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In this paper, we construct two-dimensional (2D) FIR 
paraunitary Cosine Modulated Filter Banks (CMFB). 
All the analysis and synthesis filters are cosine- 
modulated versions of a 2D non-separable prototype; 
each filter consists of two shifts of the prototype. The 
design of the filter bank involves only the optimiza- 
tion of the prototype. Futhermore, the complxity of 
the 2D filter bank is that of the prototype plus two 
non-separable DCT matrices. 

1. Introduction 

Recently, there has been considerable interest in the 
design of 2D filter banks. In [I], perfect reconstruction 
is achieved for a 2D two-channel FIR filter bank with 
dimond-shaped filters. Also in 121, tranformations are 
used to design higher dimensional filter banks from 
filter banks of lower dimensions. Very recently, other 
authors have considered the same design problem, [3] 

In the context of one-dimensional (1D) filter bank 
design, the cosine modulated system is well-known for 
its low complexity and low design cost (see references 
in [SI). The design of the whole filter bank is reduced to 
the optimization of a prototype filter. The complexity 
of the analysis bank is equal to that of a prototype 
filter, plus a DCT matrix. 

In this paper, we construct 2D FIR paraunitary co- 
sine modulated filter banks. First we choose the analy- 
sis and synthesis filters such that major aliasing error is 
canceled and then we constrain the polyphase compo- 
nents of a prototype filter to achieve paraunitariness, 
hence perfect reconstruction. In the 2D CMFB, the 
analysis and synthesis filters are obtained by cosine 
modulating a 2D non-separable protot-ype. We only 
need to optimize the prototype filter to be a lowpass 
filter with a parallelogram support. The complexity of 
the analysis bank is that of the 2D prototype plus two 
non-seperable DCT matrices. Design example will be 
given to demonstrate the idea. 

Notations. The notations in this paper are as in [5] 
Some notations are listed below. 

1. Unimodular matrix: An integer matrix U is uni- 
modular if jdet(U)l = 1. 

2. The N(M) notation: Let M be a nonsingular 
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integer matrix. The notation N(M) is defined as 
the set containing integer vectors of the form 

n = Mx, x E [0, l)D. 

The number of elements in N(M) is denoted by 
J(M),which is equal to Idet(M)I. 

3. Diviszon theorem for integer vectors: An integer 
vector n has a unique representation with respect 
to an integer matrix M, n = no + Mk, E N(M). 
This relation is denoted by n = no mod M. 

4.  Lattice and quincunx lattice: The lattice of a matrix 
M is denoted by L A T ( M ) .  The lattice of a 2 x 2 

matrix M is called quincunx if M = 

for some unimodular W. 
(11 :)w7 

5. The symmetric parallelepiped S P D ( M )  is the set 

S P D ( M )  = {Mx,x E [-1, l)2}. 

11. Construction of the 20 FIR paraunitary CMFB 
In this section ,we formulate the individual filters for 
the 2D CMFB based on the experience we have with 
1D CMFB. Then we proceed to  study the 2D filter 
bank from the consideration of alias suppression and 
cancelation. 

2.1 Construction of the 2D CMFB from the 
analogy of 1D CMFB 

Recall in a 1D Ill-channel CMFB, we start from a 
lowpass prototype with bandwidth T I M ,  which is 
half the bandwidth of a filter in a typical M-channel 
system. The prototype is then shifted by multiples of 
T / M .  The shifted versions of the prototype are paired 
to obtain analysis filters. The resulting analysis filters 
have real coefficients and passband width 27r/M. If the 
prototype is an ideal filter, those 2M shifts constitute 
a complete tiling for the interval [O, 27r). 

Consider the J(M)-channel 2D filter bank, Fig. 2.1, 
with decimation matrix M. Suppose M is diagonalized 
as M = U A W ,  where U and W are unimodular and 
A is a diagonal matrix with diagonal entries [A],, = XO 
and [A],, = XI. To emulate the 1D case, we begin from 
a prototype P ( w )  with S P D ( T N - ~ ) .  The new matrix 
N is given by - 

L 
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where V is unirnodular. Clearly, J ( N )  = 2 J ( M )  

Let {k,, m = 0,1, .  . . ,2J(M) - l} = N ( N )  and let 

Qm(w)  = P (w - 27rNpT(k, + b)) , O  5 m < 2 J ( M ) ,  

where b can be (0.5 0 . 5 ) T .  The whole 
frequency domain is tiled by the spectral support of 
&,(U) for either choice of b. 

The next step is to choose m and m’ such that 
k,, = - k, - 2b  mod NT.  Then the impulse response 
of Q m / ( u )  is the conjugate of that of Q m ( w ) .  Combin- 
ing Q m ( w )  and Q,,(W), we get J ( M )  real-coefficient 
analysis filters. 

O ) T  or ( 0  

( 2 )  
We have chosen Fm(w) = H&(w) in the above formu- 
lation as the system is paraunitary. The impulse re- 
sponse of the synthesis filter fm(n) and the impulse 
response of the anlysis filters h,(n) are related by 
f,(n) = h,(-n). To make the idea of this construc- 
tion more clear, we look at  an example. 

Example 2.1. Let 

M = ( :  y 2 ) , L = ( h  i )andb=( :5)  

Then J ( M )  = 7 and N = (i i’ ) , The prototype 

P ( u )  has spectral support S P D ( r N p T ) ,  Fig. 2.2(a,). 
Fig 2.2(b) shows the shifts of P ( w )  and spectral 
supports of the seven analysis filters H,(w). 

It is noteworthy that a 2D separable CMFB olb 
tained from 1D CMFB has four shifted copies of a 
separable 2D prototype. The preceding scheme is fum- 
damentally different as each individual filter has only 
two shifted copies of a non-separable 2D prototype. 

2.2 Alias suppression 
Consider the mth subband. Due to decimation fo- 
lowed by expansion, both Q m ( w )  and Q,l(w) have 
J(M) images. Since every filter has real coefficients, 
it is sufficient to inspect the overlapping between the 
images of &,(U) and FTn(w). 

The output of H,(w) is decimated by iL.1 arid 
then expanded by M. The images of Q m ( b i l )  

are Qm (w - 27rMpTm), m E n/(MT).  Since 
2n;MpTm = 27rNpTLTm, the images of Qm(w) are 
still confined to the grid of Q i ( w ) ,  i = 0 ,1 , .  . . , J (N)  - 
1. 

As Fm(w) consist of &&(U)  and &;,(a), we will 
look at  the overlapping between &,(U) and the taro 
parts of Fm(w) separately. Referring to Fig. 2.3, if 

one image copy of Qm(id) is at any one of the shaded 
areas, there will be leakage of this image copy at the 
synthesis bank. Those shaded areas correspond to the 
shifts of &,(U) by 27rN-=k, where k E AS with AS 
defined as 

AS a { ( ; ) , ( .I) , ( r ) , ( -4 } 
Recall that images of &,(U) are shifts of &,(U) 

by 2 ~ N - ~ L ~ a n .  So if LAT(LT) is quincunx, then 
LTm 6 AS and none of the images of Qm(u) will fall 
on top of the shaded areas. 

Under the constraint that LAT(LT) is quincunx, we 
can verify that Qk, (w)  will be surrounded by images 
of Qm(w) .  Let m = 1 in Fig. 2.4, then Fig. 2.4 
shows the situation in the first subband in Example 
2.1. The four shaded areas are the images of Q l ( w ) .  
Some leakage of those four image copies is inevitable 
and alias cancelation at  the synthesis bank is required. 

An additional result of constraining LAT(LT) to be 
quincunx is that every &,(U) has complex coefficients. 
This means all analysis filters have the same height. 

2.3 Alias cancelation 

Let p(n) be the impulse response of the prototype 
P(w) .  Suppose the prototype has linear phase with 

p(n) =p(n, - n), for some integer vector n,. (3) 

From previous study, we know &;,(U)  overlaps with 
four images of Q l ( w ) .  Those images are labeled A, 
B ,  C and D in Fig. 2.4. Let us zoom in the 
discussion for the aliasing error due to image A. Image 
A is at the spectral support of Q o ( w ) .  But in the 
0th subband, &;(U)  also overlaps with one particular 
image of &o(w) ,  which is at  Q l ( w ) .  It can shown that 
these two aliasing errors cancel each other if 

n, = 0.5N (:) modN.  (4) 

Cancelation of aliasing error due to images B ,  C 
and D is similar. This reasoning of alias cancela- 
tion can be applied to every other subband. How- 
ever, it is necessary that N (0 .5  0.5)T  he an integer 
vector. This property is guaranteed if LAT(ET) is 
quincunx: when LAT(LT) is quincunx, IVC can write 

IL = WI, ( , for some unimodular WL. So 

N (0.5 

Summarizing, we have formulated the analysis and 
synthesis filters in the 2D CMFB. We have also studied 
the conditions for cancelation of major alising error. 
The conditions are 1) LAT( LT) is quincunx and 2) n, 
is as in (4). In the next section, we start from the 

-1 1 
0 .5 )T  is always an integer vector. 
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construction in Sec. I1 and find out the conditions for 
perfect reconstruction of the 2D CMFB. 

III. The 20 paramitaw FIR CMFB 

In this section, we provide the conditions under 
which the polyphase matrix is paraunitary and 
the 2D CMFB has perfect reconstruction. Let 
{ni, i  = 0,1, . . . ,  2J(M) - l} = n/(NVpl) and let 
Gi(w) be the type 1 polyphase component of the p r e  
totype with respect to ni E N(NV-’) ,  then 

2J(M)-1 

P(u) = Gi(NTw)exp(-jwTn,) (5) 
i=O 

Notice that we use index n E N(NVpl) rather than 
n E M(N). 

When P(u) has linear phase as in (3)and n, is as in 
(4), the polyphase components are pairwise related. In 
particular, the ith and ;th polyphase components are 
related, where XI )T - q. 
Let gz (n) and 9; (n) be the impulse responses of Gi ( U )  

and G;(u), then 

is such that n; = U ( 0  

g,.(n) = % - n  - 4 1 ,  (6) 

for some integer vector di. 
Theorem 3.1. Consider the filter bank in Fig. 2.1 
and the choice of analysis and synthesis filters in (2 . 

is quincunx. Also let the prototype be linear-phase 
and n,, given in (3), satisfy (4). Then the CMFB in 
Fig. 2.1 is paraunitary (i.e., the polyphase matrix is 
paraunitary) if and only if 

Let the matrix N be as given in ( l) ,  where LAT(L J ) 

G:(u)G,(~)  + G,*,(cJ)G,J(u) = C, 

(3. where c is some constant andni, = ni + U 

A proof of this theorem can be found in [6] 

f K  Efficient implementation of the 20 CMFB 
Using the polyphase representation of the prototype in 
(5), the analysis filters in (2)can be rewritten as 

ZJ(M)-l 

U;, (U) = 2Gi ( N T w  - 2n bj [C],iexp( - j w T n i ) ,  
i=O 

where [C],i = cos(2.rr(km + b)TN-lni), 

m = 0,1 , .  . . , J(M) - 1 , i  = 0 ,1 , .  . . ,2J(M) - 1 

The above expression for the analysis filters gives rise 
to the efficient implementation in Fig. 4.1. The 
computation of C is equivalent to the computation 

of two 2D non-separable DCT matrices. The figure 
demonstrates that the complexity of the 2D CMFB is 
that of the prototype plus two 2D non-separable DCT 
matrices. 

K Design example 

Example 5.1. We continue on Example 2.1. Fig. 
j . l ( a )  shows the pairs of polyphase components that 
are power complementary and Fig. 5.l(b) shows the 
pairs of polyphase components that are related in 
pairs as in (6), due to linear phase property of P ( w ) .  
In the figures, we use the notation E:; to denote 
the polyphase component Ei with respect to ni = 

Kotice that E: and E: are power complementary 
and are also related because of linear phase of P(u). 
As a result, these two polyphase components are 
merely a delay When E; and E:, i = 1,2 ,3 ,  are 
power complementary, EA and El, i  = 4,5,6,  will 
also be power complementary because P(u) is linear- 
phase. We can optimize P ( w )  subject t o  only the 
condition that E6 and El, for i = 1,2,3,  are power 
complementary. This condition can be satisfied by 
using the 2D paraunitary lattice, [7]. 

5.2 shows the support of impulse response 
of the prototype filter, p ( n o , n l ) .  The support of 
p ( n o , n l )  resembles the shape of SPD(2N) .  The 
corresponding frequency response of the prototype is 
shown in Fig. 5.3. The stopband attenuation of the 
prototype is 17 dB. In this optimization, each of the 
fourteen polyphase components has four coefficients. 

T U ( n 0  n1) , n o = 0 , 1 , . . . ,  X o , n l = O , l ,  . . . )  2x1-1. 

Fig. 
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4.1. Efficient implementation of the 
lysis bank of the 2D cosine modulated 

Fig. 2.1. J(M) channel maximally 
decimated filter bank. 

Fig. 2.2. Example 2.1. (a) Spectral support of 
the prototype P(o), SPD(lrN-T). (b) Spectral 
support of the analysis filters. 

I 
E: EA E: E: 

(b) 

Fig. 5.1( a) Polyphase components of P(o) 
that are pairwise power complementary. 
(b) Polyphase components of P(w) 
that are related due t o  linear phase of P(o). 

Fig. 2.3. Pertaining to alias suppression. 

image of Q, 

-T 

Fig. 2.4. illustration of overlapping 
between Q*,q and the images of Q, 

"0 
* 

Fig. 5.2. Impulse response support of the prototype. 
Intersection points of the dashed lines are on the 
lattice of N. Solid lines represent integers. 

1 
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Fig. 5.3. Example 5.1. 
prototype with frequency normalized by 2 ~ .  

agnitude response of the 
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