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Abstract 
A filter bank is referred to as cosine modulated when all 
the analysis and synthesis filters are cosine modulated 
versions of one or two prototypes. The one-dimensional 
(1D) cosine modulated filter bank (CMFB) is well- 
known for low design cost and low complexity. In the 
application of subband coding, it is sometimes desirable 
that the individual filters have linear phase. In this 
paper, we will consider the class of 2D paraunitary 
CMFB with FIR linear phase filters. Necessary and 
sufficient conditions for perfect reconstruction of the 
2D linear phase CMFB will be presented. 

1. INTRODUCTION 

In the context of one-dimensional (1D) filter bank 
design, the cosine modulated filter bank (CMFB) is 
well-known for low design cost and low complexity. 
The 1D CMFB has been studied extensively in the past 
(see [l] for references). In these systems, the analysis 
and synthesis filters do not have linear phase, which 
is a property sometimes desirable in image coding 
application. This motivates the development of a 
subclass of CMFB that have linear phase analysis and 
synthesis filters in [2]. 

Recently, there has been considerable interest in the 
design of tw-dimensional (2D) maximally decimated 
filter banks (Fig. 1). In the coding of image or video 
data, it is of great importance that the filter bank can 
be implemented with low complexity and the features 
of CMFB are particularly attractive. The conventional 
1D CMFB has been extended to 2D case, [3], [4]. In 
these 2D cosine modulated systems, the prototype filter 
has a parallelogram support, e.g., Fig. 2(a), and each 
analysis filter is a 2D cosine modulated version of the 
prototype. The support of each analysis filter consists 
of two identical parallelograms. Fig. 2(b) shows the 
supports of the analysis filters in a typical 2D CMFB 
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system. It is shown in [5] that if the prototype filter 
has linear phase and the polyphase components of 
the prototype satisfy some 2D power complementary 
conditions, the 2D CMFB has perfect reconstruction. 
However, like its 1D counterpart, the 2D CMFB do not 
have linear phase analysis and synthesis filters. 

In this paper, we will consider the class of 2D pa- 
raunitary CMFB with FIR linear phase filters. As the 
2D CMFB given in [5], the support of the analysis and 
synthesis filters consist of two parallelograms. Neces- 
sary and sufficient conditions for perfect reconstruction 
will be presented. We will see that the paraunitary 
property of the 2D linear phase CMFB are completely 
determined by some pairwise power complementary re- 
lations of the polyphase components of the prototype 
filter. It turns out that these pairwise power comple- 
mentary conditions are identical to those given in [5] 
and the prototype obtained therein can be used as the 
prototype for 2D linear phase CMFB. 

2. REVIEW OF 1D LINEAR PHASE CMFB 

Consider the filter bank in Fig. 1, in which the 
decimation ratio M is an even number. An M-channel 
linear phase CMFB is typically obtained by starting 
from a hypothetical M-channel uniform DFT filter 
bank, [l]. The DFT filters, denoted by & ( U ) ,  are 
shifted versions of a low-pass prototype filter P'(w) as 
shown in Fig. 3. The prototype Po(u) has bandwidth 
2n/M and real coefficients. The filters Pk(w) have 
complex coefficients except Po(w) and PMl2(w). Also 
the coefficients of Pk(w) are the complex conjugate of 
those of P ~ - k ( w ) ,  i.e., 

In the linear phase CMFB, the coefficients of the first 
M / 2  + 1 analysis filters are the real part of p k ( n ) ,  for 
k = 0,1,- 3 - , M/2, while the coefficients of the last 
M / 2 -  1 analysis filters are the imaginary part of p k ( n ) ,  
for IC = 1,2, . . . , M/2 - 1, except some scalar constants 
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and delays. Precise expressions for the analysis filters 
are given below. 

h k ( n )  = l/&pk(n), li = 0 and M / 2 ,  

So the analysis filters are the cosine (or sine) modulated 
versions of the prototype PO(.). The synthesis filters 
are time-reversed versions of the corresponding analysis 
filters except some delays, 

where N is the order of the prototype filter & ( U ) .  

With this setup, the analysis and synthesis filters have 
linear phase if the prototype Po(w) has linear phase. 

Conditions for perfect reconstruction 

Suppose the prototype filter PO(.) has linear phase 
andpo(n) = p o ( N - n ) ,  where N ,  the order of Po(w), is 
an odd multiple of M/2 .  Let & ( U )  be the nth type 1 
polyphase component of Po(w). Then the linear phase 
CMFB has perfect reconstruction if and only if E,(.) 
and E n + ~ p ( w )  are power complementary, i.e., 

3. TWO-DIMENSIONAL LINEAR PHASE CMFB 

Consider the filter bank in Fig. 1. The decimation 
matrix M is an integer matrix and IMI is an even 
number, where IM) denotes the absolute value of the 
determinant of M. Similar to the construction of 1D 
linear phase CMFB, we start from a hypothetical ]MI- 
channel uniform DFT filter bank, [l]. The DFT filters 
Pk(w) (Fig. 4) are shifted versions of a real-coefficient 
prototype Po(@), 

&(U) = PO(W - 27rMUTmk), m k  E N ( M T ) .  

The prototype PO(w) has a parallelogram support d e  
scribed by SPD(7rMPT), where the symmetric paral- 
lelepiped S P D ( V )  of a matrix V is the set 

S P D ( V )  = {vx,x E [-I, 

So the prototype is nonseparable in general. 

The analysis and synthesis filters 

As in 1D linear phase CMFB, the analysis filters 
are the real and imaginary parts of the DFT filters. 
We first identify those pairs of DFT filters whose 
coefficients are complex conjugate of each other. It 
can be verified that 

p k ( n )  = pi,(n), if mkl + mk = 0 mod MT. 

Let us call ( m k , m k / )  a conjugate pair when m k ’  and 
m k  are related in as above equation. In this case, 
if k = k’, p k ( n )  and p k , ( n )  are the same filter and 
hence pk(n) is real. So p k ( n )  has real coefficients 
whenever 2mk, = 0 mod MT. Let N T ( M T )  denote 
the collection of such vectors. Recall in lD, only two 
DFT filters have real coefficients. But in 2D case, there 
could be more than two real DFT filters depending 

on the matrix M. For example, let M = 

Then the four DFT filters are respectively PO(%, nl),  

P O ( - ~ O ,  -I), po(n0,  -nl) and P O ( - ~ O ,  -m);  all four 
filters have real coefficients. More generally, one can 
verify that N,(MT) contains either two or four vectors. 
Let M{(MT) be the set that contains one vector from 
each conjugate pair (mk,mk/) and m k  # mp mod 
MT. It follows that N,(MT)  and N(MT) have no 
common vectors. 

[: ;]. 

Now consider the following setup of analysis filters. 

where IC and IC‘ are such that ( m k ,  m k , )  is a conjugate 
pair. With such a setup the analysis filters are the 2D 
cosine (or sine) modulated versions of the prototype 
Po(u) and are nonseparable in general. The impulse 
responses of the synthesis filters are given by 

With the above construction of filters, we can verify 
that the analysis and synthesis filters have linear 
phase if the prototype has linear phase. Furthermore, 
the filter bank has perfect reconstruction when the 
prototype filter Po(w) is an ideal filter. 
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Theorem 3.1. Necessary and sufficient condition for 
perfect reconstruction. The 2D linear phase CMFB has 
perfect reconstruction if and only if the following three 
conditions are satisfied (see [SI for a proof). 

the synthesis filter n ( u )  and results in edge aliasing 
and similarly the image in Fig. 5(b) results in vertex 
aliasing. 

When the configurations are not constructed prop 
The lattice of MT is a subset of the quincunx lattice, 

The prototype po(n) has linear phase with po(n) = 
po(n, - n), where n, = M [ 0.5 0.5IT. 

Express the prototype in terms of polyphase repre- 
sent ation, 

Then the polyphase components En(w) satisfy the 
following power complementary conditions. 

where n and n’ are related by n - n’ = n, mod M. 
It turns out that these power complementary con- 

ditions are identical to those derived in [5]. So the 
prototype filters designed for the 2D CMFB in [5] can 
be used in the 2D linear phase CMFB as well. The 
design of the whole filter bank is reduced to designing 
a prototype filter with a parallelogram support. 

4. DESIGN OF 20 LINEAR PHASE CMFB 

It is well-known that the one-dimensional (1D) uniform 
DFT filter bank [l] can not have analysis filter and 
synthesis filters with good stopband attenuation except 
in ideal case. The reason for this is that with DFT 
type of frequency stacking, a considerable amount of 
aliasing will remain uncancelled if the individual filters 
have good stopband attenuation but not ideal, [7]. In 
this case, the support configuration for the analysis and 
synthesis filter is called nonpermissible. As support 
permissibility is a necessary condition for any successful 
design, we would like to examine the configuration of 
the 2D linear phase CMFB and check if a good design 
is possible. 

As mentioned in Sec. 3, the 2D linear phase CMFB 
has prefect reconstruction when the prototype is an 
ideal filter. In practical cases, non-ideal roll-off of the 
filter causes aliasing. Particularly in the transition 
bands of the synthesis filters, different types of major 

image of the analysis filter Hk(w) is edge adjacent to 
aliasing is created. For example, in Fig. 5(a) one 

erly, it is possible that some edge aliasing can not be 
canceled if the analysis and synthesis filters have good 
frequency selectivity. Such configurations are called 
edge nonpermissible, [8]. Similarly, if some vertex alias- 
ing in a configuration are uncancelable when the fil- 
ters have good frequency selectivity, the configuration 
is called vertex nonpermissible. For the individual fil- 
ters to have good frequency selectivity, it is necessary 
that the 2D configuration have permissibility, which in- 
cludes edge and vertex permissibility [8]. In this case, 
the importance of edge permissibility is much greater 
than vertex permissibility. 

The configuration of the two-parallelogram CMFB 
constructed and designed in [5] has edge permissibility 
but lacks vertex permissibility. This imposes limitation 
on the stopband attenuation of the prototype filter. 
As the prototype of the 2D linear phase CMFB has 
to satisfy the same conditions as the prototype of the 
2D CMFB in [5] ,  the prototype of the 2D linear phase 
CMFB can not have good stopband attenuation and 
hence, the analysis and synthesis filters of the 2D linear 
phase CMFB can not have good frequency selectivity. 

nYo-dimensional linear phase CMFB. Example 4.1. 
Let 

3 -1 
M = [ 2  4 1 .  

The lattice of MT is indeed a subset of the quincunx 
lattice. As (MI = 14, the linear phase CMFB has 
14 channels. Fig. 6 shows the magnitude response 
of the prototype filter whose polyphase components 
satisfy the power complementary conditions for perfect 
reconstruction. In this design example, each polyphase 
component of the prototype has four coefficients. 

References 

[l] P. P. Vaidyanathan, Multirate systems andJilter banks, 

[2] Y .  Lin and P. P. Vaidyanathan, “Linear phase cosine 

perfect reconstruction ,” IEEE Trans. SP, Oct. 1995. 

Englewood Cliffs, Prentice Hall, 1993. 

modulated maximally decimated filter banks with 

75 



[31 

[41 

[51 

M. Ikehara, ‘Cosine-modulated 2 dimensional FIR 
filter banks satisfying perfect reconstruction,” Proc. 
ICASSP, April 1994. 

Y. Lin and P. P. Vaidyanathan, “Two-dimensional 
paraunitary cosine modulated perfect reconstruction 
filter banks,” Proc. ISCAS, April 1995. 

Y. Lin and P. P. Vaidyanathan, “Theory and design 
of twc-parallelogram filter banks,” Tech. report, 
Caltech, Pasadena, CA, Nov. 1995. 

Y. Lin, “Theory and design of one- and two- 
dimensional filter banks,” Ph. D. Thesis, Caltech, 
1996. 

T. Chen and P. P. Vaidyanathan, “Consideration in 
multidimensional filter bank design,” ISCAS, 1993. 

Y. Lin and P. P. Vaidyanathan, “Theory and design 
of two-dimensional filter banks: a review,” Multidi- 
mensional Systems and Signal Processing, Academic 
Press (to appear). 

Fig. 3. An M-channel DFT filter bank. 

(-x,-n) I 
Fig. 4. Example of a 2D DFT filter bank. 

Fig. 5. (a) Image of the kth analysis filter is edge 
adjacent to the kth synthesis filter. (b) Image of the 
kth analysis filter is vertex ajacent to the kth synthesis 
filter. 

Fig. 2. A typical two-dimensional cosine modulated 
filter bank, (a) spectral support of the prototype, (b) 
support configuration of the filter bank. 

Fig. 6. Example 4.1. Ro-dimensional linear phase 
cosine modulated filter bank. The magnitude response 
of the prototype with frequency normalized by 27r. 
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