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Abstract  - I n  this paper, we propose a switching 
adaptive predictor (SWYP)  with automatic context mod- 
eling for lossless image coding. In  the SWAP system, 
two predictors are used. FOT areas with edges, esti- 
m.ates of coding pixels are obtained using texture wn-  
text matching (TCM). For all other arras, an adaptive 
neural predictor (ANP) is used. The SWAP encoder 
switches between the two predictors ANP and TGM de- 
pending on the neighborhood of the coding pixel. The 
switching predictor allows statistic01 redundancy to be 
removed effectzuely. On llke otlrer. hand, it is known 
that prediction can be further refined using error com- 
pensation. For this, we propose the use of a modijied 
fuzzy clustering, which leads to  a modeling of errors 
that adapts itself to the input statistics. Experiments 
show that the proposed context clustering is very useful 
in modeling error for prediction refinement. Compar- 
isons of the proposed system to existing state-of-the-art 
predictive coders will be given to demonstrate its coding 
efficiency. 

Keywords: lossless image compression, context mod- 
eling, adaptive prediction, neural network, fuzzy clus- 
tering. 

1 Introduction 
Many of the recent advances in lossless image coding 

are based on predictive coding with context modeling 
/1]-[3][6]-/9]/ll]. The CALIC codingsystem [ll], astate- 
of-the-art lossless predictor proposed for JPEG-LS, is a 
gradient adjusted predictor (GAP). Based on the gra- 
dient of neighboring pixels, one out of a set of seven 
predictors is chosen. The LOCO-I coder (91, an algo- 
rithm motivated by CALIC, uses a median edge detec- 
tor (MED) to choose one of three predictors for current 
prediction. The LOCO-I system has been standardized 
into JPEG-LS. 
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In [SI, Slyz invents the idea of estimating coding pixel 
based on context matching. For each coding pixel, a 
causal area of dimensions 30 by 30 is used for context 
matching. From this area, 11 pixels are chosen and av- 
eraged t o  form an estimate of the coding pixel. The 
histogram of the prediction errors corresponding to the 
11 candidates is calculated. By computing the variance 
of the 11 prediction errors, one out of a set of 37 Lapla- 
cian distribution which matches the histogram the best 
is chosen. The prediction error of the coding pixel is 
then coded using a conditional arithmetic coder corre- 
sponding to the chosen Laplacian model. In [ll], &'U 
demonstrated that prediction error can be further re- 
fined through error compensation. The compensated 
error has a narrower histogram and hence a lower first 
order entropy. In CALIC [ l l ] ,  576 compound contexts 
are used for error modeling. In the LOCO-I system 191, 
365 contexts are used for error modeling. 

In the context of optimal predictors, the minimum 
mean square error estimate of Y given observations 
XI, X,, . . . , X ,  is E{YIX1, X,, . . . , X-}, generally a 
nonlinsar function. There have been many results using 
neural networks as nonlinear estimators [1][2][6]. Dony 
and Haykin proposed neural approaches to predictive 
image compression in [l]. Neural predictors based on 
multi-layered perceptrons are used in [2][6]. In [2][6], 
adaptive prediction is achieved by updating the network 
weights using the prediction errors of coded pixels. Non- 
linear predictors using neural networks, though perform 
well in slowly varying areas, can have large prediction er- 
ror around boundaries [2]. The result can be improved 
using additional hidden layers or hidden neurons, but 
this incurs a drastic increase in complexity [4]. 

In this paper, we propose a prediction scheme for loss- 
less image coding, called S W A P  (SWitching Adaptive 
Predictor). The coder switches between two predictors: 
ANP (Adaptive Neural Predictor) and TCM (Texture 
Context Matching). For pixels around edges, TCh4 is 
used: ot.herwise ANP is used. When TCM is used, pixels 
with contexts similar to that of current pixel are aver- 
aged for the current prediction. The ANP is a three- 
layered neural network. We will see that the TCh4 p r ~ -  
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x 1  
vides a nice complement of ANP. Very good predictions 
can he obtained for pixel around edges, where conven- 
tional predictors tend to have large prediction errors. 

For prediction error refinement, automatic error mod- 
eling is achieved in SWAP using a modified version of 
the UFCL (Unsupervised Fuzzy Competitive Learning) 
algorithm in [5 ] .  It does not require training data to 
be available all at once, and it can be used for sequen- 
tial encoding. Furthermore, the number of clusters is 
variable. The combination of a switching structure and 
automatic error modeling renders the proposed SWAP 
coder highly adaptable and very low bit rates can be 
achieved. 

2 Proposed SWAP System 
The proposed SWAP system is made up of four com- 

ponents as shown in Fig. 1. It has two predictors, ANP 
and TCM. The ANP is an adaptive threolayered hack 
propagation network that is updated on the fly using 
causal pixels as training patterns. The TCM looks for 
pixels in a predefined causal area that have textures sim- 
ilar to that of the coding pixel and using these pixels to 
estimate the coding pixel. The "Predictor Switch" block 
(Fig. 1) determines whether the current pixel is around 
an edge. If it is, TCM will be used as the predictor; oth- 
erwise ANP will be used. With the "Predictor SwitcK' 
block, the encoder switches automatically between ANP 
and TCM. 

The prediction is further refined through error com- 
pensation. That is, the output x p  from ANP or TCM 
is added by e ,  to get a compensated prediction ZCpd  = 
x, + ep .  The amount of compensation e, is determined 
through error modeling based on a modified UFCL (Un- 
supervised Fuzzy competitive Learning) [ 5 ] .  The error 
signal E = x - X c p d  can then be entropy encoded using 
conditional arithmetic coding [lo]. In addition, the en- 
coder uses only causal pixels for estimating the coding 
pixels; no additional side information needs to be t r ans  

......................................... . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  ......................................... . . . . .  . . . . .  . . . . .  
Online training area . . . . .  / (36 pixels) . . . . .  

Figure 2: The texture context of t h e  coding pixel 
and online training regions for ANP. 

mitted. It is noted that the proposed SWAP coder is 
symmetric, meaning that the decoder has the same pre- 
dictor switch as the encoder, and perform ANP/TCh4 
prediction and error compensation just  like the encoder. 
Details of the individual components of the system are 
introduced in subsequent sections. 

3 Predictor Switch 
This section introduces the switching criterions of the 

proposed SWAP system. The TCM is used in nonuni- 
form regions having edges while ANP predictor is used 
in all other cases. We observe that the variance of an 
area that contains an edge is usually large. Further- 
more, the histogram of such an area tends to  have 2 
peaks, one on each side of the mean value. We will use 
these two observations to  determine whether ANP or 
TCM should he used. We define the texture contexf n 
of a coding pixel as the collection of the ten causal pixels 
z1,zz."' , Z ~ O  in Fig. 2, 

K =  { 5 1 , 2 2 , . . '  > X 1 0 } .  (1) 
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The mean 1 and variance c2 of the texture context are 
respectively, 

The ten pixels can he divided into two groups, the pixels 
with gray levels higher than 1 in one group ~h and the 
rest in another tq. We also compute the mean and 
variance U: of those pixels in K h ,  

where N h  is the number of elements in l (h.  Similarly, 
we compute the mean 11 and variance U: of those pixels 
in ~ 1 ,  

1 1 
21 = - x3, c: = - (x3 - 1 1 ) 2 ,  (4) 

NI z,tw Nl z,Ent 

where NI is the number of elements in ~ 1 .  

A histogram with 2 peaks is likely to  have a large uz 
but small U: and U;. IVe determine whether the coding 
pixel is around an edge if the following 2 conditions are 
satisfied, 

where 0.01 is added so that the denominator of ( 5 )  does 
not become 0 when U: and U: are both zero. We will use 
y1 = 25 and = 10 in this paper. The TCM predic- 
tor is used whenever the conditions in (5) are satisfied; 
otherwise the ANP predictor is used. 

4 Adaptive Neural Predictor 
The ANP predictor is a three-layered hack propaga- 

tion neural network. There are 10 neurons in the input 
layer, 5 neurons in the hidden layer, and 1 neuron in the 
output layer. The output is the prediction value of the 
coding pixel. The number of hidden neurons is chosen 
empirically. We have found 5 to be a proper choice. Our 
experiments show that increasing the number of hidden 
neurons leads to only marginal improvement in entropy 
or bit rates, hut will increase complexity dramatically. 

We use the ten causal pixels x1,xz ... , X I O  (Fig. 2) 
in texture context (1) as the predictor inputs. The ANP 
predictor adapts itself to the varying statistics by ap- 
plying gradient descent method continuously on the fly 
with the 36 causal pixels in Fig. 2 as training patterns. 
The online updating process is performed by iterative 
learning on the 36 training pixels. The learning rate is 
set to 0.9 within the first three training cycles to avoid 
being trapped in the local minima and is set to 0.1 after 
that to avoid the oscillation problem [4][6]. In addition, 
a momentum term 0.5 is used to accelerate convergence 
speed [4]. Updated weights are used for current predic- 
tion and passed on to the next coding pixel as initial 
weights. 

Texture Context Mat, ............................... . . . .  

m 

v 

:hing 

Figure 3 The area for Tex tu re  Context  Matching. 

5 Texture Context Matching 
The ANP predictor can achieve very good prediction 

in slowly varying areas. However, for areas containing 
edges, convergence of the network weights is slow and 
the prediction error is large. For such areas, the encoder 
switches to Texture Context Matching and estimate the 
coding pixel using pixels with similar contexts. To re- 
duce the complexity of texture matching, we will use a 
shodened texture context. 

Shortened Texture Contexf. The 4 pixels marked by 
ml,ma,ms, m4 as shown in Fig. 3 constitute the short- 
ened texture context for TCM. They are the same pixels 
x1 ,xz ,x~ ,xg  insection3 hut arerenamedasml,  . . .  m4 
for the convenience of explanation. As similar contexts 
are most likely to appear in the vicinity of the coding 
pixel, there is no need to perform an exhaustive search 
or near global search in the causal area. The pixels to  
be used for context matching is shown in Fig. 3, the 
same 36 pixels used for the online training area of ANP. 

We first calculate the normalized shortened texture 
context, 

where I ,  is the length or root mean square (rms) value 
of the shortened texture context. For each of 36 pixels in 
the context matching area, we compute its normalized 
shortened texture context as in (6). We calculate the 
Euclidean distance dmm, between the normalized short- 
ened texture context of the current pixel and that of 
e x h  of the 36 pixels to  be matched. We find the 2 pix- 
els with the two shortest Euclidean distances. Suppose 
the values of these 2 pixels are y1 and yz, where yt has 
been normalized by the length of its shortened texture 
context. The coding pixel value x is estimated by 

For coding pixels on the boundaries of the image, match- 
ing areas are smaller. Only one pixel in the matching 
area is chosen to be the candidate for coding pixel esti- 
mation. 
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6 Error Compensation using 
Context Clustering 

The prediction errors x - x, in the proposed SWAP 
system are further refined by learning from previous pre- 
dictions. In the SWAP system, adaptive error model- 
ing is achieved by designing codebooks using a modified 
fuzzy clustering. The context is dynamically generated 
and modified in the'coding process. Also, the number 
of contexts is not fixed and will depend on the statistics 
of the image to he encoded. 

Let ei be the uncompensated prediction error of xi in 
Fig. 2 for i = 1,2,3,4.  JVe define the compound context 
vector d t )  of a coding pixel as 

~ 1 ~ x 2 , '  ' .  , x ~ o ,  el,  ez,e3,edr .(t) = { (8) 

where xi; i = 1,. . . l o  are as shown in Fig. 2 and 
e;, i = 1, ' '  4 are the uncompensated prediction errors 
corresponding to 5 1 , .  . . xq respectively. The pixels are 
encoded sequentially in raster scan order and the super- 
script ( t )  in U@) denotes pixel index. We ha\:e incorpo- 
rated prediction errors in codebook designs, because the 
amount to he compensated is likely to  he related to the 
prediction errors of neighboring pixels. Furthermore, 
the compound context vector U(') of a coding pixel is 
likely to be related to existing clusters with some mem- 
bership degrees. Therefore, it is dynamically assigned 
to existing clusters or to a new cluster. In conventional 
fuzzy K-Means clustering, the vectors to  be classified 
are available all at once, and the number of clusters is 
h e d  [4]. Here, the compound context vectors appear s e  
quentially. Therefore, the UFCL (Unsupervised Fuzzy 
Competitive Learning) algorithm [5]  which is suitable 
for sequential input vector classification is used for the 
clustering process with some modifications. The num- 
ber of clusters is now variable. Furthermore, we will 
propose a learning rate that has the desired property 
of approaching zero when an optimal classification is 
achieved [5] .  In this case, the cluster updating formula 
is in the form of a weighted summation. 

6.1 Dynamic Fuzzy Clustering 
Assume we have K clusters in the codebook currently. 

The i th codeword or i f h  cluster center will be denoted by 
cy). For an incoming compound context vector u(~+' )  
of coding pixel, the distance dr+') between dt+') and 
the existing ith cluster center c?) is calculated by 

where 11-11 denotes the vector 2-norm. If the minimum 
distance value d,i, = i=mlfnK d!'+') is greater than a 
predefined threshold p = 15000, a new cluster is added. 
Therefore, the number of codewords is increased to K + 
1, and the new cluster center cl'x+:)1, = U@+'). If dmin < 

{ $  1 

P. de+') is used to update existing clusters based on 
the modified UFCL algorithm. The membership degree 
A!") of dt+') to the i'h cluster is defined as [ 2 ] [ 5 ] ,  

where the exponential weight m, which controls the de- 
gree of fuzziness, is chosen to be 1.25. The membership 
degree A Y ' )  is inversely proportional to the distance 
between U(*+') and existing cluster centers. We define 
S!'), the accumulated weight of the i t h  cluster as 121, 

t 

s!') = C ( A ? ) ~ ,  for i = 1,2, .  . . , K. (11) 
ll=l 

Note that Sf) is very similar to the membership degree 
summation of vectors with respect to the same cluster in 
a conventional fuzzy partition matrix. Existing clnster 
centers are updated by [ 5 ] :  

+ X(f+l)(A(f+'))m(v('+') - ci ( t )  )> (12) 

where A('+') is the learning rate. We will choose 

The resulting learning rate A('+') will get smaller as 
coding proceeds and will approaches zero when an op- 
timal classification is reached. Using (13), (12) can be 
rewritten as, 

6.2 Error Estimate 

tion error of the coding pixel is given by, 
The value e, to  be used in compensating the predic- 

(15) 

where e!) is the sample mean of prediction errors in the 
i th cluster. We update e?) using [ 5 ] ,  

e?') = + A(f+')(A('+'))"(s(t+') - z, ({+I) - ( t )  1. 
(16) 

Similarly, using (13), (16) can be written as, 

= 

(17) 
We now form a more refined prediction xCd = x,+ep, 

where xp is the output of predictor ANP or TCM. 
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Figure 4: Image of compensated prediction errors 
for “Lennagrey”. 

Figure 6: The image “Shapes”. 

Figure 5: Histogram of prediction errors for 
‘<Lennagrey’’. 

7 Experiments 
Experiment results of the proposed SWAP coder and 

comparisons to  existing state-of-the-art linear and non- 
linear predictors are given in this section. All the test 
images used in the experiments are from the website of 
T M W  [7]. For the image “Lennagrey“, we show in Fig. 
4 and Fig. 5 respectively the compensated prediction 
error and the corresponding histogram. The statistical 
redundancy is removed efficiently as can he seen in Fig. 
4 and Fig. 5.  The usefulness of the proposed autc- 
matic context modeling for error refinment can he hest 
observed from Fig. 5 ,  in which the histogram of p r o  
diction errors with and without error compensation are 
shown. In Fig. 5 ,  the first order entropy for compen- 
sated errors is 3.98 hits and 4.22 hits for uncompensated 
errors. 

The usefulness of the proposed TCM predictor can 

Ihttp //www csse monash edu au/ bmeyer/tmw/ 
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Figure 7 Pixels for which TCM are used in t h e  
image “Shapes”. 

be demonstrated through the following experiment. We 
use the image “Shapes”, which is an artificial image with 
many edges and lines (Fig. 6). The pixels for which 
TCM are used are marked in Fig. 7. We can see from 
Fig. 7 that the “Predictor Switch” box has successfully 
picked out the pixels around edges. The histogram of 
uncompensated prediction errors for those pixels using 
TCM is shown in Fig. 8. For comparison, we also show 
in Fig. 8 the histogram of uncompensated prediction 
error if ANP were used for those pixels instead. The 
histogram with TCM is much narrower than that with 
ANP; TCM has a smaller prediction error than ANP 
does around edges. Indeed, the entropies corresponding 
to the 2 histograms in Fig. 8 are respectively 2.97 hits 
(TCM) and 5.38 hits (ANP). 

Table 1 gives the actual bit rates hy JPEG-LS [9], 
CALIC [11], EDP [3] and Th4W [7] for of a set of 14 



Figure 8: Histogram of prediction errors for the 
pixels shown in Fig. 7. 

l I b n r G r ~ l . 4 4 7 3  3.96 4.24 4.11 

12 5.723 5.15 5.68 5.44 

13 Peppers 7.5924 4.27 4.29 4.42 
14 Shaper 6.7395 1.55 1.21 1.14 

Table 1: Comparisons with existing lossless image 
iders (in bits/sample). 

4.02 3.91 
NIA 5.54 
4.35 4.25 
NIA 0.76 

. . . ., . . .. . .. . . . . . . . . . .. . . . . . . 
9 I Gold Hill I 7.6232 I 4.3 I 4.48 1 1.39 I 4.39 I 4.27 
10 I Lena I 7.594 I 4.37 I NIA I 4 4 8  I 4.4 I 4.3 

test images obtained from the website of TMW 171. Re- 
sults listed in the last four columns of Table 1 are from 
LOCO-I 191, TMW [7] and EDP 131. The compensated 
prediction errors are coded using a conditional arith- 
metic coder adapted from [IO]. Table 1 shows that 
SWAP has lower hit rates than JPEG-LS in 11 of 14 
test images and outperforms CALIC [ll] in 10 of 14 
test images. Encouragingly, SWAP azhieve bit rates 
lower than the highly complex TMW in 3 images “Air- 
plane”, “Balloon” and “Noise square”, 

8 Conclusion 
In this paper, a new coder called SWAP is pro- 

posed. The SWAP system switches between two pre- 
dictors ANP and TCM automatically. The ANP pre- 
dictor, making nonlinear prediction using a neural net- 
work, performs very well in slowly varying areas. The 
TCM provides a very nice complement of ANP predic- 
tor. As the simulation example has demonstrated, the 
TCM predictor can achieve very good prediction around 

edges, where ANP predictor tend to have larger p r e  
diction errors. For error refinement, automatic context 
modeling is achieved using the modified UFCL. The 
usefulness of proposed SWAP system is demonstrated 
through the reduction of first order entropy and actual 
bit rate in tested images. 
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