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ABSTRACT 

There has been great interest in the design of DMT (discrete 
multitone) transceivers. An M-band DMT transceiver is 
called block based if the transmitter and the receiver consist 
of constant matrices. The commonly used DMT systems 
are mostly block based, e.g., the DFT based system used in 
transmission over digital subscriber lines. For an FIR chan- 
nel of order L,  it is known that redundancy of length L en- 
ables the receiver to cancel IS1 completely. Such a scheme 
allow us to trade bandwidth for IS1 cancellation. In block 
based DMT (BDMT) systems, the redundancy K is typi- 
cally chosen to be the same as the order of the channel L. In 
this paper we will consider BDMT transceiver with redun- 
dancy K 5 L. With the reduced redundancy better band- 
width efficiency can be obtained as will be demonstrated by 
examples. Furthermore minimum redundancy for BDMT 
systems will be derived and the transceivers will be param- 
eterized whenever IS1 solutions exist. 

1. INTRODUCTION 

The DMT (discrete-multitone) systems have been shown to 
be a very useful technique for transmission over frequency 
selective channels [ 11-[4]. Fig. 1 shows an example of an 
M-band DMT transceiver over channel P ( z )  with addi- 
tive noise .(TI). The example is the so-called block based 
DMT (BDMT), where the transmitter and the receiver con- 
sist of constant matrices. The encoding at the transmitter 
side and the decoding at the receiver end can be performed 
blockwise. Usually with proper time domain equalization 
the channel is modeled as an FIR filter of order L. It is 
known that for FIR channels, the introduction of certain re- 
dundancy allows the receiver to cancel IS1 completely. In 
fact, channel equalization can be performed implicitly us- 
ing FIR transceivers [ I]-[4]. Typically in BDMT systems, 
the redundancy K is chosen to be the same as the order of 
the channel L for IS1 cancellation. In this paper we will 
consider BDMT transceiver with redundancy K 5 L. With 
the reduced redundancy, we can obtain better bandwidth ef- 
ficiency. An example will be given to demonstrate that the 
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BDMT with reduced redundancy requires less transmission 
power than the traditional BDMT. The advantage is particu- 
larly significant for a moderate number of bands. Moreover 
we will show that the minimum redundancy for BDMT sys- 
tems is rL/2], where r.1 denotes the smallest integer larger 
than x. When IS1 free solutions of BDMT system with min- 
imum redundancy exist, complete parameterization of the 
transmitter and receiver will be given. 

2. MATRIX REPRESENTATION OF BDMT 
SYSTEMS 

In this section, we will give the IS1 free conditions for BDMT 
systems in matrix form. Consider Fig. 1, where an M -  
band block based DMT system is shown. Usually the chan- 
nel is modeled as an LTI filter P ( z )  with additive noise 
~ ( n ) .  Assume that P ( z )  is an FIR filter of order L (a rea- 
sonable assumption after time domain equalization). Let 
P ( z )  =PO + p ~ z - ' + . . . p ~ , z - ~  withpo # O a n d p ~  # 0. 
With interpolation ratio N and number of bands M as in 
Fig. 1, there are K = N - M redundant samples for every 
input block of length M .  The N x N system from y ( n )  
to r(n) is an LTI system with transfer matrix C ( t ) ,  where 
C(z) is a so-called pseudo-circulant matrix [5]. Assuming 
N > L,  the channel matrix C(z )  is causal, and of order one 
and we can write it as, 

C(z)  = CO + z- ' c1 ,  (1) 
where CO is an N x N lower triangular Toeplitz matrix with 
the first column given by (PO pl . . . PI, 0 . . . 0) 
The matrix C1 is N by N and it is of the form 

where CA is an L x L upper triangular Toeplitz matrix with 
the first row given by ( p ~  p ~ - ~  . . . po)  . The matrix 
CA is nonsingular as pr, # 0. 

is also causal, of first order, T (z )  = To + z-'T1, where 
To = SCoG, and TI = SC1 G. The BDMT is IS1 free if, 

The overall transfer function T(z)  ofthe DMT transceiver 

SCoG = I, condition(i) 

and SC1 G = 0. condition (ii) (3 )  
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Figure 1: An M-band block based DMT transceiver over channel P ( z )  with noise v(n). 

When the second condition holds, the system has zero IBI 
(inter-block interference), a condition necessary for block- 
wise encoding and decoding. 

3. BDMT TRANSCEIVERS WITH REDUCED 
REDUNDANCY 

The BDMT system can be seen as a special case of FIR 
transceivers, where the transmitting filters and receiving fil- 
ters have length 5 the interpolation ratio N .  The BDMT 
transceivers have been studied by a number of researchers 
[2][3][4]. For a given FIR channel P ( z )  with order L,  re- 
dundancy of length K = L is sufficient for the existence of 
BDMT transceivers. 

Two widely used BDMTtransceivers. Most of the BDMT 
transceivers fall into the categories of trailing-zero transmit- 
ters and leading-zero receivers. In the DFT based DMT sys- 
tems [ 11, redundancy is in the form of cyclic prefix of length 
L. The prefix is discarded at the receiving end; the receiver 
isoftheleading-zeroform,Sl,z = ( O ( M ~ I , )  S i , )  ,where 
Si,z is of dimensions M x M .  Another commonly used 
form of redundancy is zero padding. Zero padding of length 
L are used in [2][3][4]. In this case, the transmitter G is of 

the trailing-zero form, GTZ = ( , , ~ ~ ~ 1 )  , where Ghz is 

of dimensions M x M .  
When the BDMT has transmitter in the trailing-zero form 

and receiver in the leading-zero form at the same time, we 
say the system is in TZ-LZ form. Using TZ-LZ form, IS1 
free solutions of BDMT with reduced redundancy can be 
conveniently obtained as we see next. 

TZ-LZ BDMT with reduced redundancy 
Assume the redundancy is L f 2 5 K 5 L. The trans- 

mitter is in trailing-zero form and the receiver is in the leading- 
zeros form given by, 

where G’ is A 4  x M and S’ is M x (M + 2K - L) .  Unlike 
conventional leading-zero receiver, it has only the first L - 

K columns equal to zeros. In this case, condition (ii) in (3) 
is satisfies and the IS1 free condition reduces to 

SC(z)G = S’BG’ = I, ( 5 )  

where B is the bottom left ( M  + 2K - L )  x M submatrix 
of C(z) .  The matrix B is Toeplitz; it is given by, 

B =  

PK 

Po 

P L  

0 PL-K 

The necessary and sufficient condition for the existence 
of IS1 free transceiver is that the matrix B has a left inverse. 
When K = L / 2  ( L  even case), B is M by M and the 
inverse is unique whenever it exists. If K > L/2 ,  the left 
inverse of B, when it exists, is not unique. For a given G‘,  
we can choose Sf  as 

s‘ = G I - ~ Q ,  (7) 

where Q is any left inverse of B. In most of our experi- 
ments, the matrix B has a left inverse; left inverses of B do 
not exist only in some pathological cases. 

Examplel. Comparison of ISI free DCT Transceivers 
with different redundancy. Consider the channel P ( z )  and 
power spectrum ofthe colorednoise U(.) shown in Fig. 3(a) 
and (b). The order of P ( z )  in this case is 4. These are ob- 
tained from a typical DSL environment. Let us consider 
block based DCT transceivers with two different cases of 
redundancy, reduced redundancy K = 3 and conventional 
length of redundancy K = 4. The transmitter used in this 
example is as in (4) and G’ is an A4 x M DCT matrix. 
From (5) we know, for an IS1 free solution we can choose 

2358 



S = (0 G'-IQ), where Q = (BTB)-'BT is a left in- 
verse of B. The bits are allocated optimally as in [4]. For 
a fixed probability of error P,, and transmission bit rate R b ,  

the required transmission power P ( M ,  K )  is a function of 
the number of bands M and redundancy IT. We compare 
the DCT transceiver with K = 3 and the DCT transceiver 
with K = L = 4. With Rb = 3 bitslsample, Fig. 4 shows 
the ratio P ( M ,  K = 3 ) / P ( M ,  K = 4) for different values 
of M .  We can see that the DCT transceiver with h' = 3 per- 
forms significantly better than that with K = 4, especially 
for small M. 

Minimum redundancy of BDMT transceivers 
In what follows, we will consider more general BDMT 

systems, not restricted to the TZ-LZ form in (4). The trans- 
mitter G is a general N x M matrix and the receiver S is a 
general M x N matrix. For BDMT systems in the TZ-LZ 
form, we see that the zero IBI property ( condition (ii) of 
(3)) can be achieved when redundancy K 2 [L /2] .  The 
following lemma will show that [L/21 is in fact the mini- 
mum redundancy for IBI free. 

Lemma 1 Consider the DMT transceiver in Fig. 1 with in- 
terpolation ratio N and number of bands M. The DMT 
system is IBI free, i.e., S C I  G = 0 only ifredundancy I(, 
given by K = N - M ,  satisfies 2K 2 L.  

Proof The matrix C is Toeplitz and it has rank C as pr, 
is assumed to be non zero. Also G is full rank of dimensions 
iV x (AT - L ) ;  the nullity or the dimension of the null space 
of GT is IT. We have, 

Equality holds if and only if the null space of GT is con- 
tained in the row space of C1 .  Similarly, the nullity of S is 
also I<; we have 

ra.nk(SC1 G )  2 r a n k ( C 1  G )  - K 2 L - 2K. (9) 

The first inequality becomes equality if and only if null 
space of S is in the range space of C G .  The second in- 
equality is due to (8). When the system is IBI free, we have 
rnnk(SC1 G) = 0 and from (9) we can see that this is true 
only if K 2 L/2. A A A  

Remarks. For a given N ,  we can compute the mini- 
mum redundancy for the existence of FIR transceivers as in 
[6]. When the minimum redundancy > L/2, FIR solutions 
do not exist, let alone block based solutions. The condi- 
tion in Lemma 1 gives only the necessary condition for the 
existence of IBI free block based transceivers. It does not 
guarantee existence. The problem of finding the minimum 
redundancy sufficient for the existence of 1BI free BDMT 
transceivers is still open. 

4. PARAMETERIZATION OF BDMT SYSTEMS 
WITH MINIMUM REDUNDANCY 

When IS1 free BDMT systems with minimum redundancy 
exist, we can parameterize the solutions. We will assume 
that L is even and K = L/2. The solutions for odd L can 
be parameterized in a similar manner. Let 

where So and SI are of dimensions respectively M x L 
and A4 x (A4 - L/2 ) ,  and- G I  are of dimensions 
respectively (A4 - L/2 )  x M and L x M .  

Lemma 2 Consider the BDMTtransceiver with redundancy 
K = L/2, where L is even. (a) The DMT system is ISI free 
onlyi frank(So)  = ran ,k(Gl)  = L/2. (5) Thetransceivers 
satisfjiing these rank conditions in (a) are of the form 

\ I 
Y 

AG 

where @.q and CDG are L / 2  by L / 2  arbitrary matrices and 
Ps and Pc: are L x Lpermutation matrices. 

The proof of Lemma 2 is given in [6]. Note that the 
matrices S M and Ghf are M by M and they are nonsingular 
because S and G have f i l l  rank. Using (lo), condition (ii) 
in (3) becomes, 

Let 

then (1 1) can be rewritten as 

Using G and S in (lo), condition (i) in (3) becomes 

Using ( I O )  we have converted the two conditions in (3) 
to (12) and (13). From (12) and (13), we can solve for the 
receiver when the transmitter is given and similarly we can 
solve for the transmitter when the receiver is given. For 
example, suppose the transmitter is given, that is, @ G  and 
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G M  are given. We can solve for 9 s in (12). In particular, 
if A00 + A01 9c: is nonsingular, we have 

@s = - (AIO + A I I ~ G )  (Aoo + AoI@G)-’.  (14) 

Eq. (1 3) can be satisfied if C M is nonsingular. In this case, 
S M  = GG’CG. 

The design procedure can be summarized as follows. 
Consider the case when the transmitter is given. Choose 
G M ,  +G and PG for the transmitter in (10) and also choose 
Ps for the receiver. The matrix G M is an arbitrary A4 x A4 
nonsingular matrix and, PG and PS are arbitrary permuta- 
tion matrices. We can solve for @.y according to (14). Form 
the matrix C M  in (13) and compute S M = GG1 C z  . For 
the case when the receiver is given, the design procedure is 
similar. 

In the parameterization, no additional assumption has 
been made on the transmitter matrix and the receiver ma- 
trix except that they achieve zero ISI. Therefore, whenever 
BDMT with redundancy K = L / 2  exists, it can be param- 
eterized as in this section. The parameterization is useful 
in some pathological cases where IS1 free BDMT solutions 
exist but there are no IS1 free TZ-LZ solutions. One such 
example is given below. 

Example2. Consider the FIR channel P ( z )  = (1 - 
z - ’ ) ~  with order L = 6. Let M = 5 and K = 3, then 
we have N = M + K = 8. We can verify that in this case 
the matrix B given in (6) is singular. There are no IS1 free 
solutions for BDMT in the TZ-LZ form. On the other hand, 
let us choose 

9 G =  0 0 0 . (: :: 1) 

xqyfy~=x+e C(4 

We can verify that the matrix A00 + A01 @G is nonsingu- 
lar and the matrix C M in (1 3) is also nonsingular. We can 
obtain solution of 9 s  from (14) and S hf = G;; Ci; for 
arbitrarily chosen nonsingular G M. 

4 * 
T(4 

0.4 

Figure 2: Matrix representation of the block based DMT 
transceiver. 
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