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Abstract; There has been interest in the application of filter
banks and transforms to noise suppression. Recently,
Akkarakaran and Vaidyanathan showed that when the
noise is white, the optimal transform (not necessary
unitary} for noise suppression is the Karhunen-Loeve
transform {KLT). Moreover they showed that for the case
of colored noise, if both the noise and signal have a
common KLT, then the KLT is optimal for subband noise
suppression. In this paper, we will derive the optimal
transform (not restricting to the class of unitﬂry transforms)
for the noise suppression problem when the signal and
noise have arbitrary spectrum.

Keywords: filter bank, transform, denoising, noise
suppression.

I. Introduction

In recent years, there has been considerable interest in
the application of filter bank (FB)

(denoising) (see [1-6] and references therein). Both

to noise suppression

maximally decimated FBs [1, 2] and under decimated FBs
[3-5] have been considered for such an application. While
the undecimated FBs [3] or the dual-tree discrete wavelet
transforms [4, 5] have the advantage of being perfect or
nearly shift-invariant, they correspond to overcomplete
expansion. In this paper, we study the maximally
decimated case only. Fig. 1 shows such a FB-based noise
reduction scheme. The black boxes in the figure denote the

subband denoising operations.
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There are various subband denoising schemes such as the
Wiener filtering, soft thresholding, hard thresholdiﬁg, input
adaptive thresholding, etc. In [6], a practical thresholding
scheme that is applied to each subband sample was
proposed. It was shown [6] that the proposed thresholding
scheme, which thresholds the coefficients to a specific
level, provides a quasi-optimal min-max estimator of a
noisy piecewise-smooth signals.

Unlike [6], our goal is to design the FB-based

denoising scheme to minimize the output error variance

o = E{lyint - slo))Tiy(n) - sinhtl. (1)
where s(n) is the desired signal and y(n) is the output
signal, as shown in Fig. 1. We will consider the case when
the subband denoising operation is carried out by
multiplication with a set of constants. Recently
Akkarakaran and Vaidyanathan [1] showed that for the
white noise case the principle component FB (PCFB) (if
exists) is the optimal orthonormal FB for noise suppression.
Moreover the optimality of PCFB holds even when any
combination of Wiener filter or hard threshold is used in
the subband. For the special case of memoryless transform
where T is a constant matrix, PCFB reduces tc the
well-known KLT. If the additive néise is colored, the only
solution known is for the case when the autocorrelation
matrices of s(n) and v(n) have a common KLT. For this
restrictive case, the common KLT is showed [1] to be the
optimal memoryless transform when zeroth-order Wiener
filter is applied in the subband.

In this paper, we consider the more general case of
arbitrary signal and noise spectrum. For this general case,
we will first show that this seemingly difficult
optimization problem can be easily solved using Wiener
theory. The optimal memoryless transform (not restricting
to unitary transform) for colored noise suppression is given

in closed form. The optimal transform decorrelates both
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the signal s(n) and the noise v(n). It can be realized as a
cascade of a signal (or noise) whitening matrix followed
by a noise {correspondingly signal) decorrelating matrix.
Simulation shows that the optimal biorthogonal transform
outperforms the orthogonal transforms that decorrelate the
signal or noise.
L. Optimal Transform for Denoising

Let the input vector x(n)=s(n}+v(n), where the desired
signal is s(n) and the additive noise is v(n). Assume that
s(n) and v(n) are real zero-mean WSS uncorrelated vector
processes. The M x M autocorrelation matrices of x(n), s(n)
and v(n) are denoted by R,, R; and R, respectively. As s(n)

and v(n) are uncorrelated, we have
R,=R.+R,.
Without much loss of generality, we assume that the matrix

Let R,'?

be the unique positive definite matrix that satisfies [7]

R, is invertible, Hence R, is positive definite.

RXUZ Rxl.’2= Rx

We consider only the class of FB with constant polyphase
matrices. That is, the matrix T is a nonsingular constant
matrix. Assume that the subband operation is carried out
by multiplication with a set of constants k; Therefore the
subband operations denoted by the black boxes can

bewritten as the diagonal matrix

by A1 .. 1
L il

K || . . . 123
L1 Eag_ g

Our aim is to find the best transform T and the optimal
k; such that the output error variance &, , in (1} is

minimized. In the following, we will show that such a
seemingly difficult optimization problem can be easily
solved using Wiener theory.

Note that the transfer function from x(n) to y(n) is the
constant matrix P=TKT"'. From Wiener theory, we know

that the output error variance &£, is lower bounded by

that obtained by the Wiener filter. This lower bound is
achieved if and only if the matrix P is the Wiener filter.
For an input with desired signal s{(n) and noise v(n), it is

known that the Wiener filter is given by:
Pu'il:rlltf = R‘PR‘; ! N ‘31

The lower bound on &, is given by

Lin = R, - RLRZR,) 1

Observe that, if Py 18 diagonalizable, then we can
achieve this lower bound by choosing the columns of T be
the eigenvectors of Pueiner and k; to be the eigenvalue of
Pouciner. TO show Picne, is always diagonalizable, we rewrite

chincr as.

Poiner = RY* [ROVER,RVE ROV
erre———_srr—
M
R,2QDQ'R;.

As the matrix A in the above equation is symmetric, there
exists a unitary matrix Q such that A=QDQ" for some
diagonal matrix D). Hence one choice of the optimal

transform is
Ty = RYQ. (3}

From Fig. 1, we see that the subband signal is given by
Topr ' X(n)=Q"R, "*x(n). The optimal T, performs two
tasks: the matrix R, whitens the input x(n) while the
unitary matrix Q" decorrelates the filtered desired signal
R, s(n).

The optimal k; are the eigenvalues of the Wiener filter
Pyeiner- Since eigenvalues are unique, the best k; are unique.
In fact one can show that this optimal subband denoising

matrix Kq=D is the Wiener filter for the subband signal

$(n) plus noise V(n). To see this, we consider Fig. L.
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When the transform is chosen optimally as in (5), the

subband signals are given by
siny = QFR;Ysin), n} = Qf R Y uin).

Their corresponding autocorrelation matrices are given by

oo Q*R;!_.QRFR;LIE‘-Q = D.
R: = Q'R7PR,R;2Q=1-D.

In other words, both §(n) and V(n) are

uncorrelated. Using the above expressions, one

immediately sees that the Wiener filter for S(n) plus

V(n)-is given by D, which is equal to K

Summarizing the results, we have

Theorem 1 Consider the denoising scheme in Fig. 1.
Suppose that the subband operation is taken as (2). Assume
that R, is nonsingular. Then the optimal transform that
minimizes & in (1) is given by Top R Q, where Q is a
unitary matrix that diagonalizes the matrix (R, R,
R ).The minimized output error variance is given by
Ein In (4).

Cases when R; or R, is nonsingular: Assume that R, is
nonsingular. We can rewrite the Wiener solution in (3) as
P = RVUT4ROVIRLR VY IR,

Let Qu be a unitary matrix such that R,'R,R,'? =
QuDoQ," for some diagonal matrix Dg. One can verify that
the optimal transform can also be expressed as
Tt = RV, {6}
The optimal K is given by K, - ( Dg)' . It is not
difficult to verify that K, is the Wiener filter for the

subband signal §(n) plusnoise V(1).On the other

hand, if R, is nensingular. Following a similar approach,
“one can verify that the optimal transform can be expressed

as:!
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Tue = R°Q1, m
where Q, is a unitary matrix such that

R,R.R, 2= Q,D,Q," for some diagonal matrix D,. In
this case, one can show that the optimal subband operation
is the Wiener filter for its input and it is given by
KopFDl(D:"'I)-l-

Three interpretations of the optimal transforms:
From Theorem 1, equations(6) and (7), we obtain three
different expressions for the optimal Top{l:
(I)Top{'=Q+Rx'”2, where Q" diagonalizes (R,'* R,
R,{m ); the optimal transform is a cascade of an input
(signal plus noise) whitener followed by a signal
decorrelator. The matrix R, whitens the input x(n)
while QF decorrelates the filtered signal R, s(n). (2)
Topt_l=QI]+Rs_”2, (R?
R, R, ); the optimal transform is a cascade of a

where Q" diagonalizes

signal whitener followed by a noise decorrelator. The
2 whitens the signal s(n) while QF
the filtered noise Rs'”zv(n). 3)
Topt '=Qi 'R, '?, where Q)" diagonalizes (R, "RoR," );

the optimal transform is a cascade of a noise whitener

matrix R,
decorrelates

followed by a signal decomelator. The matrix R,
whitens the noise v{n) while Q," decorrelates the filtered
signal R,,"ms(n).

Remarks and discussions:

1. In the case that R, and R, have a common KLT, both
R; and Rv can be simultaneously diagonalized by the
same unitary matrix Q. The optimal transform can
simply be chosen as Q. Thus our solution reduces to
that given in Theorem 7 of (1).

2. When the noise (or the desired signal) is white,

thenRv=I (or R=I). This becomes a special case of

common KLT.

3. The above results can be generalized o the case of
unconstrained filter length, where the transform and the
subband Wiener filters are allowed to be ideal filters.
The entire proof and derivations carry through by simply
replacing the correlation matrices by the power spectral

matrices.
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4. For the case of FIR matrix T(z), the optimal solution is

still an open problem.

IIi. Simulation
In this section, we compare the performance of the
optimal transform and the KLT for colored noise
suppression. The dimension of the transform is M=3, The

vectors s(n) and wv(n) are respectively the blocked

versions of scalar uncorrelated WSS processes s(n) and -

v(n). The signal s(n)is an AR(1) process with correlation
coefficient ps“‘l. The noise v(n) is an AR(1) process with

correlation coefficient of p/*. We compare the output error

variances of the following two cases: (i} &, In

Theorem 1; and (ii) &, : the output error variance when

T is the KLT for s{n) and k; is taken as the zeroth order
Wiener filter for its input (this is the optimal transform if

the noise were white). Fig. 2 shows the results for

0.7<p, <099 and and p,=0.7. As we can see, &

min
is smaller than &£, and the gain decreases when p,

increases. This is because when p, is nearly 1, a large
portion of the noise reduction can be obtained by

exploiting the correlation of the signal alone. Fig. 3 shows
the results for —0.7 < p, <0 and ps=0.7. From the figure,
we see that as p, decreases to 0, the two curves converge.

When p,=0, the noise is white and in this case the optimal
transform reduces to the KLT of s(n).
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IV. Conclusions
In this paper, we derive the optimal transform for noise
suppressien with subband Wiener filtering when both the
signal and noise are colored. The optimal transform is
formed by the eigenvectors of an associated Wiener matrix
and it can be realized as a cascade of a signal (or noise)
whitening matrix followed by a noise (correspondingly
signal) decorrelating matrix. Simulation shows that the
biorthogonal  transform

optimal outperforms  the

orthogonal transforms that decorrelate the signal or noise.
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