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ABSTRACT

In this paper, we design the optimal zero-forcing transceiver

that maximizes the transmission bit rate for multiple-input

multiple-output (MIMO) channels. The transmission bit

rate is maximized subject to a total power constraint for a

given error rate. Instead of using the same input constella-

tion size for all subchannels as in earlier designs, the bit al-

location is also taken into consideration. The bit allocation

and the zero-forcing transceiver are jointly designed for bit

rate maximization. The optimal transceiver is obtained in

a closed form. The bits are allocated according to the sub-

channel signal to noise ratios. The larger the signal to noise

ratio is, the more the number of bits are allocated. In the

simulation, we have demonstrated that a higher bit rate can

be achieved compared to previously reported methods.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) channels arise in

applications such as wireless communication systems that

use multiple antennas and also telephone cables that consist

of many twisted wire pairs. Optimal transceivers of differ-

ent design criteria for MIMO channels have been considered

in the literature earlier, e.g., [1]-[8]. Optimal transceivers

for two design criteria: maximum signal to noise ratio un-

der zero-forcing constraint and minimum mean-square error

(MMSE), are developed in [1]. For the same input constel-

lation size, the two designs are optimized under a transmit

power constraint. The solutions are given in closed forms.

The optimal zero-forcing transceiver that minimizes the bit

error rate (BER) is derived in [2]. Assuming all input sym-

bols carry the same number of bits, the system is optimized

for a given transmit power. It provides a simple analytic

form of the minimum BER transceiver [2]. Minimum BER

design with channel independent transmitter was consid-

ered in [3]. Zero-forcing solutions with the aim of min-

imizing the total transmit power for a given BER are de-

veloped in [4]. The transceivers with two design criteria:
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minimum mean-squared error and minimum error rate for

a given power constraint, are proposed in [5]. The designs

lead to simple closed-form solutions that convert an MIMO

channel with memory into a set of parallel subchannels.

To incorporate quality of service criterion in the design, a

weighted minimum mean-squared error criterion subject to

a transmit power constraint is proposed in [6]. In these

works, the input symbols again are assumed to be of the

same constellation size. A unified framework for designing

MIMO systems with an MMSE receiver is proposed in [7].

A number of useful objective functions can be considered in

this framework. For example, for a given bit allocation, the

optimal MMSE system can be designed using this unified

approach. As an extension of [7], the transmit power is min-

imized in [8] with different quality of service requirements

such as mean-squared error, signal to interference ratio, and

bit error rate.

In this paper, we design the zero-forcing transceiver for

bit rate maximization over MIMO channels. We jointly

optimize the transceiver and bit allocation for a given er-

ror rate. The solution is derived in two steps. First, for

a given zero-forcing transceiver, we design the optimal bit

and power allocation that maximizes the bit rate. Second,

we design the zero-forcing transceiver that maximizes the

bit rate based on the optimal bit and power allocation. In-

stead of using a given bit allocation as in earlier works, the

transceiver and bit allocation are jointly designed. In the re-

sulting optimal system, the subchannels with larger signal

to noise ratios are allocated with more bits. As a result, a

higher bit rate can be achieved. The rest of the paper is or-

ganized as follows. In section 2, we will give the system

model of an MIMO zero-forcing transceiver and formulate

the problem. In section 3, we will find the optimal power al-

location for a given transceiver. In section 4, we will find the

optimal zero-forcing transceiver. In section 5, we will eval-

uate the performance for the proposed optimal zero-forcing

transceiver.



2. SYSTEM MODEL

A generic MIMO communication system is shown in Fig. 1.

The memoryless MIMO channel is modeled by a P × N
matrix H. The P × 1 channel noise q is additive white

gaussian with variance N0. The transmitter matrix F is of

size N × M . The receiver matrix G is of size M × P . The

input of the transmitter is s, an M × 1 vector of modulation

symbols. The autocorrelation matrix of the input symbols is

given by

Λs = E[ss†], (1)

where the notation X† denotes the transpose conjugate of

X. Assume that the input symbols are zero mean and un-

correlated; hence Λs is diagonal. The total transmit power

is
E{x†x} = E{(Fs)†(Fs)}

= Tr(FΛsF
†),

(2)

where x is the transmitter output. The output of the receiver

is

ŝ = GHFs + e, (3)

where e = Gq. To satisfy the zero-forcing condition, the

transceiver pair (F,G) needs to satisfy

GHF = IM , (4)

where IM denotes the M ×M identity matrix. In this case,

the k-th receiver output ŝk is

ŝk = sk + ek, k = 0, 1, · · · , M − 1. (5)

The output noise variance at k-th subchannel is given by

σ2
ek

= [E{ee†}]kk

= N0[GG†]kk,
(6)

where the notation [X]kk denotes the k-th diagonal element

of X. Assume the symbol error (SER) rates are the same

for all the subchannels. Let bk be the number of bits carried

by the k-th symbol. Let σ2
sk

be the k-th diagonal element of

Λs. For QAM modulation,

bk = log2

(

1 +
σ2

sk

σ2
ek

Γ

)

, (7)

where Γ = 1

3
[Q−1(SER/4)]2 is a parameter determined

by the given symbol error rate [9]. The function Q(x) is

the area under a Gaussian tail, i.e., Q(x) =
∫ ∞

x e−u2/2du.

The derivation in this paper is given for the QAM case. The

results for the PAM case can be obtained in a similar way.

(For the PAM case, there is an additional scalar of 1

2
). When

bk is large enough so that 2bk � 1, we have

bk ≈ log2

(

σ2

sk

σ2
ek

Γ

)

. (8)
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Figure 1: MIMO communication system.

The total number of bits that can be transmitted is
∑M−1

k=0
bk.

Therefore, the problem of maximizing bit rate subject to a

total transmit power constraint P0 can be formulated as

maximize b =
∑M−1

k=0
log2

(

σ2

s
k

σ2
e

k
Γ

)

subjectto Tr(FΛsF
†) = P0

. (9)

For a given transceiver, we will first find the optimal power

allocation, i.e., optimal σ2
sk

, under the transmit power con-

straint P0 (section 3). Based on the optimal power alloca-

tion, we will continue to derive the optimal transceiver for

maximizing the bit rate (section 4).

3. OPTIMAL POWER ALLOCATION

In this section, we will find the optimal power allocation that

maximizes the bit rate under the constraint on total transmit

power for a given zero-forcing transceiver pair. Unlike ear-

lier works [1]-[8] that use the same constellation size for all

subchannels, the bits are assigned according to subchannel

signal to noise ratios in (7). To obtain the optimal power

allocation σ2

sk
, we can use the method of the Lagrange mul-

tiplier [10]. Let the Lagrangian function be

L =

M−1
∑

k=0

log2

(

σ2

sk

σ2
ek

Γ

)

+ α(Tr(FΛsF
†) − P0), (10)

where α is the Lagrange multiplier. By solving ∂L
∂σ2

s
k

= 0,

we have

σ2

sk
=

−1

α[F†F]kk loge 2
. (11)

Using the fact that Λs is diagonal, the total transmit power

constraint becomes

Tr(FΛsF
†) =

M−1
∑

l=0

σ2

sk
[F†F]kk = P0 (12)

To find the Lagrange multiplier, we can substitute (11) into

the total transmit power constraint in (12). Then the La-

grange multiplier is given by

α =
−M

P0 loge 2
. (13)



Therefore, the optimal power allocation is

σ2

sk
=

P0

M [F†F]kk
. (14)

From (14), we can see that the optimal power allocation de-

pends only on the transmitter for the given P0 and M . Using

the optimal power allocation obtained in (14), the bit rate b
in (9) is given by

b =

M−1
∑

k=0

log2

(

P0

MΓ[F†F]kkσ2
ek

)

. (15)

In the next section, we will design the optimal zero-forcing

transceiver that maximizes the bit rate in (15).

4. OPTIMAL ZERO-FORCING TRANSCEIVER

Suppose the P × N channel matrix H has rank K . Let the

singular value decomposition of H be

H = U

[

Λ 0

0 0

]

V†, (16)

where the K × K diagonal matrix Λ contains the nonzero

singular values of H. The P × P matrix U and the N × N
matrix V are unitary that correspond respectively to the

eigenvectors of HH† and H†H. We assume that the ele-

ments of Λ are in nonincreasing order and K ≥ M , so that

solutions of zero-forcing transceivers exist.

Lemma 1 Without loss of generality, we can express F to

be of the following form:

F = V

[

A

0

]

, (17)

for appropriate K × M matrix A of rank M .

Proof: Suppose (G, F) is a transceiver pair that satisfies

the zero-forcing condition. Because V is an N × N uni-

tary matrix, the columns of F can be represented as linear

combinations of the columns of V. Then we have

F = V

[

A

A1

]

, (18)

where A is a K × M matrix and A1 is an (N − K) × M
matrix. Define a new transceiver F

′

as

F
′

= V

[

A

0

]

. (19)

The transfer matrix when we use F
′

is given by

GHF
′

= GHF = IM . (20)

Therefore, when we replace the transmitter by F
′

, the new

system still satisfies the zero-forcing condition GHF =

IM . Because the receiver is not changed, the new system

has the same subchannel noise variances. The subchan-

nel signal to noise ratios are the same when we use F
′

and

hence the bit rate performance is the same.

Now, let’s compare the transmit power of F and F
′

for

the same input autocorrelation matrix Λs. The transmit

power when we use F is

Tr(FΛsF
†) = Tr(AΛsA

†) + Tr(A1ΛsA
†
1
). (21)

The transmit power with F
′

is

Tr(F
′

ΛsF
′†) = Tr(AΛsA

†)
≤ Tr(FΛsF

†).
(22)

As a result, we will have a smaller transmit power when

we use F
′

. For the same power constraint and error rate,

we can transmit more bits when we use F
′

. This means a

transmitter of the form in (17) is no loss of generality.
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Lemma 2 It is no loss of generality to choose G as the

pseudo inverse of HF. That is,

G = (A†Λ2A)−1[ A†Λ 0 ]U†, (23)

where A is the matrix given in Lemma 1. In this case, the

noise variance at the k-th subchannel is given by

σ2

ek
= N0[(A

†Λ2A)−1]kk. (24)

Proof: Suppose (G, F) ia a transceiver pair that satisfies

the zero forcing condition, and F is of the form in (17). Let

G
′

be the pseudo inverse of HF, i.e.,

G
′

= (F†H†HF)−1F†H†

= (A†Λ2A)−1[ A†Λ 0 ]U† . (25)

Note that the system still satisfies zero-forcing condition

when we use G
′

. Define ∆ = G − G
′

. It follows that

∆G
′† = ∆HF(F†H†HF)−1

= (GHF − G
′

HF)(F†H†HF)−1

= 0.

(26)

When we use G, the noise variance at the k-th subchannel

is given by

σ2

ek
= N0[GG†]kk

= N0[(G
′

+ ∆)(G
′

+ ∆)†]kk

= N0[G
′

G
′† + ∆∆†]kk

≥ N0[G
′

G
′†]kk,

(27)

where we have used ∆G
′† = 0 in the third equality. There-

fore, we will have smaller subchannel noise variances when

we replace G with G
′

. For the same input autocorrelation



Λs, the subchannel signal to noise ratios are larger when

we use G
′

. Hence a higher bit rate can be achieved. Us-

ing the expression of the receiver in (25), we have the noise

variance σ2
ek

as in (24). 444
Lemma 1 and Lemma 2 lead us to conclude that the ma-

trix A is the only part of the transceiver left to be designed.

In Lemma 3, we will find the matrix A that maximizes the

bit rate.

Lemma 3 Without loss of generality, the matrix A in Lemma

1 and Lemma 2 that maximizes the transmission rate subject

to a total power constraint is given by

A =

[

Λ−1

M

0

]

. (28)

In this case, the optimal transceiver is

F = V

[

Λ−1

M

0

]

, G = [ IM 0 ]U† . (29)

Proof: The derivation for the matrix A will be given in

[12]. Substituting the matrix A into (17) and (23), we ob-

tain the solution in (29). 444

Using the optimal transceiver in (29), the bit rate in (15)

has the maximal value

b = log2

[

(

P0

MN0Γ

)M

det(Λ2

M )

]

. (30)

Substituting (14) and (29) into (7), the bit allocation for the

k-th subchannel is

bk = log2

(

1 +
P0[Λ

2

M ]kk

MN0Γ

)

. (31)

We can see that more bits are assigned to subchannels that

correspond to larger singular values of the channel, unlike

[1]-[8] that use the same constellation size for all subchan-

nels.

Remark: Application standards such as IEEE P802.11n

[11], the number of subchannels M can be chosen arbi-

trarily. For a given P × N channel matrix H, increasing

M does not necessarily achieve a higher bit rate. As an

example, consider the case P0

N0Γ
≤ 1 and [Λ]ll < 1 for

l = 0, · · · , K−1. In this case we can verify that the bit rate

in (30) becomes a decreasing function of M . As a result,

increasing M is not necessarily better.

5. SIMULATION

In the simulation, we evaluate the performance of the pro-

posed method. The channel used is a 4 × 4 MIMO channel

(P = N = 4). The elements of H are complex Gaussian

random variables with zero mean and unit variance. The

symbol error rates are 10−5 for all the subchannels. The

transmission rate is evaluated for 104 channel realizations.

QAM modulation is used for the input symbols. In the

following examples, we will use the optimal zero-forcing

transceiver in Lemma 3 for the proposed method. Although

the high bit rate assumption (bk � 1) is used in the deriva-

tion of the optimal transceiver, the assumption is not used in

the computation of transmission bit rate in the simulations.

Example 1. Fig. 2 shows the transmission rates for dif-

ferent transmit power to noise ratio (P0/N0). The number

of subchannels M is 4. For comparison, we have also shown

the results of two zero-forcing systems: the zero-forcing

maximum signal to noise ratio (MSNR) transceiver in [1],

and the zero-forcing unit noise variance (UNV) transceiver

in [4]. In each of these two designs, the transmission rates

are computed by (7). The result shows that the proposed

method can achieve a higher bit rate. This is because the bit

allocation is taken into consideration in the optimization.

The subchannels with higher signal to noise ratios are as-

signed with more bits. For the same bit error rate constraint,

we can transmit more bits.

In (7) (or equivalently (31)), the bits are not integers in

general. We can use rounding,

bk =

⌊

log2

(

1 +
σ2

sk

σ2
ek

Γ

)⌋

, (32)

where the notation bzc denotes the largest integer that is less

than or equal to z. Fig. 3 shows the transmission bit rate

after rounding. The gaps between the proposed method, the

MSNR design, and UNV design are similar to that in Fig. 2.

Example 2. In Fig. 4, we examine the transmission

bit rate for M = 1, M = 2, and M = 4. Integer bit

allocation in (32) is used. For P0/N0 ≥ 15 dB, we see

that the case M = 4 achieves a higher transmission rate.

For P0/N0 ≤ 15 dB, using M = 2 is better. This exam-

ples shows that increasing M does not necessarily achieve

a higher transmission rate.

6. CONCLUSION

In this paper, we consider the optimal zero-forcing trans-
ceiver design for bit rate maximization over MIMO chan-
nels. Unlike earlier designs that use the same constellation
size for all subchannels, bit allocation is also taken into con-
sideration. For a given error rate, the transceiver is designed
when the bits are optimally allocated. The solution is given
in a closed form. In the simulations, we have demonstrated
that the proposed method can achieve a higher transmission
bit rate.
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