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ABSTRACT

In this paper we consider feedback rate allocation for MIMO
systems with limited feedback of both bit loading and pre-
coder. Allocation of feedback rate is an essential problem
when there are two or more kinds of feedback information.
We address this issue by analyzing the performance loss due
to quantization of precoder and bit loading. We first derive
the increase in transmission power when precoder is quan-
tized, and then the additional penalty when bit loading is also
quantized. The analysis allows us to find the optimal feed-
back rate allocation that minimizes the power penalty. Sim-
ulations show that the system with proper feedback rate allo-
cation can achieve a very good performance compared with
systems that do not consider the feedback of precoder and bit
loading jointly.

1. INTRODUCTION

Recently, there has been considerable interest in multi-input
multi-output (MIMO) systems with limited feedback [1].
It has been demonstrated that the system performance can
be improved significantly with limited amount of feedback.
Commonly adopted types of feedback information are pre-
coder, bit loading, power loading or a combination of these
three. The feedback of precoder information has been studied
extensively [1]-[5]. The precoder is chosen from a codebook
using an appropriate selection criterion and the index is fed
back to transmitter. Codebooks designs for unitary precoders
using Grassmannian subspace packing are developed in [2]
for a number of criteria. A randomly generated codebook
is proposed in [3] and the required feedback rate can be
computed for a given target spectral efficiency. In [4], the
precoder is selected from the codebook to minimize bit error
rate (BER) and the generalized Lloyd algorithm is used to
design codebooks. In the multimode scheme [5], the number
of substreams transmitted can vary with the channel and bits
are loaded uniformly. The feedback of bit loading and power
loading have also been considered in the literature [6]-[7]. An
efficient algorithm for per antenna power and rate control is
developed in [6]. In [7], the decision feedback receiver feeds
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back the detection ordering for a fixed bit loading, which is
equivalent to using all permutations of the same bit loading
vectors. The design of codebooks for an MIMO system that
feeds back only bit loading has been considered in [8]. There
has also been research on the feedback of both bit loading and
precoder [9]-[10]. A number of optimal MIMO transceivers
with decision feedback and bit loading are given in [9]. Bit
loading is incorporated in the multimode scheme to further
improve the performance in [10], and both precoder and bit
loading are fed back. The feedback of precoder and power
loading is considered in [11]. Two efficient methods are de-
veloped in [11] for parameterizing unitary precoders. It is
shown therein that the feedback of power loading provides
only slight improvement. In [12], the information of power
loading, bit loading and precoder are fed back to transmitter
to maximize the transmission rate.

In previous works, when there is more than one type of
feedback information, the feedback rate is often determined
in an ad hoc manner. Feedback rate allocation is an important
but often not adequately addressed problem. In this paper
we consider feedback rate allocation for MIMO systems with
limited feedback of both bit loading and precoder. We allo-
cate the feedback rate by analyzing the power penalty when
quantization is applied on precoder and bit loading. We first
derive the increase in transmission power when precoder is
quantized, and then the additional penalty when bit loading is
also quantized. Thus the effect of quantization on precoder
and bit loading can be brought together and the optimal feed-
back rate allocation for minimizing the power penalty can be
determined in a systematic manner. Simulation examples are
given to demonstrate that judicious allocation of feedback rate
leads to a very good performance.

2. SYSTEM MODEL

Consider the MIMO communication system with Mt trans-
mit antennas and Mr receive antennas in Fig. 1. The chan-
nel is modeled by an Mr × Mt matrix H whose entries are
independent and identically distributed circularly symmetric
complex Gaussian random variables with zero mean and unit
variance. TheMr×1 channel noise vector n is additive white
Gaussian with zero mean and variance N0. The precoder
F is an Mt × M matrix with orthonormal columns, where
M = min(Mr, Mt). The input vector s consists of symbols
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s0, s1, . . . , sM−1 that are uncorrelated, and zero mean. Let
the number of bits loaded on sk be bk, then the number of
bits transmitted per channel use is Rb =

∑M−1
k=0 bk. The total

transmission power E[x†x] is Pt, where x is the transmitter
output vector as indicated in Fig. 1. The channel output r is

Fig. 1. The MIMO communication system.

given by r = HFs + n. The error vector at the output of the
M × Mr receive matrix G is e = ŝ − s = Gr − s, where
G is zero-forcing, given by G = (F†H†HF)−1F†H† [15].
The autocorrelation matrix of the error vector Re = E[ee†]
is [15]

Re = N0(F
†
H

†
HF)−1. (1)

Let the eigen decomposition of H†H be V

[
Λ 0

0 0

]
V†,

where theM×M diagonal matrixΛ contains the eigenvalues
ofH†H in nonincreasing order, i.e., λ0 ≥ λ1 ≥ . . . ≥ λM−1,
and V is an Mt × Mt unitary matrix. For a number of
design criteria, e.g. minimization of transmission power
[2][9][11][14], the optimal unitary precoder has been found
to beF = VM ,whereVM is theMt×M matrix obtained by
keeping the firstM columns of V. With the above precoder,
the kth error variance is given by

σ2
ek

= [Re]kk = N0λ
−1
k . (2)

As {λk} is in nonincreasing order, {σ2
ek
} is in nondecreasing

order. Thus the optimal bit loading {bk} that minimizes the
transmission power is in nonincreasing order [9].

In this paper, we consider the limited feedback of pre-
coder and bit loading. At the receiver, the bit loading vector
b =

[
b0 b1 . . . bM−1

]
and precoder matrix F are cho-

sen from their respective codebooks and the indexes are sent
back to the transmitter. Suppose Bb and Bf bits are used
to represent b and F, respectively, the total feedback rate is
B = Bb + Bf . In the next section, we derive feedback rate
allocation between bit loading and precoder.

3. ALLOCATION OF FEEDBACK RATE

In this section, we allocate the feedback rate between pre-
coder and bit loading. We consider the increase in transmis-
sion power due to the quantization of precoder and bit loading
with a high feedback rate assumption. First we analyze the
power penalty when only the precoder is quantized. Then we
derive the additional penalty when bit loading is also quan-
tized. The results arw used to determine feedback rate alloca-
tion between precoder and bit loading.

3.1. Performance loss due to precoder quantization

When the precoder is a quantized version of VM , F = V̂M ,
the error autocorrelation matrix in (1) is

R̂e = N0(V
†
M V̂M )−1

Λ
−1(V̂†

MVM )−1,

where we have assumed that H has full rank. Let vk and
v̂k be respectively the kth column of VM and V̂M . Express
V

†
MV̂M as V

†
MV̂M = D(IM + E), where D is a diagonal

matrix with [D]kk = v
†
kv̂k, k = 0, 1, . . . , M − 1, IM is

the M × M identity matrix, and the matrix E is given by
[E]kj = v

†
kv̂j/v

†
kv̂k when k $= j and [E]kk = 0. When

Bf is large and quantization error is small, v†
kv̂k ≈ 1 and

v
†
kv̂j ≈ 0, and thus [E]kj ≈ 0. It is known that [17] we can
write (IM +E)−1 as a power series in E, i.e., (IM +E)−1 =∑∞

j=0(−1)jEj when ‖E‖F < 1, where ‖E‖F denotes the
Frobenius norm of E. As the elements of E are small, we
have the approximation (IM + E)−1 ≈ IM − E. It follows
that (V†

MV̂M )−1 = (IM + E)−1D−1 ≈ (IM − E)D−1.
Thus, we have

R̂e ≈ N0(IM − E)D−1
Λ

−1
D

−†(IM − E
†). (3)

Notice thatD−1Λ−1D−† is a diagonal matrix, and the diago-
nal elements ofE are equal to zero, so [ED−1Λ−1D−†]kk =
[D−1Λ−1D−†E†]kk = 0. Therefore the kth subchannel er-
ror variance σ̂2

ek
= [R̂e]kk in (3) can be written as

σ̂2
ek

≈ N0

(
|[D]kk|

−2λ−1
k + ‖1†

kED
−1

Λ
−1/2‖2

)
, (4)

where 1k is the kth standard vector with [1k]k = 1 and
[1k]j = 0 when j $= k and ‖x‖ denotes the 2-norm of a
vector x. The jth element of 1†

kED−1Λ−1/2 is equal to zero
when j = k, and equal to λ−1/2

j v
†
kv̂j/(v†

kv̂kv
†
j v̂j) when

j $= k, so ‖1†
kED−1Λ−1/2‖2 can be expressed as

‖1†
kED

−1
Λ

−1/2‖2 =
M−1∑

j=0,j #=k

∣∣∣∣
v
†
kv̂j

v
†
kv̂k

∣∣∣∣
2 λ−1

j

|v†
j v̂j |2

. (5)

Substituting (5) to (4), we have

σ̂2
ek

≈ N0λ
−1
k |v†

kv̂k|
−2

(
1+

M−1∑

j=0,j #=k

|v†
kv̂j |

2
λ−1

j λk

|v†
j v̂j |2

)
. (6)

As |v†
kv̂j | ≈ 0, we have the approximation

σ̂2
ek

≈ N0λ
−1
k |v†

kv̂k|
−2. (7)

To measure the increase in transmission power, note that the
total transmission power for a given symbol error rate (SER)
can be expressed as [9]

Pt = Γ
M−1∑

k=0

(2bk − 1)σ2
ek

, (8)
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where Γ = 1
3Q−1(SER

4 )2 and Q(y) = 1√
2π

∫ ∞
y e−t2/2dt,

y ≥ 0. When the transmission rate is large, 2bk − 1 ≈ 2bk ,
the total transmission power can be approximated as Pt ≈
Γ

∑M−1
k=0 2bkσ2

ek
. In this case, it is shown in [9] that the op-

timal bit loading {b∗k} that minimizes the transmission power
is given by

2b∗k = P ∗
t /(MΓσ2

ek
), (9)

where P ∗
t = MΓ2Rb/M

∏M−1
j=0 σ2/M

ej is the minimized trans-
mission power. When the precoder is not quantized, F =
VM and σ2

ek
= N0λ

−1
k is as given in (2), b∗k in (9) satisfies

2b∗k = λkP ∗
t /(N0MΓ). When the precoder is quantized, the

required transmission power becomes P̂t ≈ Γ
∑M−1

k=0 2b∗k σ̂2
ek
.

Using (7), we have

P̂t ≈ Γ
M−1∑

k=0

2b∗kN0λ
−1
k |v†

kv̂k|
−2 =

P ∗
t

M

M−1∑

k=0

|v†
kv̂k|

−2.

Therefore the transmission power is increased by a factor of
P̂t/P ∗

t ≈ 1
M

∑M−1
k=0 |v†

kv̂k|−2. We define the power penalty
due to precoder quantization as

Df = 10 log10 E

[
1

M

M−1∑

k=0

|v†
kv̂k|

−2

]
. (10)

When the entries of the channelH are independent Gaussian
with zero mean and unit variance, it is known that each vk

is uniformly distributed over theMt-dimensional space {u ∈
CMt : ‖u‖ = 1}, where CMt is the set of all complex vectors
withMt elements [18].

Lemma 1. When vk is quantized to v̂k using Bvk bits, Df is
given by

Df ≈10 log10

(
1

M

M−1∑

k=0

(
2Bvk (Mt − 1)

[ Mt−1∑

j=2

(
2

−(Mt−j)
Mt−1 Bvk

j − Mt

)
− ln

(
1 − 2

−Bvk
Mt−1

)]))
.

(11)

Proof. When Bvk bits is used to quantize vk to v̂k, the prob-
ability density function of |v†

kv̂k|2 can be approximated as
[13] f|v†

kv̂k|2(x) ≈ 2Bvk (Mt − 1)(1 − x)Mt−21[1−εk,1)(x),

where 0 < x < 1, εk = 2−Bvk
/(Mt−1) and 1I(x) is the in-

dicator function, which is equal to 1 if x in the interval I and
zero otherwise. Using the above pdf approximation, it can be
verified that E[|v†

kv̂k|−2] ≈ 2Bvk (Mt − 1)
∫ 1
1−εk

x−1(1 −

x)Mt−2dx. Letting y = 1−x and applying long division, we
getE[|v†

kv̂k|−2] ≈ 2Bvk (Mt−1)
∫ 0
εk

(yMt−3+yMt−4+. . .+

y + 1) + 1
y−1dy. Evaluating the integrals, we get (11).

3.2. Performance loss due to bit loading quantization

For a given quantized precoder, we can compute the sub-
channel error variances σ̂2

ek
, the optimal bit loading b̃∗k cor-

responding to σ̂2
ek
, and the minimum transmission power P̃ ∗

t .
Suppose now we quantize b̃∗k to b̂k, the required transmission
power using the quantized bit loading P̂t ≈ Γ

∑M−1
k=0 2b̂k σ̂2

ek

can be rewritten as

P̂t ≈ Γ
M−1∑

k=0

2b̃∗k σ̂2
ek

2(b̂k−b̃∗k) =
P̃ ∗

t

M

M−1∑

k=0

2(b̂k−b̃∗k),

where we have used 2b̃∗k = P̃ ∗
t /(MΓσ̂2

ek
). Hence, the

transmission power is increased by a factor of P̂t/P̃ ∗
t =

1
M

∑M−1
k=0 2(b̂k−b̃∗k). We define the power penalty due to the

quantization of bit loading as

Db = 10 log10 E

[
1

M

M−1∑

k=0

2(b̂k−b̃∗k)

]
.

When the precoder is not quantized, the optimal bit loading
{b∗k} is in nonincreasing order [9]. When Bf is large and the
quantization error of the precoder is small, we can assume that
the optimal bit loading {b̃∗k} is also in nonincreasing order. In
this case, b̃∗k are bounded as given in the following lemma.

Lemma 2. When a bit loading {bk} satisfies
∑M−1

k=0 bk = Rb

and b0 ≥ b1 ≥ . . . ≥ bM−1 ≥ 0, bk is bounded by bk,min ≤
bk ≤ bk,max, where

bk,max =Rb/(k + 1), k = 0, . . . , M − 1,

b0,min =Rb/M, bk,min = 0, k = 1, . . . , M − 1. (12)

Proof. When {bk} is in nonincreasing order, b0,max = Rb

and bk,min = 0 for 1 ≤ k ≤ M − 1. The minimum
value of b0 occurs when Rb is uniformly distributed among
b0, . . . , bM−1, so b0,min = Rb

M . Similarly, bk is at its
maximum value when bk+1 = . . . = bM−1 = 0. Thus,
bk,max = Rb

k+1 .

Suppose Bb,k bits are used for scalar quantization of b̃∗k.
With a moderate number of quantization bits Bb,k, it is rea-
sonable to assume that the quantization error δk = b̂k − b̃∗k
has a uniform distribution over (−∆k/2, ∆k/2], where∆k =
(bk,max − bk,min)2−Bb,k is the quantization step size [16]. In
this case, Db can be given in a closed form.

Lemma 3. When the quantization error δk = b̂k − b̃∗k is uni-
formly distributed over (−∆k/2, ∆k/2],Db is given by

Db = 10 log10

(
1

M ln 2

M−1∑

k=0

1

∆k

[
2∆k/2 − 2−∆k/2

])
.

(13)

3923



Db + Df ≈10 log10

(
1

M ln 2

M−1∑

k=0

2Bb,k

%k

[
2(

!k
2 2−Bb,k ) − 2(

−!k
2 2−Bb,k )

])
+

10 log10

(
2(B−Bb)/M (Mt − 1)

[ Mt−1∑

j=2

(
1

j − Mt
2

−(Mt−j)
Mt−1 (B−Bb)/M

)
− ln

(
1 − 2

−(B−Bb)/M
Mt−1

)])
, (14)

where %k = bk,max − bk,min.

Proof. It can be verified that E[2δk ] = 1
∆k ln 2 [2∆k/2 −

2−∆k/2]. The expression ofDb in (13) follows.

Rate allocation. Starting from the optimal precoder F =
VM and the optimal bit allocation, the performance is de-
graded byDf (dB) when the precoder is quantized. When we
further quantize the bit loading, there is an additional degrada-
tion ofDb(dB). Therefore we can minimize the power penalty
by allocating the rate such that the combined penaltyDf +Db

is minimized. From (10), we see that the quantization of each
vk contribute toDf in the same manner, so we chooseBvk =
Bf/M for 0 ≤ k ≤ M −1. SubstitutingBvk = (B−Bb)/M
into (11), the objective function Db + Df becomes (14) that
is shown at the top of this page. For 0 ≤ Bb ≤ B, we
evaluate Df + Db for all possible integer {Bb,k} that satisfy∑M−1

k=0 Bb,k = Bb and choose the one that has the smallest
combined power penalty.

4. SIMULATIONS

In the following examples, the elements of channel matrix
H are independent complex Gaussian random variables with
zero mean and unit variance, Mr = Mt = 4 and Rb = 16.
We use the bit loading codebook designed in [8] and the ran-
domly generated precoder codebook in [3]. For codeword se-
lection, the bit error rate (BER) criterion is employed. We
have used 105 channel realizations in the simulations. The
power is equally divided among all symbols carrying nonzero
bits.
Example 1. Feedback rate allocation. We demonstrate

the importance of proper feedback rate allocation between
precoder and bit loading in this example. For B = 5, the op-
timal rate allocation is (Bf , Bb) = (3, 2) using the method in
Sec. 3. In Fig. 2, we show the BER for all possible (Bf , Bb)
such that Bf + Bb = B. We see that the rate allocation
(Bf , Bb) = (3, 2) gives the best performance. For exam-
ple, at BER= 10−5, (3, 2) is better than (Bf , Bb) = (1, 4)
by around 2.5 dB. This demonstrates that the performance is
sensitive to rate allocation; by moving two bits fromBf toBb

the performance can differ by 2.5 dB. In the case (Bf , Bb) =
(5, 0), all feedback bits are used for precoder feedback and the
bit loading is a fixed vector. Two cases of fixed bit loading are
shown, a nonuniform one

[
6 5 5 0

]
and a uniform one

[
4 4 4 4

]
. The fixed nonuniform bit loading is obtained

by using the generalized Lloyd algorithm in [8] with only one
codeword; the performance is considerably better than that of
uniform bit loading. Therefore the design of bit loading is
particularly important when Bb = 0.

18 20 22 24 26 28 30 32 34 36
10−6

10−5

10−4

10−3

10−2

10−1

Pt/N0 (dB)

BE
R

 

 

(5,0), b=[4 4 4 4]
(0,5)
(1,4)
(4,1)
(5,0), b=[6 5 5 0]
(2,3)
(3,2)

Fig. 2. Example 1. Bit error rate performance for all different
feedback rate allocations when B = 5.

Example 2. BER comparison. In this example we show
the BER of the proposed method and other limited feedback
systems with a linear receiver for B = 8. The feedback rate
allocation computed using (14) is (Bf , Bb) = (5, 3). The
two precoder systems [4][11] feed back the index of the pre-
coder in the codebook. In [11], the precoder is quantized us-
ing sequential vector quantization (SVQ). For both [4] and
[11], bits are uniformly loaded on all M substreams. In the
multimode (MM) precoding system [5], the constellation on
all substreams are the same, but the number of substreams
transmitted can vary with the channel. The modified multi-
mode precoding (modified MM) in [10] improves the perfor-
mance of MM in [5] by introducing additional feedback of
nonuniform bit loading. In [8], the feedback information is
bit loading only; the precoder is allocated zero feedback bit.
The results are shown in Fig. 3. The systems that allow the
number of substreams to vary enjoy a better performance than
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10−6

10−5

10−4

10−3

10−2

10−1

100

Pt/N0 (dB)

BE
R

 

 

Precoder, SVQ [11]
Precoder [4]
[8]
MM [5]
Modified MM [10]
Proposed
B=∞

Fig. 3. Example 2. Comparisons of BER for systems with
linear receivers for B = 8.

the two precoder systems that use uniform bit loading. At
BER=10−4, the gap between the proposed system and other
systems is around 2.3 dB. By judicious allocation of feedback
rate between precoder and bit loading, the proposed system
can achieve a better performance. As a benchmark, the per-
formance of the case B = ∞ is also shown, in which the
precoder F = VM , and the optimal integer bit loading is
used. With 8 bits of feedback, the performance of the pro-
posed system is around 2.4 dB away from that uses infinitely
many feedback bits at BER=10−4.

5. CONCLUSION
In this paper, we have developed a systematic approach to
designing feedback rate allocation between precoder and bit
loading. We have analyzed the power penalty due to quanti-
zation of precoding and bit loading. The analysis leads to an
algorithm for finding the optimal feedback rate allocation that
minimizes the power penalty.
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