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Abstract 
It is well-known that continuous time bandlimited 

signals can be sampled without creating aliasing if the 
sampling period is small enough. It is also known 
that if s(t) is a bandpass signal, the passbands of 
X ( n )  must be located properly for aliasfree maximal 
sampling. Similar situations arise in discrete time case. 
This paper addresses these issues for two-dimensional 
(2D) one- and two-parallelogram signals, which are 
respectively the classes of 2D signals (continuous or 
discrete time) whose Fourier transforms have supports 
consisting of one and two parallelograms. In this paper, 
we will derive necessary and sufficient conditions such 
that a one- or two-parallelogram signal (continuous and 
discrete time) allows maximal aliasfree sampling. 

1. INTRODUCnON 

If a one-dimensional (1D) signal z( t )  bandlimited 
to [-7r/N, 7r/N] (Fig. 1))  s(t) can be sampled without 
creating aliasing by a sampling period M, M 5 N ;  
z( t )  is an aliasfree(M) signal. In this case z( t )  can 
be reconstructed from its samples . For a signal with 
total bandwidth 27r/N, when the sampling period M is 
equal to N ,  we will refer to this as maximal sampling. 
If z( t )  is a bandpass signal with total bandwidth 2n/M 
as shown in Fig. 2, maximal aliasfree sampling of ~ ( t )  
depends on the relative positions of the two passbands 
as elaborated next. 

Fact 1.1. One-dimensional bandpass sampling theorem 
[ I ] .  Suppose a 1D signal z( t )  has total bandwidth 
27r/M as shown in Fig. 2 . Then z ( t )  is aliasfree(M) if 
and only if uo is a multiple of r /M,  i.e., WO = h / M ,  
for some integer k.  

More generally, if the support of X(R) does not 
overlap under modulo 27r/M, s(t) is aliasfree(M) [2]. 
Similarly, a D-dimensional signal z(t) is aliasfree( M) 
for some D x D matrix M if the support of X (  6') does 
not overlap under modulo 27rMFT [3]. 
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Fig. 2. Bandlimited real signal with 
tot a1 bandwidth 2 x /M.  

Fig. 3. Typical support of 
(a) a one-parallelogram signal 
(b) a two-parallelogram signal 

The issue of aliasfree maximal sampling is of great 
importance for many applications, e.g., filter bank 
design. In this paper, we focus on one subclass 
of two-dimensional (2D) signals, the one  and two- 
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parallelogram signals (continuous and discrete time). 
We say a 2D continuous time signal x(t) is a 
one-parallelogram (One-P) signal or two-parallelogram 
(mo-P) signal if its Fourier transform X(0) has a s u p  
port consisting of one parallelogram (Fig. 3(a)) or two 
parallelograms (Fig. 3(b)). In Fig. 3 the symmetric 
parallelepiped SPD(V) of a matrix V is the set 

SPD(V) = { v x ,  x E [-1,1)2}. 

Similarly, a discrete time signal x(n) is called One-P or 
ZWo-P if the support of its Fourier transform X ( w )  is 
the union of one or two identical parallelograms. For 
One-P or N o - P  signals, there are no existing simple 
rules for testing aliasfree(M) property analogous to 
that given in Fact 1.1. The aim of this paper is to 
derive such rules (continuous and discrete time). The 
2D bandpass sampling theorems for discrete time TWO-P 
signals will particularly help us to get a clearer picture 
of 2D cosine modulated filter banks [4]. 

2. ONE-PARALLELOGRAM SIGNALS 

Let z(t) be a continuous time one-parallelogram 
(One-P) signal. It is well-known that if the support 
of X(0) is S P D ( T M - ~ )  for some matrix M,  z(t) 
is aliasfree(M) [5]. Now consider the more general 
case that X(f2) has support S P D ( T N - ~ )  or a shifted 
version of S P D ( T N - ~ ) .  The analysis of aliasfree(M) 
property of One-P signals is more intricate than that of 
1D one-passband case. Let us define 

L b M - ~ N ,  

and denote the absolute value of the determinant of L 
by ILI. The condition ILI 2 1 alone does not imply 
aliasfree(M) property [6] and a stronger condition is 
called for. In particular, the lattice of LT (denoted by 
LAT(LT)) has to satisfy one additional property. More 
precise statement is given in the theorem to follow. 

Theorem 2.1. Continuous time sampling. Let x(t) be a 
continuous time One-P signal and the support of X(f2) 
be S P D ( T N - ~ )  or a shifted version of SPD(rNpT),  
for some 2 x 2 matrix N. Then X(f2) is aliasfree(M) if 
and only if the matrix L defined as L = M-'N satisfies 

L A T ( L ~ )  n (-1, = (01. 

This necessary and sufficient condition means that 
no vector in LAT(LT) is inside the square (-1, 1)2 

except the vector 0. For example, let LT = 

then LAT(LT) is as shown in Fig. 4; LAT(LT) has only 
one vector (the vector 0) inside the square (-1, 1)2. 
Notice that in 1D case, ILI 2 1 if and cnly if LAT(LT)n 
(-1,l) = (0). However, this relation does not hold for 
the case of more than one dimension. 

LT=( 1 0  ) #p: 0.5 2 

~ i g .  4. Lattice of L*. 

Proof of Theorem 2.1. Recall that X(f2) is alias- 
free(M) if and only if the support of X(f2) does not 
overlap modulo ~ T M - ~ .  So X(n) is aliasfree(M) if 
and only if, whenever k # 0, 

Rearranging the above equation, we have 0 1  - f22 # 
2 ~ M - ~ k .  As f21,f22 E S P D ( T N - ~ ) ,  f2i can be 
expressed as f2i = ~ N - ~ y i ,  for some 2 x 1 vectors 
yi E [0, I ) ~ ,  i = 1,2.  Hence 

0 1  - 0 2  = 2 ~ N - ~ y ,  for some :y E (-1, 1)2. 

Using this expression, we have y # LTk, for k # 0. 
This holds if and only if LAT(LT) n (-1, 1)2 = (0 ) .  

This theorem can be generalized for signals of more 
than two dimensions, as the above proof can be carried 
out for any dimensions. 

Discrete time cuse Suppose z(n) is a discrete time 
One-P signal and the support of X ( w )  is SPD(rN-*) 
or a shifted version of S P D ( T N - ~ ) ,  for some 2 x 2 
matrix N. We can verify that X ( w )  is aliasfree(M) 
for some integer matrix M if and only if L = M-IN 
satisfies the condition LAT(LT) n (--1, 1)2 = (0 ) .  

3. CONTINUOUS TIME TWO-PARALLELOGRAM 
SIGNALS 
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Suppose x(t) is a continuous time twGparallelogram 
( W O - P )  signal. The support of X ( n )  consists of two 
parallelograms, each a shifted version of S P D ( T N - ~ ) ,  
as shown in Fig. 3(b). We are interested in the 
conditions such that maximal aliasfree decimation of 
x(t) is allowed, i.e., there exists a 2 x 2 matrix M 
with /MI = IN1/2 such that x(t) is aliasfree(M). 
The ID bandpass sampling theorem hints that the 
two parallelograms in the support of X(n) should 
be somehow properly located. Indeed, whether x(t) 
allows aliasfree maximal sampling is determined by the 
relative position of the two parallelograms. 

Theorem 3.1. Let x(t) be a continuous time W O - P  
signal and let the support of X(0) be the union of 
two parallelograms described by WO+SPD(TN-~)  and 
-WO + S P D ( T N - ~ ) .  Define yo = NTwo/r, then x(t) 
can be maximally decimated if and only if the following 
is true: n e  vector yo has at least one nonzero integer 
element. 

Necessity of the condition. 
Recall that when we sample a signal s(t) using the 
sampling matrix M, the Fourier transform of the 
output is 

Proof of Theorem 3.1. 

which consists of shifted and expanded versions of 
x(n) .  Observe that the two parallelograms of zk(n) 
are shifted versions of S P D ( T L - ~ ) .  In the case 
of aliasfree maximal sampling, the frequency plane 
will be filled by ik(f2). So if x(t) is aliasfree(M), 
the frequency plane is tiled by the parallelogram of 
SPD(7TL-T). 

For convenience, we normalize the frequency plane 
by ~ T L - ~ ;  the new axes uo and u1 are the two entries 
of U = ~ T L - ~ O .  After normalization the support of 
zk(n) appear as the union of two squares (Fig. 5), 
denoted by S and S' with S = -y0/2+SPD(0.51) and 
S' = y0/2 + SPD(0.51). So if the original frequency 
plane is tiled by the parallelogram of S P D ( T L - ~ ) ,  
the new normalized plane is tiled by the squares of 
SPD(0.51). In a square tiling, we can always observe 
at least one set of parallel lines (Fig. 6) and all the cells 
are bounded by these lines. For example in the tiling 
of Fig. 6(a), we can observe one set of parallel lines and 
all the squares are bounded by the horizontal lines. In 

the tiling of Fig. 6(b), however, we can observe vertical 
lines, and the squares are bounded by these vertical 
lines. So the passbands S and SI must be confined 
to these horizontal or vertical lines. As S and S' are 
separated by yo, yo must have one integer element. 
One can verify that when yo has one zero element, the 
other element of yo must be an integer for square tiling 
to be possible. 

y0/2+ SPD (0.51) 

vO 

-yo /2+ SPD( 0.5 I) 

Fig. 5. Support of a tweparallelogram 
signal X(  o) with normalized axes. 

Fig. 6. Square tiling with (a) horizontal 
lines and (b) vertical lines. 

Suficiency of the condition. To show the condition 
is sufficient, we will construct a sampling matrix M = 

NL-l with ILI = 2 such that x(t) is aliasfree(M). In 
particular, when [yolo is a nonzero integer, we choose 

;] . 
1 L =  [ 

([Yo11 - l)/[Yolo 

When [yo11 is a nonzero integer, we choose 
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One can verify that with this choice of M, z(t) is 

Remark. The preceding theorem shows that maxi- 
mal aliasfree decimation of a Two-P signal z(t) com- 
pletely hinges on the relative positions of the two par- 
allelograms. However, for a given matrix M with 
[MI = IN1/2, whether z(t) is aliasfree(M) depends not 
only on the relative positions of two parallelograms but 
also the matrix L = M-lN. In particular, it can be 
shown that L must have one integer row vector. 

aliasfree(M). 

4. DISCRETE TIME TWO-PARALLELOGRAM SIG- 
NALS 

In this section, we discuss aliasfree decimation of 
discrete time Two-P signals. Like continuous time 
case, whether a ZWo-P signal z(n) can be maximally 
decimated without creating aliasing depends on the 
location of the two parallelograms of X ( w ) .  However, 
as the sampling matrix M is an integer matrix in 
discrete time case, additional conditions have to be 
imposed on the shape of the two parallelograms to 
ensure aliasfree maximal decimation. We first present 
the necessary and sufficient conditions (Theorem 4.1) 
such that, for a given sampling matrix MI  a discrete 
time ZWo-P signal z(n) is aliasfree(M). From the 
theorem, we will observe the conditions that guarantee 
aliasfree maximal decimation of z( n). 

Theorem 4.1. Let X ( w )  be a 2D WO-P signal and the 
support of X ( w )  be the union of two parallelograms, 
each a shifted version of SPD(TN-~) ,  where the 
matrix N is possibly a non integer matrix. Let M 
be an integer matrix with IMI = JN1/2. Then X ( w )  is 
aliasfree(M) if and only if the following two conditions 
are satisfied [7]. 

1. Define L 6 M-lN, then LT has the form LT = I’U, 
where U is a unimodular matrix and I’ is of one of 
the following forms, 

[o 1 kP 2 1 ’  [iP [o 2 *P 1 1 ’  [iP ; ] I  

(a) ( b )  (4 (4 
where p is a real number and 0 < p 5 1.  This 
is equivalent to saying that ILI = 2, LAT(LT) n 
(-1, 1)2 = ( 0 )  and LT has one integer row vector. 

2. Let WO = nN-=yo, where yo is a 2 x 1 vector. 
Corresponding to the above four cases of L, yo 

satisfies, (a) [yo11 is odd, (b) [yolo is odd, (c) yo = 
LTk + [ 1 0IT, (d) yo = LTk + IO 1IT for some 
integer vector k. 

For example, let LT = [,”, ;]. one can verify 

that the first element of any vector v E LAT(LT) is 
an integer and L satisfies the first condition. Notice 
the first condition is not necessary in 1D bandpass 
sampling theorem since L = 2 in 1D case and LAT(L) 
consists of integers only. As indicated by the 1D 
bandpass sampling theorem in Fact. 1.1, in 1D case 
only the relative location of the two passbands needs 
to be constrained. 

Remark. Discrete time maximal decimation. Theorem 
4.1 provides the necessary and sufficient condition such 
that s(n) is aliasfree(M) for a given integer matrix M. 
A related question is, when does z( n) allow aliasfree 
maximal sampling? From the above discussion, we 
know that for maximal decimation to be possible, N 
should be given by N = ML, for some LT of the form 
given in Theorem 4.1. In other words, there must exist 
L with ILI = 2 such that M = N1L-l is an integer 
matrix. 

References 
A. V. Oppenheim, A. S. Willsk,y, and I. Young, 
Signals and systems, Prentice Hall, 1983. 
V. Sathe and P. P. Vaidyanathan, “Effects of multi- 
rate systems on the statistical properties of random 
inputs,” IEEE Trans. on Signal Processing, Jan. 1993. 
T. Chen and P. P. Vaidyanathan, “Recent develop 
ments in multidimensional multirate systems,” ZEEE 
Trans. on CAS For video Technology, April 1993. 
Y. Lin and P. P. Vaidyanathan, “Two-dimensional 
paraunitary cosine modulated perfect reconstruction 
filter banks,” Proc. ISCAS, April 1995. 
P. P. Vaidyanathan, Multirate systems andfilter banks, 
Englewood Cliffs, Prentice Hall, 1993. 
E. Viscito and J.  P. Allebach, “The analysis and de- 
sign of multidimensional FIR perfiect reconstruction 
filter banks for arbitrary sampling lattices,” ZEEE 
Trans. on Circuits and Systems, Jan. 1991. 
Y. Lin and P. P. Vaidyanathan, ‘“Theory and design 
of two parallelogram filter banks,” submitted to 
IEEE Trans. on SP, Oct. 1995. 

1671 


