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Abstract- We consider the minimization of bit error
rate (BER) for OFDM systems with orthogonal precoder-
s. For low SNR, we show that the conventional OFDM
system is the optimal solution and the optimal precoder
is the identity matrix. For high SNR, corresponding to
a relatively practical range of BER, there are channel
independent solutions for optimal precoders. One such
solution is the DFT matrix and the resulting optimal
transceiver becomes the single carrier transmission sys-
tem. Furthermore, in this case the cenventional OFDM
system has the largest BER among all OFDM systems
with orthogonal precoders.

1. INTRODUCTION

The OFDM (orthogonal frequency division multiplexing)

transceiver has found applications in a wide range of wire-

less transmission channels, [1]-[2]. The block based trans-
mitter and receiver perform respectively A -point [IDFT and
DFT computation, where M is the number of tones or num-
ber of subchannels. As a result, an FIR channel is converted
into M frequency non-selective parallel subchannels. The
subchannel gains are the M -point DFT of the FIR chan-
nel impulse response. The channel dependent part of the
transceiver is a set of M scalars at the receiver and the
transmitter is channel independent. This feature is partic-
ularly attractive for wireless applications, where the trans-
mitter usually does not have knowledge of the channel. Due
to the lack of the channel profile at the transmitter of wire-
less transmission, bit and power allocation are generally not
employed.

The single carrier system [3] is also a DFT based transceiv-

er with a channel independent transmitting matrix, the iden-
tity matrix. The receiver performs both DFT and IDFT op-
erations. It can be viewed as the OFDM system with a DFT
precoder. It is demonstrated that the single carrier system
has a very low PAPR (peak to average power ratio). Further-

more, it outperforms the OFDM system for useful range of”

bit error rate (BER). However optimality of the single carmi-
er system has not been addressed.
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Design of more general block transceivers optimal in
the sense of minimum transmission power or minimum total
noise power has been of great interest. In [4], optimal block
transceivers for minimum noise power are given in terms of
the channel] and noise power spectrum. In [5], optimal block
transceivers with optimal bit loading are designed for min-
imizing transmission power. In these systems, the channel
profile is required for designing the transmitter.

In this paper, we will consider the minimization of BER
for the class of OFDM transceivers with orthogonal pre-
coders. The underlying class is in fact the class of block
transceivers with orthogonal transmitters. We will address
the design of optimal precoders with the assumption that
there is no bit and power allocation at the transmitter. No~
tice that the objective is bit error rate, not mean square error
as is in most of the earlier results. For low SNR, we show
that the conventional OFDM system is the optimal solution
and the optimal precoder is the identity matrix. For higher
SNR associated with a useful range of BER we can design
optimal precoders that have channel independent solutions.
Two types of channel independent precoders will be given.
One is the DFT matrix and the other one is the Hadamard
matrix. In the former case, the system becomes the sin-
gle carrier system [3]. We will derive the results for BPSK
modulations but generalizations to PAM, PSK, and QAM
can be obtained with slight modifications. Furthermore we
will show that for the range of bit error rates commonly
considered in practice, the conventional OFDM system has’
the worst BER among all block transceivers with orthogonal
transmitters.

2. OFDM WITH ORTHOGONAL PRECODERS

The block diagram of the conventional OFDM system is as
shown in Fig. 1. The transmitter performs IDFT and the
receivers performs DFT computation. At the receiver the
quantities Py are the M-point DFT of the channel impulse
response p(n). We assume that the length of the cyclic pre-
fix is no shorter than the channel impulse response, so the
transceiver is IST free or zero-forcing.

Fig. 2 shows the block diagram of the OFDM system
with a precoding matrix ‘T at the transmitter, where T is



orthogonal with T1T = I. To have a zero-forcing receiver,
Tt is cascaded to the end of the receiver. This is also a
general block transceiver with an orthogonal transmitting
matrix G = WHT. The resulting transmitting matrix G
and receiving matrix S are as shown in Fig. 2.

Bit Error Rate. We assume that the channel noise v(n)
is complex AWGN with power spectral density 2Ny and
the modulation scheme is BPSK, modulation symbols s =
+v/&,. Let the noise vector be ¢ = x — s. As BPSK sym-
bols are real the relevant noise variance o?{¢) of the i-th
subchanne] is given by
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where t) ; denotes the (k,7)-th element of T. Let 8(i) =
o2(i)/£,, the noise-to-signal ratio (NSR) of i-th subchan-
nel, then
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As T is orthogonal, we have Y17~ |¢, ;|% = 1. Using this
fact, we can wnte the average mean squared error &, =
/MM o2(i) as

M-—1
Ny 1
ErT - ﬁ g |R|2

3)

The average mean squared error is independent of T. All

OFDM transceivers with an orthogonal precoder T has the
same &y

For BPSK modulation, the BER of the i-th subchannel
isPr(i) =@ ( 53/02(1')), For the convenience of sub-

sequent discussion, we introduce the function

f) = Q{1/va).

In terms of f(-) and subchannel NSR, we have

#
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where Pr is the average bit error rate,

e The OFDM case: The orthogonal matrix T = I. We
have,

agfd""l(i)=NU/|Pf|2’ 12071: aM_].- (5)

For the i-th subchannel, the NSR 8,4, (2) is

1

Bopam (i) = PR
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where - is the signal-to-noise ratio £ /Ny. The BER
of the OFDM system becomes,

1 1
Pofum = 37 Z f Botam(@)) = 57 Zf(ﬂplg)

=0

o The single carrier case: - The orthogonal matrix T =
W. The noise variances in all the subchannels are the
same and it is equal to the average mean squared error
O’sc = &,,. As a result, all the subchannels have the
same NSR §,, = &, /&, or

1 M1
ﬁs: = H Z
i=0

which is also the average of 5, r4m (k). In fact, as the
average mean squared error is always £,, , we have
Bse = /M YY1 B(3) for any orthogonal T. The
bit error rate of the single carrier system is

1| B
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1
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Notice that T is orthogonal with T'T = I and the

Puc =1 (Buc) = f (ﬁ

columns of T has unit energy, ie., 3 rg [tis|2 = 1, for
all k. It can be verified that,
mkin agﬁm(k) <) < mf.x 0§fdm(lc),‘v’i. 7

The relations hold for any orthogonal precoder T, For d-
ifferent choice of T, the redistributed noise variances are
bounded in between ming o2, (k) and maxy o4 (k).
For any orthogonal precoder T, the best subchannel is no
better than the best subchannel of the OFDM system and
the worst subchannel is no worse than the worst subchan-
nel of the OFDM system. In the next section, we derive the
optimal T such that BER is minimized.

3. OPTIMAL T

As we will see later, the bit error rate performance is closely
related to the behavior of the function f(-) to be given in the
following lemma [6].

Lemma 1 The function fly

creasing. It is convex when y <
y > 1/3.

A plot of f{y) is shown in Fig. 3. For a given channel, the
subchannels are operating in the convex or concave region
of the function f(-) depending on the SNR v = £, /N;. We
define three useful SNR quantities,

(\/,_) is monotone in-
1/3 and concave when

3 1% g 3
"m:ml_\n——*|ﬂ|2, ’Y=M§—IR|2 ’hzmax—lpip.
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Figure 1: The block diagram of the OFDM gystem over a channel P(z) with additive noise v(n).
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Figure 2: The OFDM system with a precoder T.
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Figure 3: Plot of f(y) = Q(1//%) for0 <y < 1.
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By definition they satisfy 4o < 7 < 7. Wheny = 7, we
have B, = % The value 7 is the SNR for which the sub-
channels of the single carrier system are operating on the
boundary between convex and concave region of f(-). No-
tice that if ¥ > -y, the subchannel NSR B fam (i} < %,
for all ¢; Bofam(2) falls into the convex region of the func-
tion f{y). On the other hand, if v < g, all the subchannel
NSRs fall into the concave region of f{y). For these two
ranges of -y, we can establish the following relation among
the BER performance of the OFDM system, the single car-
rier system and the OFDM system with an arbitrary orthog-
onal precoder T, o

Theorem 1Let Pr be the bit error rate of the OFDM sys-
tems with an orthogonal precoder T in Fig. 2. Then

) Pogam 2 Pr 2 Pse, fory zm,

Pnfdm. < PT < Psc: fOf"Y < 7Yo-

Each of the two inequalities relating Popgm and Pr be-
comes an equality if and only if |Py| = |P| = ---
|Par—1]. Eack of the two inequalities relating Pr and Py

becomes an equality if and only if subchannel noise vari-
ances o(i) are equalized, o(i) = E.fM, where &, is as
given in (3).

The proof is given in the Appendix.

The results in the above theorem imply that, among all
block transceivers with orthogonal transmitters the OFDM
system is the optimal solution for v < -;; when all the
subchannels are operating in the concave region of f(-), the
OFDM system has the smallest error rate. For v 2> 7 it
is the worst solution; when all the subchannels are operat-
ing in the convex region of f(-), the OFDM systern has the
largest error rate. However,as we will see later, the former
case 7y < -yp corresponds to a high error rate that is of little

.interest in many applications. The later case (v > ;) cor-
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responds to a more practical range of BER. The error rate
behavior can be analyzed by considering the value of -y in
the following different regions:

(1) The case v < ~yo: In this range, the OFDM system is
the optimal solution. All the subchannels have A, 74m (k) =
1/3 and hence P4, = f(1/3) = 0.0416. In this range of
SNR the error rate Py 4y is at least 0.0416, a BER too large
for many applications. Furthermore the minimum BER 0.0416
can be achieved only when all the subchannels have BER
= 0.04186, which requires | Py| = |P1| = - - = |Pnm_1]-

(2) The case y > -y, : For this range, the OFDM system
has the largest BER and the BERs of all orthogonal pre-
coders are lower bounded by P,.. All the subchannels are
operating in the convex region of f{-) and 3(k) < 1/3. The
subchannel error rate Pr(k) < f(1/3) = 0.0416 and the
average Pr < 0.0416. Notice that, when y = -y, ,the worst
subchannel of the OFDM system has error rate Q(v/3)
0.0416 and the average BER is at least Q(+/3)/M. So
7 is also the minimum SNR to have error rate lower than
Q(v/3)/M in the OFDM system. For example, for M =

16, ; is the smallest SNR for achieving bit error rate Q(v/3)/16 =

0.0026 and for M = 64, v, is the smallest SNR for achiev-



ing bit etror rate Q(v/3)/64 = 6.4 % 1071, The case SNR
¥ = 7 corresponds to a more useful range of BER.

(3) The case 1o < ¥ < 71: For this range, P,im is
not necessarily larger or smaller than P,.. We can plot Py,
and P, ¢4, as functions of . In most of our experiments,
the crossing of the two curves happens at an SNR around 4,
i.e., the SNR for which J,. falls in the convex region of the
function f(-).

Channel Independent Transmitters Achieving 7,

Theorem 1 states that, we have P = P, if ¢(i) are
equalized, i.c., No 101 6 o2/)Pe)? = &, where £, as
given in (3). In particular, for channel independent solutions
of T,we can choose .

1
|tm,n| = ﬁ:

In this case all the subchannel BERs are the same, Pr(k) =
Pr = P,.. When M is a power of 2, it is known [7]that
there is a class of matrices satisfying (8). Two well-known
solutions are the DFT matrix W and the Hadamard matrix
H. When T = W, the transceiver in Fig. 2 becomes the
single carrier systemn in [3]. The Hadamard marrices can be
generated recursively. The 2 x 2 Hadamard matrix is given

" 111
Al )

The 2n x 2n Hardamard matrix is given in terms of the n xn
Hardarmnard matrix by

0<mn<M-1 3)

H, =

1 (H, H,
\/§ Hn ‘Hn ’

The Hadamard matrix is real with elements equal to 1.
The resulting transmitting matrix G = WTH will be com-
plex. The implementation of Hadamard matrices requires
only additions. The complexity of the transceiver is slightly
more than the OFDM system due to the two extra Hadamard
matrices.

Remarks. The derivations in this paper are carried out
for BPSK modulation. The results will be valid for PAM,
QAM, and PSK with slight modifications. In these cases,

H, =

the subchannel bit error rate can be expressed a f {co? (k) /£, ),

for some constants o and ¢ independent of the subchannels.
For example, for PAM modulation with each symbol car-
rying b bits, the subchannel symbol error rate is given by

21-27MQ (, [tz 2Enz; ) - The expression has the for-

m af(c8), where a = 2(1 —27%) and ¢ = (22 — 1)/3.
When SNR + is small enough such that the subchannels of
the OFDM system are operating in the concave region of
F{:), the OFDM system is the optimal solution. We can
verify that the condition for this is ¥ < 7p,Whe re o now is
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Figure 4: Example 1. Performance comparison of P s4m,,
Puc and Py, systems for the channel P(z).

ming ]Pi:{g, Similarty, when the subchannels of the OFDM
system are operating in the convex region of f{-),the mini-
mum bit error rate is P,.. The condition for this is y > ¥,
where v now 1s maxy TPi:i"

4. EXAMPLES

We will assume that the noise is AWGN with variance 2Ny,
The modulation symbols are BPSK with values equal to
£/ and SNR v = £,/Np. The number of subchannels
M is 64. The length of cyclic prefix is 3.

"~ Example 1. The channel P(z) used in this example
has 4 coefficients (L = 3), —1.152 — 71.071, 0.457 —
50.286, 0.145 - 70.129, —0.0546 — j0.149. We compute
max; |[F;|? and min; |Fj|? respectively as 4.34 and 0.55;
Yo = min; 2/|F;|? is 0.69 dB and vy = max; 2/|F;f is
5.49dB.

Fig. 4 shows P,sym and Py, for different SNR 7. In
the same plot, we also show the BER of the block transceiv-
er when the transmitting matrix G is an orthogonal DCT
matrix, denoted as P;.. In this case, the precoder T giv-
en by WG does not have the unit magnitude property in
(8). Whenever SNR ~ = £,/Np is larger than v, = 5.49
dB, P;. given in (6) becomes the minimum BER for any or-
thogonal precoder T. For ¥ = 5.49 dB, the corresponding

- Pae &= 0.004. In other words, for BER < 0.004, the sin-

gle carrier system is the optimal selution among all OFDM
systems with orthogonal precoders. Fory < vy, the conven-
tional OFDM system is the optimal solution. For v = -,
the BER is Py 4m = 0.05. For either SNR range, v < g or
¥ 2 T, the performance of Py is in between Ppsyy, and
Psc wheny 2 .

Example 2. We use a multipath fading channel with
4 coefficients. The coefficients are obtained from indepen-
dent complex Gaussian randem variables with zero mean
and variances given respectively by 8/15, 4/15, 2/15, and
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Figure 5: Example 2. The performance of P, ¢4m, Pyce and
‘Psc over a 4-tap multipath fading channel.

1/15. The BER performance of Pofam, Pace and Py, are
shown in Fig. 5. For large SNR, and a correspondingly more
useful BER range, P, requires a significantly smaller trans-
mission power than P, 4, for the same BER. For example,
for BER equal to 1074, the required SNR for P, is approx-
imately 4.5 dB less than that for P, tgr,. The performance
of Pyt is in between Py and P, ¢4y, in low SNR and high
SNR ranges.

APPENDIX

Given a set of numbers, yg, 41, - ,¥m—1 with § <
¥ < 1/3, the strictly monotone increasing property and
the convexity of f(y) implies

M-l

Z A f y,)>f(z )\,y) , Where \; > 0, Z Ai=1
i=0 =0

The equality holds if and only if yo = 31 = -+ = yar—-1-

Similarly, given yo, %1, -+, ¥ar—1 with y; > 1/3, the con-
cave property of f(y) fory > 1/3 implies

Z,\fy‘)<f(z A,y,)

=0
The equality holds if and only if 4o = 11 = YA
Let us first consider the case v > -y. For this range,
the subchannel NSR of the OFDM system S, s4m (i} < 1/3.
Using (7), the subchannel NSR for 1 general orthogonal pre-
coder T also satisfies 5(i) < 1/3 and it is in the convex
region of f(y). We have,

M-—1

i=0

A1

Z‘f(ﬁz)wf

1 M-1
(‘M > ﬁ(i)) = Pae. (9)
i=0

On the other hand, using (2), we have

M-1
(ZI*"2 HDP)< e

k=0

f(B)

, where \; > 0, Z A= 1

1 (se)
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The inequality follows from the fact that 1/(y|P|?) is in
the convex region of f(.) fory > ~y,. Therefore,

| Mo
Pro= o7 2, f(BG)
i=0
| ML M-l 1
= =37 thk,z-l”—) (19)
M3 \is TP
M1 M=1
1 1
LE B
B ngo .‘=0|k’| Tl
B w}_M—1f(;)—?)
i & I \GTaE ) = Perem

where we have used the fact that, for any orthogonal T, its
rows have unit energy, E‘Aio ik, ;|2 = 1 for all k. Combin-
ing (9) and (10), we obtain Poggm 2 Pr 2 Py fory 2 71.
Similarly, when v < 7, we can show that Posenm < Pr <
Pac.
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