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ABSTRACT 

The design of optimal DMT transceivers for distorted chan- 
nel with colored noise has been of great interest. Of par- 
ticular interest is the class of block based DMT (BDMT), 
where the transmitter and the receiver consist of constant 
matrices. For a given channel and channel noise spectrum, 
the optimal DBMT transceiver that minimizes the transmis- 
sion power for a fixed probability of error and transmission 
rate will be derived. The optimal biorthogonal transmitter 
is in fact orthogonal. That is, there is no loss of generality 
in using the orthogonal transmitter for the design optimal 
BDMT. 

1. INTRODUCTION 

There has been great interest in the design of DMT sys- 
tems recently. Fig. 1 shows an example of an M-band DMT 
transceiver over channel C( z )  with additive noise v(n). The 
example is the so-called block based DMT (BDMT), where 
the transmitter and the receiver consist of constant matrices. 
The encoding at the transmitter end and the decoding at the 
receiver end are done blockwise. The DMT is called orthog- 
onal if the transmitter Go in Fig. 1 is an orthogonal matrix, 
i.e., GFGo is a diagonal matrix. We call it biorthogonal if 
Go is not orthogonal. When the receiver outputs are identi- 
cal to the transmitter inputs in the absence of channel noise, 
the transceiver is said to be ISI free. 

BDMT transceivers have been studied extensively. In the 
commonly used DFT based DMT, the transmitter and the 
receiver are DFT matrices [l]. In [2], more general or- 
thogonal matrices are proposed. It is shown therein that, 
for AWGN (additive white Gaussian noise) frequency se- 
lective channels the optimal orthogonal transmitter consists 
of eigen vectors associated with the channel. In [3], opti- 
mal transceivers that minimize the total output noise power 
are developed. Information rate optimized DMT systems 
are considered in [4]. In [ 5 ] ,  for a given distorted channel 
with colored noise the authors derive the optimal orthogo- 
nal transceiver that minimizes the transmission power for a 
fixed probability of error and transmission bit rate. 
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Typical of DMT transmitters is the introduction of redun- 
dancy so that the receiver can cancel IS1 due to the channel. 
Cyclic prefix, zero padding (or trailing zeros) and leading 
zeros are commonly used forms of redundancy. For exam- 
ple, cyclic prefix is used in DFT based DMT systems [l] 
and zero padding is considered in [2]-[5]. We will consider 
BDMT systems of trailing zeros only. In this paper, we will 
show that for any given transmission rate and probability of 
error, the optimal biorthogonal transceiver that minimizes 
the transmission power is orthogonal. 

2. IS1 FREE BDMT WITH ZERO PADDING [3,4] 

Consider Fig. 1, where an M-band BDMT system is shown. 
Usually the channel is modeled as an LTI filter C ( z )  with 
additive noise v(n). Assume that v(n) is a zero-mean WSS 
process and C ( z )  is an FIR filter of order L (a reasonable 
assumption after time domain equalization). So 

C ( Z )  = CO + c1z-l + . . . + C L z r L ,  

with nonzero CO and C L .  The length of redundant samples 
is chosen to be L so that the receiver can remove IS1 due to 
C ( z )  and decoding can be performed blockwise. Therefore 
the interpolation ratio N is N = M + L. In the case of zero 
padding, the transmitter is of the form, 

Go = (;) , 

where G is M by M .  Using this choice of Go, Fig. 1 can 
be redrawn as Fig. 2. The N by M matrix C is a lower 
triangular Toeplitz matrix whose first column is given by 
[CO c1 . . . CL 0 . .  . 0IT. The N x 1 vector v shown in 
Fig. 2 is the blocked version of the scalar noise process 
v(n). Using SVD, we decompose the channel matrix C 
as ..- 

c = (U, u1) (;) v = U (;) v, (1) - 
U 

where U and V are orthonormal matrices of dimensions 
respectively N x N and M x M ,  and A is an M x M di- 
agonal matrix. The biorthogonal DMT transceivers with IS1 
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Figure 1: An M-band BDMT transceiver over channel C ( z )  with noise ~ ( n ) .  
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Figure 2: Matrix representation of the zero padded BDMT 
transceiver. 

free property can be completely parameterized, as described 
in the following theorem. 

Theorem 1 [3,4] The BDMT system with trailing zeros in 
Fig. I is ISIfi-ee if and only if the zero-padded transceiver 
satisfies the followings: 

(i) G is an M x M nonsingular matrix; 

(ii) S = G - l B ,  where B = VTK1[I  A ] U T , f o r  arbi- 
trary M x L matrix A. 

3. PROBLEM FORMULATION 

In this paper, we assume that the inputs z k  are PAM sym- 
bols of bk  bits. Without much loss of generality, we further 
assume that xk have zero mean and they are uncorrelated 
witheachother. Thatis,E [xkXm] = g : k b ( k - m ) .  Thiscan 
always be obtained with proper interleaving. The average 
bit rate per symbol in this case becomes b = & CEi' b k .  

The transmission power P is the average energy of the 
vector y = ( y o  y1 . . .  Y N - ~ )  as shown in Fig. 1, 

have zero mean, uik is given by o-ik = [G]En~zn.  
Using this expression, we can write the transmission power 

T 

p = L = y - 1  k=O gyk. 2 As the inputs xk are uncorrelated and 
M-1 

as 

g E k l l g k l l X .  (2) P = - c  1 M-l 

k=O 
N 

where I l g k l l i  = EEil is the energy of the k-th col- 
umn of G .  

Under the IS1 free condition, for a fixed bit rate and a 
fixed probability of error P,, we will find the transceiver 
that minimizes the transmission power. The optimization 
process involves 2 steps. We will show in section 4 that the 
bits b k  can be optimally allocated to minimize the transmis- 
sion power for any given transceiver. Under the optimal bit 
allocation, the optimal transceiver will then be derived. 

4. OPTIMAL BIT ALLOCATION 

For a given transceiver, a fixed probability of error P,, and 
average bit rate per input symbol b, we present the optimal 
bit allocation { bk}&' with b = & CEi' bk  such that the 
transmission power in (2) is minimized. 

At the receiver end, the output of the k-th band is Zk = 
xk + e k ,  where ek comes entirely from channel noise as the 
transceiver achieves zero ISI. Define the M x 1 output noise 
vector as e = (eo el . . .  e M - 1 )  , then e = S u  = 
G-' Bu. 

Assuming the PAM symbols of the k-th band carry b k  
bits, the probability of error for the k-th band is given 

by P,(k) = 2(1 - 2-bk)Q (/=) . For a fixed 

probability of error P, across all bands, we need to have 
P,(O) = P,(l) = . . . = P,(M - 1) = P,. Under the high 
bit rate assumption 2bk - 1 x 2bk, we can see that ( ~ 2 ~  and 
oZk satisfy 

T 

1 
3 

o:k = ~ 2 ~ ~ ~ ~ 7 : ~ ,  where c = - (Q-' { P , / 2 } ) 2 .  ( 3 )  

Using this relation and applying the AM-GM inequality, the 
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transmission power in ( 2 )  satisfies 

The equality holds if and only if 2 2 b k ~ : k l l g l ; l l z  are the 
same for all k .  Notice that Popt,bit  depends only on b 
and l lgkllz, where 02, is determined once the receiver 
is known and l l g k l l $  is determined once the transmitter is 
given. Therefore when the transceiver is given and average 
bit rate per symbol b is fixed, Popt,bit is the lower bound 
of the transmission power independent of the bit allocation 
{ b ~ . } ~ = ~  . Solving for the optimal b k ,  we have AT--1 

1 
bk = b - 1og2(a,k(lgkl12) 4- Z ~ % Z  ( ~ ~ ~ 1 ~ c ~ ~ ~ ~ ~ ~ ~ 2 ) ~  

The optimal bit allocation equalizes the terms 
22hk~:, I l g k i l i .  When the transmitting vectors g,: 
have equal energy, we can see that more bits are assigned 
to bands where a:, is small. This is similar to the bit 
allocation in water filling scheme. More bits are transmitted 
in less noisy bands. 

(5) 

5. OPTIMAL TRANSCEIVERS 

Optimal G: We first express the quantity p o p t , b , t  in (4) 
in terms of G. The energy of the k-th column of G is 
llgl;ll$ = [GTG],,., Let q = BY, then e = G-'q. The 
A4 x hl autocorrelation matrix R, of the noise vector e is 
given by Re = SR,ST = G- 'RqG-T ,  where R, is the 
autocorrelation matrix of the vector q. The output noise CT f ,  
ofthe k-th band is equal to [ R e ] k k  or [G-'R,G-T]kk. So 
(4) can be rewritten as 

Apply the Hadamard inequality, we have 

(6) 
M 
N 

= c-2"(det R,)'IM 2 P opt,bzt,G' 

The equality holds if and only if (i) G'G is diagonal and 
(ii) G-iRqG-T is diagonal. The lower bound Popt ,bz+,~  

does not depend on the transmitter G and it is achieved if 
and only if G satisfies both conditions (i) and (ii). Let the 
Schur decomposition of R, be 

R, = QXQT.  

Then these 2 conditions can be satisfied by choosing G = 
Q. The optimal transmitter G is orthogonal. In this case the 

receiver that achieves IS1 is given by S = Q T B ,  where B 
is given in Theorem 1. 

Optimal A: From (6), we see that given any A,  the achiev- 
able lower bound Popt ,b?t ,~ = ~ % 2 ' ~ ( d e t  R,)'IM. The 
matrix A should be chosen such that det(R,) is mini- 
mized. Using the facts that R, = BR,BT and B = 
VTA-' [I A]UT, we get 

det(R,) = &%(A-') det, ([I A]U'R,U ( iT)). (7) 

Note that A, U and R, are fixed once the channel and 
input noise are given. Thus the optimal A is such that 
det ([I A]UTR,UII A]') is minimized. The optimal A 
has the following closed fonn expression (Readers are re- 
ferred to [6] for detailed derivation). 

A = -UTR,UI (UTR,U,)-', (8) 

where the matrices U0 and U1 are defined in (1). The min- 
imum achievable det(R,) is 

d e t ( K 2 )  det(R,)/ det(UTR,Ul).  

Using this expression and (6), the minimum transmission 
power for the optimal transceiver is 

Summarizing the results, we have 

Theorem 2 Consider the zero padded M-band DMT sys- 
tem in Fig. 2. Assume that the inputs are PAM symbols 
of hl; bits. For any fixed probability of error P, and any 
$.xed transmission bit rate per symbol b, the biorthogonal 
transceiver is ISlfree and minimizes the transmission power 
P in (2) if and only ifthe following are true: 

- (i) The matrix A is given by A - 

-UTR,U1 (UTR,Ui)-', where R, is the au- 
tocorrelation matrix ofthe noise vector U and, U0 and 
U1 are as defined in (I) .  

(ii) The transmitter G = Q, where Q is the orthonor- 
mal matrix such that Q'RqQ is diagonal, The ma- 
trix R, is given by R, = BR,BT, where B = 
V T K i  [I A]UT. The receiver is given by S = QTB. 

The minimum transmission power is Pbiortho given in (9) 
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Example. In this example we compare the transmission 
power of the derived optimal transceiver PbioTtho, that of 
the orthogonal transceiver derived in [5] Portho 5 ] ,  and that 
of the vector coding transceiver derived in [2] ~ u c , 1 2 1 .  The 
closed form expressions of PoTtho,,51 and Pu,,r21 are de- 
rived in [6]. The channel c ( z )  and power spectrum for 
the colored noise v(n) used in this example are showed in 
Fig. 3(a) and (b). These parameters are obtained from a typ- 
ical ADSL environment. The channel C(z) in this case has 
order L = 4. The bit error rate P, = and average 
bit rate per sample is Rb = gb = 2. The results are plot- 
ted for M = 10 to 50 and they are showed in Fig. 4. One 
can see that the improvement of PbioTtho over PoTtho,,51 is 
more significant when M is small. When M is large, the 
two curves converge. Also PbioTtho is approximately 5 dB 
smaller than P,,c,r21. In the plot we see that &ortho and 
Portho,l~l appear to be monotone decreasing. It is the au- 
thors’ conjecture that PbioTtho and PoTtho,151 are monotone 
decreasing functions of M .  

I 
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Figure 3: (a) The frequency response of the channel 
IC(ej“)l. (b) The power spectrum of the channel noise 
4n>. 

6. CONCLUDING REMARKS 

In this paper we show that, for the design of BDMT sys- 
tems, there is no loss of generality in using orthogonal 
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Figure 4: Performance comparison of Pbzortho, Portho,[5] 
and PV,,[2]‘ 

transceivers. The M-band DMT system is often considered 
as the dual of an M-band subband coder. The BDMT sys- 
tem can be considered as the dual of the transform coder. 
The result shown in this paper is similar to the result in sub- 
band coding theory that optimal orthogonal transform coder 

good as any biorthogonal transform coder [7]. 
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