal tree structured PUFB, fil-

ters should be chosen not merely according to the values

of Sxx(ω) at aliasing frequencies but according to the

overall energy distribution.

Compaction filters for M = M1M2

The optimal compaction filter H(ω) (Fig. 2) for a

composite integer M = M1M2 can be implemented by

using the optimal compaction filter H1(ω) for M1 and

the optimal compaction filter H2(ω) for M2 (Fig. 6).

We first design the optimal compaction filter H1(ω) for

the input Sxx(ω) with respect to M1. Then design the

optimal compaction filter H2(ω) for Syy(ω) with respect

to M2. The product H1(ω)H2(M1ω) is the optimal

compaction filter for the input Sxx(ω) with respect to

M . The reason is as follows. The construction of

optimal compaction filters in Sec. 2 indicates that we

can think of compaction filters as a maximum selecting

device. For every ω0 ∈ [0, 2π/M ], define the aliasing

frequencies ωk,i = ω0 + 2πk/M1 + 2πi/M . The optimal

compaction filter H(ω) picks out a frequency ωk0,i0 such

that Sxx(ωk0,i0) is a maximum of {Sxx(ωk,i)}. In Fig. 6,

the filter H1(ω) first picks out a frequency ωk0,i such

that Sxx(ωk0,i) is a maximum of {Sxx(ωk,i)} for a fixed

i. Then,

Syy(M1ω0 + 2πi/M) = Sxx(ω0 + 2k0π/M1 + 2iπ/M).

Likewise, the filter H2(ω) will single out a frequency

ωk0,i0 such that Sxx(ωk0,i0) is a maximum of the set

{Sxx(ωk0,i)}. It follows that Sxx(ωk0,i0) is a maximum

of {Sxx(ωk,i)}.

5. PERMISSIBILITY ISSUE

It is argued in [6] that, with certain frequency stacking

in a filter bank, a considerable amount of aliasing will

remain uncanceled if the individual filters have good

attenuation. In this case, the support configuration is

called nonpermissible.

The uniform DFT filter bank Fig. 5(b) is known

to be a nonpermissible example whereas the cosine

modulated type of stacking Fig. 7(a) is a permissible

one. These two stackings are respectively the optimal

four-channel PUFB for the following two cases: (i) The

input is complex and the psd is monotone decreasing

and (ii) the input is real and the psd is monotone

decreasing. So optimal compaction filters in general

are not permissible. However, the cosine modulated

type of stacking Fig. 7(a) is not the only permissible

stacking. For example in Fig. 7(a) consider swapping

part of the supports of the first two filters (Fig. 7(b)).

The supports of the other filter remain the same. The
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resulting stacking, clearly not cosine modulated type, is
still permissible.
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Fig. 3. Two-level tree structured filter bank.
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Fig. 4. An optimal paraunitary filter bank that can

not be expressed as a tree. (a) Input power spectral

density; (b) corresponding optimal paraunitary filter bank.
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Fig. 5. Example 1. (a) Input power spectral

density; (b) first set of overall analysis bank;

(c) second set of analysis bank of first level.
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Fig. 6. Cascade implementation of optimal
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