Least Squares-Based Lossless Image Coding with Edge-look-ahead
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Abstract— In predictive image coding, the least squares (LS)-
based adaptive predictor is noted as an efficient method to
improve prediction result around edges. However pixel-by-pixel
optimization of the predictor coefficients leads to a high coding
complexity. To reduce computational complexity, we activate the
LS optimization process only when the coding pixel is around an
edge or when the prediction error is large. We propose a simple
yet effective edge detector using only causal pixels. The system
can look ahead to determine if the coding pixel is around an
edge and initiate the LS adaptation to prevent the occurrence of
a large prediction error. Our experiments show that the proposed
approach can achieve a noticeable reduction in complexity with
only a minor degradation in the prediction results.

I. INTRODUCTION

Many of the recent advances in lossless image coding are
based on predictive coding with context modeling [1]-[7].
Moreover, the image model is assumed to be stationary dutring
prediction. However, this rarely happens in the real world
and large prediction errors can take place especially when
the coding pixel is around edges. Recently, linear predictors
adapted by least squares (1.S) optimization have been proposed
as an efficient approach to accommodate varying statistics
of coding images [2][3]. Among which, the EDP [2] pre-
dictor pointed out that the superiority of L.S optimization is
in its edge-directed property. For complexity consideration,
performing the LS adaptation process in a pixel-by-pixel
manner is regarded as prohibitive. Therefore, the EDP [2]
proposed initiating the .S optimization process only when the
prediction error is beyond a preselected threshold such that
the computational complexity can be reduced. The EDP [2]
has made a noticeable improvement over the state-of-the-art
lossless coder CALIC [4].

As large prediction errors usually take place in pixels
around an edge, the prediction result can be improved if
we can foresee the existence of an edge. Therefore, we
propose an adaptive predictor with edge-look-ahead which
can fully exploit the edge-directed characteristic of the LS-
based adaptation process. To do this, we propose a simple and
efficient edge detector using only causal pixels, i.e., pixels that
have already been coded. With the proposed edge detector, the
predictor can determine if the coding pixel is around an edge
and initiate the .S adaptation process beforehand to prevent
the occurrence of a large prediction error. We will see that the
proposed edge detector, though very simple, can pick out the
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edges successfully in the experiments. Our experiments also
show that a very good tradeoff between the computational
complexity and the prediction result can be obtained.

The rest of the paper is organized as follows. Section
IT introduces the proposed “Edge Detector”. The LS-based
adaptive predictor is given in section III. Experimental results
of the proposed method and comparisons to existing predictors
and coders are given in section IV. A conclusion is given in
section V.

II. EDGE DETECTOR

To determine whether the coding pixel is around an edge, we
propose a very simple algorithm that uses only causal pixels. It
should be noted that conventional edge detectors, e.g., “Sobel”
operator, can not be applied here because they use non-causal
pixels.

We observe that the variance of an area that contains an
edge is usually large. Furthermore, the histogram of such an
area tends to have two peaks, one on each side of the mean
value. We will use these two observations to determine the
existence of an edge. We define the fexture context x of a
coding pixel as the collection of the four nearest causal pixels
xn (1), -+, x,(4) in Fig. 1.

The mean z and variance o~ of the fexture context are
calculated. Moreover, the four pixels can be divided into two
groups, the pixels with gray levels higher than & in one group
&y, and the rest in another ;. We also compute the variance
o2, o of those pixels in &y, and x; respectively.

We determine whether the coding pixel is around an edge
if the following two conditions are both satisfied,
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Fig. 1. The ordering of pixels for prediction inputs.
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where 0.01 is added so that the denominator of (1) does not
become 0 when oF and of are both zero. We have found
through experiments that vy = 100 and v = 10 work very

well and these values will be used throughout the paper.

III. THE LS-BASED ADAPTIVE PREDICTION

In this paper, the predicted value of the coding pixel is a
linear combination of its causal neighbors. The corresponding
inputs for different prediction orders are shown in Fig. 1 where
the ordering of pixels is based on the distance to the pixel to
be encoded. Therefore, the predicted value z,, of z,, is given
by

N
=Y a(k)zn(k), 2)

where N is the prediction order, z, (k) is the kth nearest
neighbor of z,, and a(k) is the corresponding predictor coef-
ficient.

To adapt the predictor to the varying statistics around
the coding pixel, the LS-based adaption process is activated
whenever the two conditions in (1) are satisfied or when the
prediction error is greater than a predefined threshold. Suppose
we have M pixels in the training area, our objective is to find
a least-square solution for the system

Pa-—y, (3)
where
$n,1(1) $n,1(2) $n,1(N)

2 (N)

is an M N matrix with its rows consisting of the NV neighbors
of the M training pixels, a = [a(1), a(2),--- ,a(N)]T is the
Nth order predictor coefficient vector to be determined and
Y = [®n_1,Tn 2, ,2n_n]|" is the M-dimensional vector
consisting of the M training pixels.

To minimize the square errors ||y —Pal|3 for (3), the normal
equations below provides the key for the solution,

onnr(1) 2 aa(2)

P Pa=PTy 4)
If we define B = PTP and ¢ = PTy, (4) can be written as,

; (%)

where B is an N x N symmetric matrix and c is an N-
dimensional vector. There are well-developed numerical ap-
proaches to solve (5). For the case that P has full rank; i.e.,
rank N, PTP is nonsingular and positive definite. The normal
equations will have a unique solution a = (PT"P)~'PTy. In
this case, the Cholesky Decomposition, a fast algorithm which
requires only half the usual number of multiplications than
alternative methods, can be used to solve (5).
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If P is defective; i.e., rank < N, PTP fails to be positive
definite and the Singular Value Decomposition (SVD) provides
the key to solve (5). Indeed, the positive definite property
of B can be casily examined in the process of Cholesky
Decomposition.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
predictor with edge-look-ahead. Comparisons to existing state-
of-the-art predictors and coders are also given. All the test
images used in the experiments are from the website of TMW!
[6]. For LS adaptation, we use the same parameters as defined
in EDP [2]; that is, the same training area and the same
error threshold. We present the bit rate performance of the
system. Finally, we give a description about the computational
complexity of the proposed system.

Performance of the proposed system

First of all, we use the image “Lennagrey” (Fig. 2.(a)) to
demonstrate the effectiveness of the proposed edge detector.
As can be seen in Fig. 2.(b), the pixels around edges in image
“Lennagrey” have been picked out successfully.
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Fig. 2. (a) The image “Lennagrey”. (b) Pixels for which (1) is satisfied in
the image “Lennagrey”.

The usefulness of the proposed predictor with edge-look-
ahead can be demonstrated through the following experiment.
We construct two tenth-order LS based predictors; one with
the use of the proposed edge-look-ahead mechanism and the
other performs LS adaptation in a pixel-by-pixel manner. Then
we compare the performance of the two predictors. Again, the
image “Lennagrey” in Fig. 2.(a) is used for this experiment.

For the predictor with edge-look-ahead, the pixels for which
LS adaptation is activated are shown in Fig. 3.(a). Overall,
about 17% of pixels activate the LS adaptation process. The
image of uncompensated prediction errors and the correspond-
ing histogram are shown in Fig. 3.(b) and Fig. 4 respectively.
As can be seen in Fig. 3.(b), the proposed mechanism performs
very well around edges. For comparison, we also show in

Thttp://www.csse.monash.edu.au/~bmeyer/tmw/
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Fig. 3. (a) Pixels for which LS adaptation is used in the image “Lennagrey”.
(b) Image of uncompensated prediction errors for “Lennagrey”.
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Fig. 4. Histogram of prediction errors for the proposed approach and that
of a pixel-by-pixel adaptation.

Fig. 4 the histogram of uncompensated prediction error when
the LS adaptation process is performed in a pixel-by-pixel
manner. The histogram using the proposed approach is very
close to that with pixel-by-pixel adaptation although only 17%
of pixels activate the 1.S adaptation process. The proposed
approach has made a good tradeoff between the prediction
results and the computational complexity. Indeed, the entropies
corresponding to the two histograms in Fig. 4 are respectively
4.159 bits (Proposed approach) and 4.145 bits (adapted in a
pixel-by-pixel manner).

Comparisons to existing state-of-the-art predictors

Table 1 gives comparisons of uncompensated prediction
errors for a set of eight test images in first order entropies.
To have a comparison with the existing linear and nonlinear
predictors, we have completed a set of predictors with different
orders from 4 to 10. The results of a median edge detector
(MED) [5], a gradient adjusted predictor (GAP) [4] and an
edge directed predictor (EDP) with different orders are taken
from [2]. As can be seen in Table I, the proposed system
can remove the statistical redundancy efficiently. It achieves
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TABLE I
FIRST ORDER ENTROPIES OF PREDICTION ERRORS.

EDP Proposed Algorithm Pixel by Pixel Optirmization

N=4 | N=6 | N=8 | N=10| N=4| N=6| N=8 |N=10| N=4| N=6| N=8 |[N=10
Baboon | 6.28 | 6.22 | 6.04 | 6.01 | 6.00 | 5.99 [6.03 | 599|598 | 598 | 6.03| 599 | 598 |5.98
Lena 4.90 | 475 |4.64 | 460 | 459 | 4.58 |4.58 | 453 | 4.53 | 4.51 | 4.58 | 4.53 | 4.53 |4.51
Lennagrey | 4.56 | 440 [4.32 | 426 | 424 [ 4.22 [424 | 420 | 419 | 4.16 | 422 | 418 | 4.17 |4.15
Peppers | 4.95 | 4.78 | 4.55 | 4.52 | 4.51 | 450 | 448 | 445|444 [ 443 [447 | 443 | 443 |4.43
Barb 521 | 515 |4.67 | 444 | 440 | 4.35 [4.52 | 436 | 4.30 | 425 | 446 | 431 | 426 [4.21
Barb2 | 5.19 | 506 |4.93 | 480 | 479 | 4.78 490 | 477 | 4.75 | 475 | 488 | 475 | 474 |4.74
Boats | 4.31 | 4.29 [4.20 | 4.14 | 4.12 | 4.10 [ 4.16 | 4.10 | 4.07 | 4.05 | 4.07 | 400 | 3.97 |3.96
GoldHill | 4.72 | 4.70 |4.64 | 4.60 | 459 | 4.58 | 4.64 | 4.60 | 4.59 | 4.59 | 4.63 | 458 | 457 |4.57
Average |5.02 |4.92 |4.75 [4.67 |4.66 |4.64 |4.69 | 4.63 | 4.61 | 459 | 467 | 460 | 4.58 |4.57

Image |MED | GAP

TABLE II
COMPARISONS WITH EXISTING LOSSLESS IMAGE CODERS (IN
BITS/SAMPLE, THE PROPOSED APPROACH IS WITH A SIX-ORDER

PREDICTOR).

Image Proposed | JPEG-LS [5] | CALIC [4] | EDP [2] | TMW [6]
Baboon | 5.81 6.04 588 | 581 | 573
Lena 4.34 4.61 448 | 440 | 430
Lennagrey| 3.94 4.24 411 | 402 | 391
Peppers | 4.26 4.51 442 | 435 | 425
Barb 4.11 4.69 432 | 411 | 4.09
Barb2 | 4.52 4.69 453 | 452 | 438
Boats 3.72 3,98 3.83 | 3.80 | 3.61
Gold Hill | 4.36 4.48 439 | 439 | 427
Average | 4.38 4.65 450 | 443 | 432

noticeable improvement when compared with MED and GAP
predictor. The proposed predictor also gives lower entropies
when compared with those of EDP [2]. Moreover, the results
of the proposed approach are very close to those with pixel-
by-pixel LS adaptation. This is also why the first two entries
of the proposed approach and that with pixel-by-pixel LS
adaptation in Table I appear to be identical after taking the
ceiling operation to the second decimal point digits.

To compare with state-of-the-art lossless coders, we also
complete a sixth-order coder. We borrow the bias cancellation
techniques in [7] so that the prediction is further refined
through context modeling. The refined error signal is then
entropy encoded using conditional arithmetic coding [8]. Table
IT gives the actual bit rates by JPEG-LS [5], CALIC [4], EDP
[2] and TMW [6] for a set of eight test images. Results listed
in the last three columns of Table I are taken directly from
[2] and those of the JPEG-LS are simulated with the program
from the website of LOCO-I [5]. All the bit rates reported by
the proposed algorithm are obtained using the same parameters
described in previous sections and no individual optimization
is performed. Table II shows that the proposed system achieves
lower bit rates than JPEG-LS [5], CALIC [4], EDP [2] and
provides competitive results with the highly complex two-pass
coder TMW [6].
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TABLE III
PERCENTAGE OF PIXELS PERFORMING .S ADAPTATION.

Image N=4 | N=6 | N=8 | N=10
Baboon | 65.1 | 64.7 | 64.7 | 64.5
Lena 244 | 239 | 239 | 234
Lennagrey| 182 | 179 | 179 | 174
Peppers | 19.0 | 184 | 183 | 18.1
Barb 358 | 34.8 | 345 343
Barb2 39.7 | 38.7 | 38.8| 388
Boats 193 | 18.8 | 185 | 183
Gold Hill | 24.8 | 24.2 | 24.0| 239
Average | 30.8 | 30.2 | 30.1 | 29.9

Computational complexity

We show in Table III the percentage of pixels performing I.S
adaptation. When compared with the predictor performing LS
adaptation in a pixel-by-pixel manner, the proposed approach
has made a noticeable reduction in computational complexity
(Table IIT) with only a minor degradation in the prediction
result (Table I).

Numerically, the normal equations ((4),(5)) can be solved
by Cholesky Decomposition or SVD depending on the rank of
P in (3). For P to be full-ranked, the Cholesky Decomposition
can be used and it requires only N3 /6 multiplications to solve
(5), which is about half the usual number of multiplications
than alternative methods. If P is defective, SVD, which re-
quires much higher computations, is applied. Fortunately, our
experiments show that most of the LS adaptations in the cod-
ing process are solved by the use of Cholesky Decomposition.
This is because pixels around boundaries usually have large
variation in the gray level and thus the matrix P in (3) is
seldom defective. Therefore, most of the computations take
place in forming the normal equations (5) rather than solving
them. For this, [3] had proposed an inclusion and exclusion
method for fast construction of the PTP matrix.

TABLE IV
OPERATION COUNTS FOR EDGE DETECTOR IN (1)
Operation Compare | ADD/SUB | MULDIV Square \
Edge detection n+2 <4n <7 < (n+3) ‘

'n" is the number of pixels in texture context. In this paper, n=4

The operation counts for each coding pixel in the edge
detection process are listed in Table IV. It should be noted that
there is no need to check both of the two inequalities in (1) for
every pixel. Only when the variance inequality holds then we
check the other condition. Therefore, the actual computational
cost is lower than what is listed in Table IV. The execution
time (in seconds) of the proposed algorithm and that of pixel-
by-pixel adaptation for different orders of predictors are listed
in Table V. The proposed approach has achieved a noticeable
improvement on the runtime performance with only a minor
degradation in entropy (Table I).
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TABLE V
COMPARISONS OF THE EXECUTION TIME BETWEEN THE PROPOSED
ALGORITHM AND THOSE OF PIXEL-BY-PIXEL ADAPTATION (IN SECONDS,
ON A P-IIT 600MHZ MACHINE).

Proposed Algorithm
N=4 | N=6 | N=8 | N=10
2.30| 7.54 |15.41 |22.49
0.99| 3.06 | 6.04| 855
0.83] 2.38 | 458 6.41
0.84| 2.40 | 468 | 6.63
1.46 | 4.18 | 848 |12.25
245 7.56 |14.91 |21.93
1.33 ] 3.84 | 7.34]10.53
1.61 | 4.85] 9.61 |13.61
1.48 | 4.48 | 8.8812.80

Pixel-by-Pixel Adaptation
N=4| N=6| N=8 | N=10
3.41|11.53|23.20 |33.98
3.43|11.49|23.54 |57.58
3.49|11.18|23.36 |34.59
3.30(11.2423.02 |33.66
3.35|11.28]23.08 |34.02
5.72|18.00 | 59.46 | 90.95
5.38|17.7336.63 | 53.80
5.70|17.70 | 59.17 | 90.97
4.22113.7633.93 | 53.69

Image

Baboon

Lena

Lennagrey
Peppers
Barb
Barb2
Boats
Gold Hill
Average

V. CONCLUSION

In this paper, an LS-based adaptive predictor for lossless
image coding has been proposed. By exploiting the edge-
directed characteristic of LS-based predictor, we propose
initiating the LS adaptation process only when the coding
pixel is around an edge or when the prediction error is
greater than a predefined threshold. For this, a simple yet
effective edge detector using only causal pixels is proposed.
With the proposed edge detector, the predictor can look ahead
if the coding pixel is around an edge and initiate the LS
adaptation process beforehand to prevent the occurrence of a
large prediction error. When compared with the pixel-by-pixel
LS adaptation, the proposed approach can achieve a noticeable
reduction in complexity with only a minor degradation in
entropy; a good tradeoff between computational complexity
and the prediction results has been obtained.
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