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ABSTRACT

Paraunitary (PU) matrices have found many applications. In this
paper, a special class of PU matrices, namely the antipodal PU
(APU) matrices, is used as precoding matrices for OFDM systems.
Both the zero-forcing and MMSE receivers will be derived for pre-
coded OFDM systems with APU precoding matrices. The perfor-
mance of such precoded OFDM systems will be analyzed. We will
show that using a APU precoding matrix, we are able to average
the noise variance in both the time and frequency domains, and this
obtains time and frequency diversity. Experiments show that pre-
coded OFDM systems with MMSE receivers have a much better
bit error rate performance than the conventional OFDM system.

1. INTRODUCTION

Multirate systems and filter banks have played an important role in
various areas of signal processing [1]. Of particular interest is the
class of paraunitary (PU) matrices. One attractive feature of these
matrices is their energy conservation property which can avoid the
noise or error amplification problem. In the past, the design and
complete parameterization of PU matrices have been successfully
derived. In this paper, we are going to study a special class of PU
matrices, namely the antipodal paraunitary (APU) matrices. An
� �� polynomial matrix ���� �

�
���

���
���

�� is APU if all
the entries of �� are �� and it satisfies1

��������� � �� ��

The tilde notation denotes ����� � �
�������, where� is transpose-

conjugation and � is the complex conjugation. For the special case
of constant (memoryless) matrices, APU matrices reduce to scaled
Hadamard matrices. Various methods have been proposed for the
construction of APU matrices [2] [3]. The application of APU ma-
trices in synchronous spread spectrum communications has been
explored [2] and promising results have been demonstrated.

In this paper, we will apply APU matrices to linearly precoded
OFDM systems. Linearly precoded OFDM systems have been
studied by a number of researchers [4] [5] [6]. When the OFDM
system has a DFT precoding matrix, it was shown to be the same
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as the so-called the single carrier with frequency domain equal-
izer (SC-FDE) system, which was first introduced in [7]. In [4],
it was shown that the SC-DFE system has the maximum diversity
gain among all linearly precoded OFDM systems. In [5] [6], BER
minimized precoder for OFDM system was considered. For high
SNR transmission, the SC-FDE system is optimal in the sense that
it minimizes the bit error rate among OFDM systems with any or-
thogonal precoding matrix. In these studies, the precoders are con-
stant matrices and the resulting precoded OFDM systems belong
to the class of block transmission systems.

OFDM systems with APU precoding matrices are overlapped
block transmission systems; a block of data symbols is transmitted
over several blocks of transmitted signals. By doing so, we are
able to average the noise variance in both the time and frequency
domains and this achieves time and frequency diversity. Both the
zero-forcing and MMSE receivers will be derived. Performances
of the proposed systems will be analyzed and compared with the
conventional OFDM system.

2. PRECODED OFDM SYSTEMS

Fig. 1 shows the block diagram of a precoded OFDM system. In
a precoded OFDM transmitter, the �th input block ���� consisting
of � modulation symbols, e.g. QAM symbols, are first passed
through an � by � precoding matrix ����. The output of ����
is given by

���� �

����
���

����� � ���

In this paper, we consider only APU precoding matrices. APU
precoding matrices enjoy two main advantages. Firstly, they have
very low complexity. Their implementation involves only addi-
tions and there exists an efficient butterfly structure for a broad
class of APU matrices [3]. Secondly, as we will show later, APU
matrices have the ability to average the noise variance over both
the time and frequency domains. We assume that the APU pre-
coding matrix ���� is normalized so that ��������� � �� � In
other words, all the entries of�� are ���

�
�� . After taking the

� -point IDFT of ����, we get:

���� ��
�
�����

where � is the � �� DFT matrix with its ��th entry given by
����� � ��

�
�	
�����
�����. Before ���� is transmitted, a

cyclic prefix (CP) of length � is added. Note that unlike the con-
ventional block transmission system, the transmitted block ����
now contains information of � blocks of input vectors ��� � ��



Fig. 1. An OFDM system with APU precoding matrix ����.

for � � � � � . In this paper, we assume that the channel is
slowly varying so that for each OFDM block, the channel response
does not vary. We model the combined effect of DAC, transmit fil-
ter, channel, receive filter and ADC as an equivalent discrete time
system with ���� �� denoting the �th tap of the impulse response
when the �th block is sent. We also assume that the CP length �
is large enough so that for all �, ���� �� � � whenever � 	 ���.
The channel noise 
��� is assumed to be an AWGN (complex)
with variance ��.

At the receiver end, the first � samples of the received block
that correspond to the CP are discarded to remove the inter block
interference. We obtain the � � � vector ����. Taking the DFT
of ����, we get

���� ��� � �������� � �����

where ���� is an � �� diagonal matrix whose ��� ��th entry is
given by the DFT coefficient of ���� ��:


���� �

����
���

���� ����������� � (1)

The noise vector ���� is an AWGN vector with autocorrelation
matrix���� . Assume that the channel does not have spectral null
so that ���� is invertible. After multiplying the diagonal matrix
������, we get

����� � ���� ��
���������� (2)

In the absence of channel noise, the vector ����� � ���� for all
�. When the precoding matrix ���� is PU, we can get a zero
forcing receiver by taking ����� as the decoding matrix, as indi-
cated in Fig. 1. Note that when we take ���� � ����� � �� ,
the system in Fig. 1 reduces to the conventional OFDM system.
It should be emphasized that even though the precoded OFDM
system has an overlapping-block transmitter, the channel impulse
response ���� �� can be different for different block number � and
the system in Fig. 1 still has the zero-forcing property.

2.1. Noise Analysis

Define the noise vector in the �th block as

���� � ������ ���� � �
����������

The autocorrelation matrices of ���� are given by

����� �� � � ������������� � ��Æ����
������������ (3)

Because������ is a diagonal matrix, we see from the above equa-
tion that ���� is also an AWGN vector but each entry has a differ-
ent variance.

Define the output noise vector ���� � ����� � ����. Then it
can be viewed as the output of ����� with the input vector ����.
Therefore, we can write

���� �
	���
���

�
�
� ��� � ���

Using the facts that ���� is an AWGN vector and ����� is a nor-
malized PU matrix, one can verify that its zeroth autocorrelation
matrix at the �th block is given by

�
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�
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where ����� �� is the zeroth autocorrelation matrix of ���� given
in (3). Note that ����� �� is a diagonal matrix. Looking at the �th
diagonal term of �
��� ��, we can write the noise variance at �th
subchannel (when the �th block is being processed) as

�������� �
�

�
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�
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�
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where we have used (3) and the fact that all the entries of �� have
magnitude equal to ��

�
�� . The quantity �������� is indepen-

dent of �; all subchannels have the same noise variance! Moreover
the decoding matrix ����� has an averaging effect on the channel
gains over a time period of � blocks. Note that we do not make
any assumption about the APU matrix ����. Any APU precoding
matrix can achieve (4). From (4), we also see that the performance
of the precoded OFDM with a zero-forcing receiver degrades sig-
nificantly when some of the channel gains are small. The noise
variances in all subchannels will be very large over a period of �
blocks. To solve this problem, an MMSE receiver is needed and
will be derived in the next section.

2.2. Comparisons with Other Systems

When we take ���� � �� , the system in Fig. 1 becomes the
conventional OFDM system. In this case ���� � ����. Thus, for
the conventional OFDM system, we can obtain from (2) the output
noise variance at the �th subchannel as

����
������ �
��

�
������ � (5)

The variance ����
������ depends on the block index � as well as
the frequency index �, and it is inversely proportional to �
������.
For highly frequency selective channels, some of the gains �
�����
can be small and the performance of the OFDM system will be
affected by these spectral nulls.



If we generalize the definition of APU matrices to include
complex matrices, then the DFT matrix� is APU. When we take
���� � �, i.e., the DFT matrix, the system in Fig. 1 becomes
the SC-FDE system [7] [5]. By carrying out the same derivation,
one can show that the noise variance of the SC-DFE system can be
obtained by simply setting � � � in (4). The noise variance at the
�th subchannel when the �th block is sent is given by

��������� �
�

�
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���

��

��������
� (6)

Observe from the above expression that ��������� is independent of
the frequency index �. All the subchannels have the same noise
variance and they are equal to the average noise variance of the
conventional OFDM system.

We can clearly see the difference between the conventional
OFDM, the SC-FDE and the precoded OFDM systems from the
three expressions in (5), (6) and (4). Because the decoding matrix����� is PU, it has the energy (or power) conservation property
[1]. The average output noise variance for the three systems is the
same. However they distribute these noise variances to the sub-
channels differently. For the conventional OFDM system, each
subchannel can have a very different noise variance, especially
when the channel is highly frequency selective. From (5), we see
that subchannels having small ������� will suffer from large noise
variances. On the other hand, the SC-FDE system has an average
effect in frequency domain; it averages over all subchannels. For
fast fading channel,

����

���
������� can vary from block to block

and the performance of SC-DFE system will have a large variation
with respect to �. From (6), we see that if

�
�
�������

� is small for
some �, the whole �th block will be severely affected by noise am-
plification problem. The precoded OFDM system with precoder
���� has an averaging effect in both frequency and time-domain;
it averages over all subchannels and over � OFDM blocks.

3. MMSE RECEIVER FOR PRECODED OFDM SYSTEMS

As we have mentioned earlier, in the presence of spectral nulls,
precoded OFDM systems with zero-forcing receivers suffer from
serious performance degradation. To avoid this problem, an MMSE
receiver is needed. In the derivation of the MMSE receiver, we as-
sume that the transmitted signals ���� satisfy

���������� � 	�� � 
�Æ�	��� �

In other words, the symbols are uncorrelated and have equal signal
power. The fact that���� is normalized PU implies that ���� also
satisfies ���������� � 	�� � 
�Æ�	��� �

We assume that the receiver removes the first � samples cor-
responding to the CP so that there is no inter block interference.
Given the received vector ����, we want to design an MMSE re-
ceiver. As the DFT matrix � is invertible, there is no loss of
generality if we consider the vector ���� � �����. Given the
vector ����, we want to design an MMSE receiver. Consider an
MMSE receiver (possibly time-varying) with � coefficient matri-
ces ���� 	� for � � 	 � � � �. Given the input vector ����, the
output of the MMSE receiver can be described as:

����� �
����
���

���� 	���� � 	��

where ���� 	� are � �� matrices. Our goal is to find ���� 	�
so that the following mean squared error is minimized.
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������� ������������� �������

Applying the orthogonality principle, one can verify that the MMSE
solution is given by:

���� 	� � �
�
� ��� � 	��

where the diagonal matrix���� is given by
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The 
th diagonal entry of ���� is given by

����� �
������

�������� ����
�

�

From the expression of ���� 	�, we see that the MMSE receiver
can be decomposed into a time-varying diagonal matrix ���� and
the time-invariant matrix �����. Therefore, we can implement the
MMSE receiver as Fig. 2. Comparing the zero-forcing and MMSE
receivers in Fig. 1 and Fig. 2 respectively, one immediately sees
that their only difference is the one-tap equalizer and they have the
same implementational complexity. When there is no noise, i.e.
�� � �, the MMSE receiver reduces to the zero-forcing receiver.

Fig. 2. An MMSE receiver for the precoded OFDM system.

One can verify that for the precoded OFDM system with an
MMSE receiver, all the subchannels also have the same error vari-
ance and it is given by
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From the above expression, it is clear that the decoding matrix����� has an averaging effect in both frequency and time-domain;
it averages over all subchannels and over � OFDM blocks. More-
over when some of the channel gains ������� approach zero, the
error variance ��		�
��� does not goes to infinity. In fact, the er-
ror variance is upper bounded by 
�. As we will see in the next
section that by using a MMSE receiver, the performance of the
precoded OFDM system is improved significantly.

4. SIMULATION

In this section, we carry out Monte-Carlo experiments to verify the
performance of precoded OFDM systems with different precoders.
The transmission channels are the modified Jakes fading channels
described in [8]. In the experiments, we will use channel mod-
els with two different ratios of doppler frequency and transmission
rate. A larger value of � indicates that the channel is changing
faster. The ratio � � ������ corresponds to a slowly varying chan-
nel whereas � � ����� corresponds to a channel that varies 10



times faster. The number of taps of the channels is 16. The chan-
nel noise ���� is AWGN with variance ��. In our simulation, we
assume that the receiver knows the exact channel response. The
DFT size is � � �� and the length of cyclic prefix is � � ��.

APU matrices of different length � will be used as the pre-
coding matrices. When � � �, the APU matrix reduces to the
Hadamard matrix. It is known [5] that the OFDM system with
a Hadamard precoding matrix has the same bit error rate perfor-
mance as the SC-DFE system. The input vector ���� consists of
QPSK symbols with power equal to ��. We plot the bit error
rate curves versus SNR (signal to noise ratio), which is equal to
�����. In the simulation, we do not consider MMSE receiver for
the conventional OFDM system because the bit error rate perfor-
mance of OFDM systems with MMSE receivers is identical to that
of OFDM systems with zero-forcing receivers.

The results for � � ������ are shown in Fig. 3. From the
figure, we see that the performance of precoded OFDM system
with a zero-forcing receiver is worse than that of the OFDM sys-
tem. This is because when the transmission encounters deep fad-
ing at some frequency bins, all the outputs of precoded OFDM
receiver will be seriously affected by channel noise. On the other
hand, for OFDM system, only a portion of the outputs will be se-
riously affected. However when an MMSE receiver is employed,
the precoded OFDM systems have a much better performance than
the OFDM system. If we compare the performance of precoded
OFDM systems with different precoders, we see that when the
channel is slowly varying, using a longer precoding matrix does
not provide much gain in performance. This is because when the
channel variation in the time domain is small, averaging the per-
formance in the time domain has little effect on the performance.

For channel that is varying 10 times faster with � � �����, the
results are shown in Fig. 4. Again we see that precoded OFDM
system with a zero-forcing receiver does not perform well and us-
ing an MMSE receiver can greatly improve the performance of
precoded OFDM systems. Also note that the performance im-
proves as � (the length of the precoding matrix) increases. As the
channel is fast varying, averaging in the time domain can provide
additional gain. If we compare the cases of � � � and � � �,
averaging over 8 blocks can yield an additional gain of more than
2 dB when the bit error rate is ����.
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Fig. 3. Bit error rate performance for slowly varying channels
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Fig. 4. Bit error rate performance for fast varying channels

5. CONCLUSIONS

In this paper, we have studied OFDM systems with APU precod-
ing matrices. Using an APU precoding matrix, we can average the
noise variances in both the time and frequency domains. We have
derived MMSE receivers for precoded OFDM systems. Experi-
ments show that precoded OFDM systems with MMSE receivers
have a much better bit error rate performance that the conventional
OFDM system.
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