AN ITERATIVE ALGORITHM FOR FINDING THE MINIMUM SAMPLING FREQUENCY
FOR TWO BANDPASS SIGNALS

Yuan-Pei Lin, Yi-De Liu
Dept. Elect. and Control Engr.,
National Chiao Tung Univ.,
Hsinchu, Taiwan

ABSTRACT

In this paper, we propose an efficient algorithm for find-
ing the minimum sampling frequency for a signal that con-
sists of two bandpass signals. This has important applica-
tion in software radio where it is desirable to downconvert
multiple bandpass signals simultaneously. We will derive
a new set of conditions for alias-free sampling that can be
checked with few computations. The minimum sampling
frequency can be found by iteratively increasing the sam-
pling frequency to meet the alias-free conditions. We will
demonstrate that the proposed method has a much lower
complexity than previously reported algorithms.

1. INTRODUCTION

Bandpass sampling has important applications in downcovert-
ing radio frequency (RF) signals. In the application of soft-
ware defined radio systems, it is desirable to downconvert
multiple RF signals simultaneously to save cost [1, 2]. The
signal to be sampled may consist of more than one bandpass
signal. An example of spectrum that contains two bandpass
signals (four passbands) is shown in Fig. 1. Sampling the-
orem for a bandpass signal (two passbands) is well-known
[3]. The minimum frequency for alias-free sampling can
be found in a closed form [4]. The minimum sampling fre-
quency is usually significantly lower than the carrier fre-
quency of the bandpass signal.

For signals with more than two passbands, the minimum
sampling frequency can not be found in a closed from due
to the nonlinear nature of spectrum folding in the process of
sampling. Sampling for multi-band signals is extended in
[2]. Conditions for alias-free sampling of multi-band sig-
nals are derived [2]. A systematic algorithm for finding
valid sampling frequencies is developed in [5]. In [6][7],
the complexity for finding valid sampling frequency is con-
siderably reduced by imposing constraints on the ordering
of the bands in the folded spectrum. These results may not
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yield the minimum frequency for alias-free sampling due to
the ordering constraints. An efficient algorithm for finding
valid sampling frequency range is proposed in [8]. By ex-
hausting all possible orderings of the bands in the folded
spectrum and categorizing all possible cases, the computa-
tional complexity can be reduced. An algorithm for find-
ing the minimum sampling frequency is developed in [9]
by finding the intersection of valid sampling frequencies for
every two signal bands.

In this paper we propose an efficient algorithm for find-
ing the minimum sampling frequency for a signal consisting
of two bandpass signals. We will first derive a set of con-
ditions for alias-free sampling that can be checked with few
computations. We will show how the sampling frequency
can be increased with minimum increment to satisfy each
of these conditions. By iteratively meeting the conditions
for alias-free sampling, an algorithm for finding the min-
imum sampling frequency can be developed. There is no
need to consider ordering of the signal bands in the folded
spectrum. We will see that the algorithm based on the con-
ditions derived in this paper requires fewer computations
when compared to previously reported methods.

The rest of the paper is organized as follows. The condi-
tions for alias-free sampling are derived in Sec. 2. The algo-
rithm for finding the minimum sampling frequency is given
in Sec. 3. Simulation examples are presented in Sec. 4 and
a conclusion is given in section 5.

2. CONDITIONS FOR ALIASFREE SAMPLING

Conditions for alias-free sampling can be stated in vari-
ous ways in terms of the band edges and bandwidths of
the member bandpass signals. The conditions that are em-
ployed affect the complexity of ensuing algorithms. In this
section, we derive a new set of conditions for aliasfree sam-
pling that will lead to an efficient algorithm in the next sec-
tion.

Suppose we are to sample a signal X (f) that consists of
two bandpass signals X (f) and X5(f) as shown in Fig. 1.
Assume X;(f) # 0 for fi; < |f| < fn,, @ = 1,2, where
fe, and fp, are band edges, and W; = f, — f¢, are one-
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Figure 1: An example of spectrum that consists of two bandpass signals.

sided bandwidths as indicated in the figure. Let X;"(f),
and X (f) denote respectively the positive frequency part X7 Xir(f)
and negative frequency part of X;(f). There are four sig-
nal bands, including X" (f), X; (f), X3 (f), and X5 (f). (@) /\ % % /\ >
Since the replicas of any two bands may overlap and re- S Fa O Sfa Sm f
sult in aliasing after sampling, there are a total of Cj =
cases. Note that X (f) and X; (f) are symmetric with
respect to 0, and so are X (f) and X5 (f). If X;F(f) ' .
and X (f) are not aliasing after sampling, then X, (f) replica of repilca of
and X5 (f) will not be aliasing by symmetry. Similarly, X100 X710
if X7 (f) and X5 (f) are not aliasing after sampling, then /\ 52 /\ fs R
X (f) and X5 (f) will not be aliasing. Thus, we need to (b) 0| ! ' ! ' 7
consider only 4 cases: —f,;mod i T £ mod f

@ {X (), X7 ()} Ja mod fs

) {X5(f): X5 ()} Figure 2: (a) The spectrum of X (f) and X; (f). (b) An

© {XT(F), XH()N example of the folded spectrum for the interval [0, f5).

(£), X5 ()}

Case (a). If we consider only the pair { X (f), X1 (f)}
as shown in Fig. 2(a), this is the same as the case of one
bandpass signal. For convenience, we will derive a con-
dition in terms of the band edge f5, and one-sided band-
width W;. Upon sampling with frequency f,, replicas of
X (f) and X, (f) appear every fs, resulting in a peri-
odic spectrum; we can simply consider the period [0, f5).
Since X" (f) and X (f) are symmetric with respect zero,
the replicas of X (f) and X (f) are symmetric with re-
spect to J;—S in the interval [0, f,) (Fig. 2(b)). Observe that
if 0 or f5 is not contained inside the band of replicas of
X () and X7 (f) there will not be aliasing. One neces-
sary and sufficient condition for alias-free sampling is thus
fr, (mod %) =0, or fp, (mod f?) > W. Equivalently,
we have

2fh1
2fn,

(mod f5) =0

or (mod f5) > 2W,

ey

Case (b). Similar to case (a), if we consider the pair
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X5(f), X5 (f)}, there will be no aliasing if and only if
2 2 g y

2fh2
2fh2

(mOd fs) =0,

(mod fs) > 2Ws 2)

or

Case (c). Consider Fig. 3(a) where we have shown
only the pair { X (f), X5 (f)}. First observe that there is
no aliasing due to this pair if and only if there is no alias-
ing when we sample a shifted version of the pair { X" (f +
fo), X3 (f + fo)} where fo is the shift. For convenience
we will consider the condition for alias-free sampling of the
pair with a shift. Suppose we choose fy as the midpoint of

fe, and fp,, ie.,
fo=(fe, + fna)/2.
Then the shifted pair is as shown in Fig. 3(b), where
Jro — Jou

0="—=—

2 )
b= ffz - (ffl +fh2)/2?



c= fhl - (f& +fh2)/2'

If we consider the folded spectrum in the [0, f;) interval, X1 X5
the band edges ¢ (mod f,) and —a (mod fs) are equal- /\ /
distanced from f,/2. We now discuss two possible scenar- @) 0] t 7 7 i 1 7 ;
ios (i) a (mod fs) > —a (mod fs) and (ii) a (mod fs) < “ ' 2 2
—a (mod fs). Examples of these two possible cases are
shown respectively in Fig. 3(c) and (d).
(i) When a (mod fs) > —a (mod fs) there will be no . .
aliasing if and only if —a (mod f;) = a (mod fs) X0y XUy
orif theinterval (—a (mod fs),a (mod fy)) islarge b / .
enough to accommodate the two replicas. That is, (b) —a c 0 | b a f
a (mod fs) —(—a (mod fs)) =0, [l a2 a4
or a (mod fs) —(—a (mod fs)) > Wi + Woa.
The equivalent conditions are
2a (mod fs) =0, reflica of reflica of
or 2a  (mod fs) > Wy + Wa 3) X1+ X3(F+,)
) - 52/ fs
(ii) whena (mod fs) < —a (mod fs) as shownin Fig. 3(d), (c) O : X : >
there is some space between the two replicas and the d d /
spaceis of length (—a (mod fs)—a (mod f5)). There ~a modfs a modfs
will be no aliasing if and only if the remaining part of
the [0, fs) inte'rval is large enough to take in the two replica of replica of
replicas. That is, XU +y) XHf4 )
fs—(=a (mod f5) —a (mod fs)) > W1+ Wha. d / Ss/2 Ss R
Or equivalently 0 t 4 f
a modf —-a mod f

2a (mod f5) > Wy + Wy

This is the same as the second condition in (3).

Substituting a = (fr, — fe,)/2 to (3), we obtain one neces-
sary and sufficient condition for alias-free sampling

(fhz)_ffl) (mOd fS):()?
(fro — fo,) (mod fs) > Wy + Wo

or

“

Case (d). Similarly, for the pair {X; (f), X5 (f)},
we can use the technique in case (c) to find the following
necessary and sufficient condition for alias-free sampling

(fh1 +fh2) (mOd fs)zoa
(fro + fro) (mod fo) 2 Wi+ Wo  (5)

Summarizing, for given a sampling frequency f;, there
will not be aliasing if the following four conditions are sat-
isfied.

1. 2fp, (mod f5) =0or2fp, (mod f,) >2W1
2. 2fp, (mod fs) =0or2f, (mod f5) >2W2

or

3. (fno—fe) (mod fs) =0or (fp,—fe,) (mod fs5) >
Wi + W

4. (fh1+fh2) (mOd fs) = Oor(fh1+fh2) (mOd fs) >
Wi 4+ Ws

436

Figure 3: (a) The spectrum of X" (f) and X (f). (b) The
shifted spectrum X (f + fo) and X (f + fo), where fo =
(fne+ fer)/2and a = (fn, — fe,)/2. (¢) An example of the
folded spectrum for the interval [0, fs) whena (mod fg) >
—a (mod fs). (d) An example of the folded spectrum for
the interval [0, fs) when a (mod fs) < —a (mod f;).

3. PROPOSED ALGORITHM FOR FINDING THE
MINIMUM SAMPLING FREQUENCY

First for each of the four cases in Sec. 2 we derive the min-
imum increment in sampling frequency such that the corre-
sponding condition for alias-free sampling can be satisfied.

Case (a). Suppose the condition in (1) is not satis-
fied for a given sampling frequency f,. Consider the folded
spectrum for the interval [0, f5). We discuss the two cases
10 < fr, (mod f)s < fs/2and (i) fs/2 < fn, (mod f)s >
fs separately.

1) 0 < fr, (mod f)s < fs/2: When we gradually
increase the sampling frequency the band edge f,
(mod f,) of replica X (f) moves towards 0 while



the band edge — f, (mod fs) of replica X7 (f) moves

towards fs. When the sampling frequency is increased
such that f, (mod f;) decreases to 0, then the con-
dition in (1) becomes satisfied.

(i) fs/2 < fn, (mod fs) < fs: Similarly the condi-
tion in (1) becomes satisfied when f, (mod fs) de-
creases to fs/2.

Therefore we can conclude that the alias-free condition (1)
can be satisfied by increasing the sampling frequency such
that fp, becomes an integer multiple of f,/2. The smallest
new sampling f ney for this to happen can be computed as
follows. Let

Jrno =1 fs/2+1hy,

where 7, = fn, (mod f,/2) and np, = [fn, /(fs/2)]
with the notation |x] denoting the largest integer smaller
than or equal to z. Then we have f, = np, fsnew/2, Or
equivalently

2fn,

Nhy

2fh1 _ 2fh1
thl/(f3/2)J |_2fh1/f8J’

where we have used the fact that ny, can also be computed
using np, = |_2fh1/fsJ'

Case (b). Similar to case (a), if the condition in (2) is
not satisfied, we can increase sampling frequency to

2fn,

|_2fh2/f8J '

then (2) will become satisfied.

fs,ne'w =

(6)

(N

fs,new =

Case (c). Suppose the condition in (4) is not satisfied.
Consider again the shifted spectrum in Fig. 3(b). Using the
steps in case (a), we can verify that there will be not aliasing
if we increase the sampling frequency so thata (mod fs) to
be equal to 0 or % Moreover the new sampling frequency
can be obtained by

2 fh = Ju
la/ L] [(fro = fo)/fs]

®)

fsmew =

Case (d). Like case (c), if the condition in (5) is not
satisfied, we can increase the sampling frequency to

fhl +fh2
L(fh1 +fh2)/fSJ

fs,new - (9)
then (5) will be satisfied.

Using the conditions for alias-free sampling in Sec. 2
and the methods for computing new sampling frequency
for each case, we have the following iterative algorithm for
finding the minimum sampling frequency. To start off, let
fs = 2(W7 + W), which is the lowest possible sampling
frequency for no aliasing.
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Examine if the condition for case (a) in (1) is satis-
fied. If it is, go to the next step. If it is not satisfied,
compute the new sampling frequency using (6) and
go to the next step.

If the condition (2) for case (b) is satisfied, go to the
next step. If it is not satisfied, compute the new sam-
pling frequency using (7) and go to step 1.

. If the condition (4) for case (c) is satisfied, go to the
next step. If it is not, compute the new sampling fre-
quency using (8) and go to step 1.

If the condition (5) for case (d) is not satisfied, com-
pute the new sampling frequency using (9) and go to
step 1. If it is satisfied then we have found the mini-
mum sampling frequency.

Usually not all four steps are performed in one iteration.

Remark on complexity. The main computations are
in the inspection of conditions in (1), (2), (4) and (5), and
the computation of new sampling frequency in (6)-(9). Few
computations are required for these equations as we can bor-
row results from earlier evaluations. For example in step 1
we compute 25, (mod f5) in (1). In the process we can
also obtain the integer ny, which is used in computing the
new sampling frequency (6). Similar conclusions can be
drawn for steps 2-4. In step 3, we need to evaluate f3, — fo,
(mod f4) which can be written as

Jno — fo, (mod f)
= (fr. (mod f5) — fr, (mod fs)) (mod f)
call this
_ x , x>0,
- { r+ fs , otherwise.
(10

With conditions in step 1 already satisfied, we can obtain
feo, (mod f5) using

ffl (mOd fs) :fhl

Both fr, (mod fs)and fp, (mod f) canbe obtained from
steps 1 and 2. The evaluation requires at most 3 additions.
Similarly we can verify that in step 4 the evaluation of fp,, +
fry (mod fs) requires at most 2 additions.

(mod f5) — Wi.

4. SIMULATIONS AND COMPARISONS

In this section, we apply the proposed algorithm to wireless
applications. The bandpass signals considered in the simu-
lations are GSM 900 (935-960 MHz, one-sided bandwidth
25 MHz), GSM 1800 (1805-1880 MHz, one-sided band-
width 75 MHz) [11], DAB Eureka-147 L-Band (1472.286-
1473.822 MHz, one-sided bandwidth 1536 KHz) [12], IEEE



Case Method in [8] Method in [9] Proposed Method
Additions Multiplications | Additions Multiplications | Additions Multiplications
GSM900, GSM 1800 128 96 93 62 14 28
DAB, 802.11g 320 240 462 308 35 88
GSM900, WCDMA 160 120 282 188 17 29
DAB, WCDMA 608 456 1335 890 64 169

Table 1: Complexity for finding the minimum sampling frequency for 4 applications.

802.11g (2412-2432 MHz, one-sided bandwidth 20 MHz)
[13], and WCDMA (2119-2124 MHz, one-sided bandwidth
5 MHz).

Table 1 lists the complexity in finding the minimum sam-
pling frequency for 4 different combinations of bandpass
signals. For comparison, we have also shown the complex-
ity of the methods in [8][9]. The simulation result demon-
strates that the proposed method can reduce the number of
additions and multiplications significantly. The required
numbers of additions and multiplications are reduced re-
spectively by around 89% and 60-75% compared with the
other two methods. It is much more efficient for finding the
minimum bandpass sampling frequency.

5. CONCLUSIONS

We have proposed an efficient algorithm for finding the min-
imum sampling frequency for signals that contain two band-
pass signals (four passbands). We have derived a set of nec-
essary and sufficient conditions on the sampling frequency
for alias-free sampling. The conditions can be checked with
few computations. Our proposed algorithm finds the mini-
mum sampling frequency by iteratively increasing the sam-
pling frequency to meet the alias-free conditions. The com-
plexity for finding the minimum sampling frequency is much
lower than existing methods. As there is no need to con-
sider ordering of the signal bands in the folded spectrum,
it is easier to extend the proposed method to sampling for
multi-bandpass signals.
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