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ABSTRACT 

In this paper, we generalize the Hadamard transform to the the 
case of lapped transform A matrix A(z) is a lapped Hadamard 
transform if it satisfies A ~ ( ~ - ' ) A ( ~ )  = a~ for some integer a 
and all the entries of its coefficient matrices are i1. Many meth- 
ods have been proposed to construct lapped Hadamard matrices. 
In this paper, we will study these matrices using the theory of pa- 
raunitary filter bank. This approach not only greatly simplifies 
the analysis of lapped Hadamard transform but also gives rise to 
new construction methods that can generate a much wider class of 
lapped Hadamard matrices. 

1. INTRODUCTION 

Hadamard transform has found many applications in various areas 
of signal processing. An M x M constant matrix H is called a 
Hadamard transform if 

H ~ H  = MI, 

andallitsenVicsh,j t {+l, -I}. ln[l]theauthorshowedthatif 
an M x M Hadamard matrix exists. then M = 2 or M is a multi- 
ple of 4. It was widely conjectured that this is also a sufficient con- 
dition. In the past, many methods have been introduced for their 
constructions [2]. This paper studies lapped Hadamard transforms. 
A causal M x M polynomial matrix A(z) = a(k)z8 is 
called a lapped Hadamard transform if all the entries of the M by 
M matrices a(k) are &1 and A(=) satisfies 

AT(z-')A(z) = MNI 

When A(z) is a constant matrix independent of z ,  the lapped 
Hadamard matrix reduces to a Hadamard matrix. Matrices satis- 
fying the above expression are also known as paraunitary matrices 
[3]. In frequency domain, A(e3-) is unitary for all frequencies w.  
In other words, lapped Hadamard transforms are the special class 
of paraunitary matrices whose coefficient matrices are antipodal. 
These matrices are closely related to complementary sequences 
[4][5]. When a lapped Hadamard matrix A(z) and its inverse 
AT(z- ' )  are used as the analysis and synthesis polyphase ma- 
trices of a filter bank, we have a paraunitary filter bank 131 where 
all the filter coefficients are 51. 
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Recently it has been demonstrated in [6] [71 that lapped Hadamard 
transforms have many potential applications in synchronous spread 
spectrum communication and CDMA. In the past, many construc- 
tion methods for lapped Hadamard matrices have been proposed 
[4][51[6][8][9][10]. In [8] [9],itisshownthatwecanconstruct2x 
2 lapped Hadamard transforms by cascading 2 x 2 Hadamard ma- 
trices and diagonal matrices with delay elements. Such a method is 
generalized to the A4 x M case in [6] [IO]. In [4], the authors show 
that a 2 x 2 lapped Hadamard matrix can be constructed from a pair 
of Golay sequences [ I  I] and vice versa. In [SI, the authors show 
how to construct larger lapped Hadamard matrices from smaller 
lapped Hadamard matrices. Except [6], all the construction meth- 
ods are derived using a time-domain approach, which often in- 
volves complicated expressions. 

In this paper, we apply the theory of paraunitary matrices to 
the study of lapped Hadamard matrices. All the derivations will 
be done using a z-domain approach. This approach not only gives 
a compact description of the previous results, but also enable us 
to generalize previous methods. Moreover we will introduce some 
new methods for the construction of lapped Hadamard matrices. 
The new methods enable us to generate a much wider class of 
lapped Hadamard matrices. 

2. DEFINITIONS AND PRELIMINARIES 

In this section, we will describe a number of tools that will be use- 
ful for later discussions. Consider the polynomial matrix A(z) = 
E,=, a(n)z-" with nonzero a(0) and a(N - 1). The constant 
matrices a(n) are the coefficient matrices. The numbers N and 
(N - 1) are respectively the length and the order of A(=). All 
matrices studied in this paper are square matrices. The tilde of 
A(z) is defined as 

L(z)  = A T ( + - ' ) .  

Using the tilde notation, an A4 x M matrix A(z) is paraunitary 
(PU) if 

A(z)A(z) = cI, for some nonzero constant c. (I) 

When all the entries of all the nonzero coefficient matrices a(.) 
are i1, then A(z) will be called an antipodal (AP) matrix. A PU 
AP matrix will be called a lapped Hadamard matrix. 

Let A(=) and B(z) be two M x M AP matrices with lengths 
N, and Nb respectively. In general, the AP property is not pre- 
served by additions and multiplications. However it can be verified 
that the following two matrices are AP: 

N - l  

- 

A(~)B(."*), A ( ~ )  + 
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Moreover if A(z) and B(z) have the same length, the matrix 
A ( z z ) + ~ - ' B ( z 2 )  will also be AP. These AP-property preserving 
operations will be useful in understanding of many construction 
methods described later, 

Kronecker product will he useful for the construction of larger 
lapped Hadamard matrices from smaller lapped Hadamard matt-  
ces. Given two square matrices A(=)  and B(z) with dimensions 
Ma and A& respectively, their Kronecker product A(z) @ B(z) 
is defined as (we have dropped the argument I for notational sim- 
plicity) 

1 ,  AooB AoiB . . .  Ao.M-IB 
AloB AllB . . ,  Ai.hr-iB 

( !  AA,-~,oB Ani - i .~B  ! . . .  ". A~r--l.hr--iB j 

whereAij(2) is thei j thelementofA(z) .  Notethat A(z)@B(z) 
is an A4=A4b x M,Mb matrix. Moreover if the lengths of A(z) and 
B(r) are N, and Nb respectively, then the length of A(z) @B(z)  
willbe N,_fNb-L. OnecanverifythatthetildeofA(z)@B(z) 
is equal to A(z)@B(z). Let the dimensions of the matrices A, B, 
C and D be so that all the matrix multiplications in the following 
expression are defined. Then the product rule states that 

(A @ B)(C @ D) = (AC) @ (BD) 

Using the product rule, one can immediately show that given two 
PU matrices A(z)  and B(z) (not necessarily of the same dimen- 
sions), their Kronecker product A(z) @ B(z) is also PU. 

3. EXISTING CONSTRUCTION METHODS 

In this section, we will review come existing construction meth- 
ods for lapped Hadamard matrices. Though many of these meth- 
ods were originally derived using time-domain sequences, we will 
adopt the z-domain expression as it gives a more compact exprer- 
sion. Moreover, we will use the theory of PU matrices to explain 
these methods. 

It was shown in [4] that 2 x 2 lapped Hadamard transforms are 
closely related to complementary sequences, or more commonly 
known as Golay sequences. A pair of AP sequences At(=)  = 
E,=, ai(n)z-" (i = O,l)arecomplementaryiftheysatisfy[11] 

Ao(z)&(z) + Al(z)Ai(+) = 2N. 

"1 

Using these sequences, we form 

One can verify by direct multiplication that E(z)E(z) = 2NI;  
the matrix E(z) is a lapped Hadamard matrix. Though comple- 
mentary sequences can be generalized to the case of M sequences 
[SI, unfortunately there is no known method to construct M x A'I 
lapped Hadamard matrices from M complementary sequences. 

In [SI [9] [6] [IO] , it was shown that lapped Hadamard trans- 
forms can he constructed from Hadamard matrices. Let M be such 
that Hadamard matrices exist and let Hi, be Hadamard matrices. 
Let Eo(=) = Ho. Consider the following M x A4 matrices: 

E ~ + ~ ( Z )  = H ~ A ( & ) E ~ ( ~ ) *  for I; = 0,1,. . . , (2 )  

where A(=) is the diagonal matrix 

As both Hk and A(z) are PU ( I ) ,  so are their products. Hence 
Ek(z) are PU for all k .  Moreover it is not difficult to verify that 
all thecoeffiicient matrices in Ek(z) have *1 as their entries. Thus 
Ek(z )  are lapped Hadamard transforms. Note that the length of 
the lapped Hadamard matrix Eh(z) is Mk. For moderate numbers 
M and k ,  the length of E ~ ( z )  becomes very large. 

In [SI, several algorithms were given for the construction of 
larger lapped Hadamard matrices from smaller lapped Hadamard 
matrices. Let A(z) be an M x M lapped Hadamard matrix with 
length N .  Then consider the following two 2M x 2M matrices 

A(zZ) + z-'A(zZ) -A(I') + z-lA(;') 
Ea(.) = 

Clearly both Ei(z) are AP matrices with length 2N. Using the 
paraunitariness of A(=), one can verify by direct multiplication 
that Ei(z) are also PU. Thus Ei(z) are lapped Hadamard matri- 
ces. The matrices Eo(z)  and E1 ( z )  can be viewed as "interlaced 
and "cascade" versions of A(z) respectively. By repeatedly ap- 
plying the above methods, starting from a 2 x 2 lapped Hadamard 
transform, one can generate Zk x 2k lapped Hadamard transforms 
for all integer k .  

It was also shown in [SI that we can construct lapped Hadamard 
matrices by applying the Kronecker product. Let H be an Mh x 
M h  Hadamard matrix and A(z) be an M a x  Ma lapped Hadamard 
matrix with length N,. Form the following MhM, x M h f i L  ma- 
trix 

E ( z ) = H @ A ( z ) .  ( 5 )  

It is clearly an AP matrix. As the Kronecker product of PU matri- 
ces is also PU, E(z) is a lapped Hadamard matrix of length N, 
Though it was not mentioned in [SI, one can verify that A(z) @ H 
is also n lapped Hadamard matrix. 

4. NEW RESULTS 

In the following, we will first generalize the results in (3). (4) and 
( 5 ) .  Then two new construction methods will he given. 

Let A(=) and B(z) be lapped Hadamard matrices with the 
same dimension M and the same length N,,. Then one can gener- 
alize the result in (3) by constructing the matrix 

~ ( 2 )  + = - l ~ ( 2 )  -A@) + = - ' B ( Z ~ )  
E+) = (-A(Z') + z-lB(zZ) + z - l q z Z )  ) . 

It is not difficult to verify by direct multiplication that the above 
Eo(+) is a lapped Hadamard matrix with length 2N,. Let C(z) 
be another M x M lapped Hadamard matrix with length N,. Then 
one can verify that the following matrix is a lapped Hadamard 
transform with length ( N ,  + N6) .  

A(a) + z-"C(z) -A(z) + z F N " C ( z )  
z-"C(z) A(z)  + zCNeC(z) Ei(z) = 

The above result can be viewed as a generalization of (4). 



One can also generalize ( 5 )  by taking the Kronecker product 
of two lapped Hadamard matrices. However special care has to he 
taken so that the AP property of these matrices is not destroyed. 
Let B(z) and C ( z )  be lapped Hadamard matrices of dimensions 
Ma and M ,  respectively. Let Nb and N, be their lengths respec- 
tively. Then one can show that the resulting matrices of the follow- 
ing two Kronecker products are lapped Hadamard matrices with 
length (Nb + N, - 1) and dimension h f b M G .  

En(=) = B(z") @ C(z) (6) 

Ei(z)  = B(z) @ C ( z N b )  (7) 
The above seemingly simple generalization ofthe Kronecker prod- 
uct method includes (3) (4) and (5) as special cases. To see this, 
let 

, and C ( z )  = A(z) .  -1+z-' l + z - '  

Then (6) and (7) reduce respectively to (3) and (4). 

Construction Method Using the Agayan-Sarukhanyan Multi- 
plication Theorem: By taking the Kronecker product of two ma- 
trices with dimensions Ma and Ma, we will get a matrix ofdimen- 
sion M,Mb. In [2], it was shown that we can reduce the dimension 
using the elegant multiplication theorem of Agayan-Sarukhanyan. 
It was shown that given two Hadamard matrices of dimensions 
M,, and Ma, one can construct a Hadamard matrix of dimension 
MaA4b/2. WIt turns out that we can also apply the multiplica- 
tion theorem of Agayan-Sarukhanyan to the construction of lapped 
Hadamard matrices. Let A(z) and B(z) be lapped Hadamard ma- 
trices of dimensions Ma and Mb respectively. Suppose that their 
lengths are N, and Nb respectively. Consider the following parti- 
tions: 

where A,,(.) and B,,(z) are M,/2 x M a / 2  and Ma12 x A4bl2 
matrices respectively. This partition is always possible as A4a and 
Mb are even (see the remark at the end of this section for a proof). 
Form the following x matrix with length (N,Nb):  

The malrix C ( z ) ,  formed in such a manner, is called the Agayan- 
Sarukhanyan multiplication of A(zNb) and B(z),  denoted as 

C ( z )  = A(zNb) @,is B(z).  

One can verify that all C,, ( z )  are AP matrices of the same length 
and hence C ( z )  is an AP matrix. Applying the PU properties 
of A(z) and B(z), one can show that c ( z ) C ( z )  = aI, where 
a = ~ M ~ M ~ N , N b .  Hence C ( z )  is a lapped Hadamard matrix. 
Clearly, one can verify that A(z) @,is B(zNa). where N, is the 
length of A(z) .  is also a lapped Hadamard transform. Note that 
when one of the matrices, say A(z), has dimension A4a = 2, then 
the dimension of C ( z )  will be Mb. Using this method, one can 
generate lapped Hadamard matrix with length 2 k  for any integer 
k .  Let A4 be such that Hadamard matrices H of dimension A4 
exist. Let 

Clearly El(z) is an M x M lapped Hadamard matrix of length 
2'. Fork  2 1, we carry out the following iterations: 

ClearlyallEi,(z) a reMxMPUmatr icesas the  Agayan-Sarukhanyan 
multiplication preserves the PU propeny. Moreover Ek(z) are 
AP matrices with length 2'. Hence Es(z) are A4 x M lapped 
Hadamard matrices with length 2 k .  Comparing our results with 
(2), we see that the matrices constructed using (2) have length 
equal to Mk whereas our matrices have length 2'. 

Butterfly Structure Method: Let M be a number such that Hadamard 
matrices exist. From [I], we know that M is either 2 or a multiple 
of 4. Define the following two M x iz.I matrices: 

e(=) = diag[i z-l 1 z-l . .  . 1 2-l 1. 
Let Eo(z) = H, an M x M Hadamard matrix. For k 2 0, we 
form 

where Pt are M x M permutation matrices. It is clear that EIE(Z) 
are PU. Moreover they are also AP matrices due to the insertion of 
delay elements in e(=). The length of Ek(z) is 2 k .  For example, 
Fig. 1 shows the implementation of Ek(z) for k = 2 and M = 
4. Note that the butterfly structure has an additional advantage 
of low complexity. The computational cost for adding one stage 
is M additions. Note that when A4 is a power of two, H can 
also be realized using lag, M stages of the butterflies [LZ]. To 
implement a lapped Hadamard matrix of length 2 k ,  we only need 
( k  + log, A4)M additions. 
Connection Berwrrn the Butterjy Srrucrure Method and (2): When 
the number of channels M is a power of two, we can show that 
the butterfly structure method includes (2) as a special case. We 
demonstrate this for the case A4 = 8. To do this, we need to 
show that HA(=) in (2) can be expressed as a product of maui- 
ces of the form Ba%(z)P as in (8). It is well-known [I21 that the 
8 x 8 Hadamard matrix can be implemented efficiently the butter- 
flies. Using such an efficient structure, we can implement HA(z) 

E k + i ( Z )  = BAl~(z2')PkEk(z), (8) 

VI-511 



Figure I :  A 4 x 4 lapped Hadamard matrix E ~ ( z )  constructed by 
the butterAy method. 

as in Fig. 2(a). After moving some delay elements to the right of 
the butterflies, we can redraw Fig. 2(a) as Fig. 2(b). Note that 
each stage (indicated by the box) in Fig. 2(a) can he described by 
Us8(z2‘)P; by choosing the permutation matrix Pi properly. 

(4 

(b) 

Figure 2: (a) An implementation of HA(=). (b) An equivalent 
system. 

Remark: It was known [ l ]  that Hadamard matrices H exist only 
for dimensions of 2 or a multiple of 4. Whether this is also a 
necessary condition for the existence of lapped Hadamard ma- 
trices is still unknown. But it is easy to see that the dimension 
of lapped Hadamad matrices has to be even. Too see this, let 
A(=) = a(n)zP’ be an M x M lapped Hadamard trans- 
form. The PU property of A(=) (defined in (1)) implies that 

a*(N - l)a(o) = o 
As a(n) are AP matrices, the above equation implies that the di- 
mension M is even. 

5. CONCLUSIONS 

In this paper, we have studied lapped Hadamard matrices. The the- 
ory of PU matrices was applied to analysis and synthesize these 

matrices. Using such an approach, we can not only prove all pre- 
vious construction methods in a simple manner but also generalize 
their results. New methods that Can generate a much wider class of 
lapped Hadamard matrices are also introduced. One can generalize 
the definition of lapped Hadamard matrix to the complex case. An 
M x M matrix A(z) = a(n)zYn is a lapped Hadamard 
matrix if all the entries of the coefficient matrices have uni t  mag- 
nitude and A’(l/z*)A(z) = M N I ,  where * and ’ denote the 
complex conjugate and transpose conjugate respectively. It can be 
verified that except the method using Agayan-Sarukhanyan multi- 
plication theorem, all the methods described in this paper can be 
modified for the construction of complex lapped Hadamard matri- 
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