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ABSTRACT

We introduce an eÆcient method for the design of causal
stable IIR �lter bank (FB) with Powers-of-two coeÆ-
cients. Ladder structure is used to construct the IIR
FBs with perfect reconstruction (PR). In the proposed
method, FBs with real coeÆcients are �rst designed and
an iterative procedure is then employed to discretize the
coeÆcients. A sensitivity measure is introduced to de-
termine the order of coeÆcients to be discretized. To
ensure the stability of the IIR �lters, the stability tri-
angle is used. Even though the method is suboptimal,
it avoids integer programing and yields satisfactory re-
sults.

1 Introduction And Previous Work

Fig. 1 shows a two-channel �lter bank (FB). It has been
widely applied to various areas of signal processing [1].
In FIR FBs, all the four �lters H0(z), H1(z), F0(z) and
F1(z) are FIR �lters while in IIR FBs, some or all of
these �lters are IIR �lters. The theory and design of
FIR FBs have been studied by many researchers while
there are relatively few studies on the IIR case until re-
cently. Though IIR �lters have the advantage of low
cost, it is not easy to obtain satisfactory perfect recon-
struction (PR) FB with causal stable IIR �lters. The
earliest good designs for IIR FBs were such that the
analysis bank was paraunitary and the �lters have all-
pass polyphase components (see p. 201 of [1]). Even
though the �lters are causal stable, such IIR FBs suf-
fer from phase distortion. IIR PR FBs typically have
noncausal stable �lters [2] [3].
In recent years, PR FBs with causal stable IIR �lters
have been successfully constructed [4] [5] [6]. By con-
straining the determinant of the stable IIR polyphase
matrix to be a minimum phase transfer function, the
authors in [4] are able to obtain PR IIR FBs with causal
stable �lters. FBs with good frequency separation can
be obtained by optimizing the �lter responses. In [5] and
[6], a di�erent approach, namely the ladder structure (or
so-called lifting scheme), was proposed as a framework
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for IIR FBs. Using such structure, causal stable IIR FBs
with good frequency responses can easily be obtained by
designing a single transfer function. Moreover these 1D
FBs can be mapped into nonseparable 2D case using a
simple mapping that preserves all the useful properties
[5] [6].
Filter banks with powers-of-two coeÆcients have the ad-
vantage that no multiplication is needed in their imple-
mentation. In such a FB, the coeÆcients are in gen-
eral represented by a radix-2 canonic-signed-digit (CSD)
code. The radix-2 signed-digit representation of a frac-
tional number c is given by

c =

LX
k=1

sk2
�pk ; (1)

where sk = �1 and pk 2 f0; 1; : : : ; Mg. The num-
ber of adders/subtractors needed to implement such a
coeÆcient is L� 1. In general, the radix-2 signed-digit
representation is not unique. The CSD code is the rep-
resentation that has the minimum number L of nonzero
digit. In this paper the class of CSD code which can
be expressed as (1) will be denoted as CSD(M,L). FIR
FBs with such discrete coeÆcients have been success-
fully designed by a number of researchers [7] [8] [9] [10].
In [7], multiplierless linear-phase FIR FBs with CSD
code was designed. The resulting FBs do not achieve
PR and the magnitude distortion is minimized. In [8],
FIR lattice structure for orthonormal FBs was used for
the design. The lattice coeÆcients were optimally repre-
sented using CSD code. PR FBs with CSD coeÆcients
are obtained. In [9] and [10], a weighted least-square
algorithm was proposed for the design of uniform and
nonuniform FBs. The continuous coeÆcients are then
discretized using the CSD code. FBs with very sharp
�lters can be obtained using the proposed method.
In this paper, we introduce an eÆcient method for the
design of causal stable IIR PR FBs with CSD coeÆ-
cients. In Sec. 2, we will briey discuss the ladder
structure, which will be used as a framework for the
construction of IIR FBs in this paper. Stability triangle
will be described in Sec. 3. In Sec. 4, we will introduce
an iterative algorithm to discretize the coeÆcients and



Figure 1: A two-channel �lter bank.

Figure 2: The ladder structure for two-channel �lter bank.

a design example will be given.

2 Two-channel Ladder Structure

Fig. 2 shows the ladder structure for two-channel
FBs. Such a structure is also well-known as the lift-
ing scheme[11]. In these FBs, the analysis �lters are
related to the transfer function A(z) as:

H0(z) =
z�2N + z�1A(z2)

2
; (2)

H1(z) = �A(z2)H0(z) + z�4N+1: (3)

The synthesis �lters are F0(z) = �zH1(�z) and F1(z) =
zH0(�z). These FBs enjoy many advantages[6]. In this
paper, we will exploit the following properties of ladder
structure FBs:

1. Structurally PR: The FBs have PR for any choice
of A(z), provided that the analysis and synthesis
banks use the same implementation of A(z). In
particular, the FBs continue to have PR even when
the coeÆcients of A(z) are quantized.

2. Low design cost: As PR is structurally guaranteed,
we can optimize the responses of H0(z) and H1(z)
by choosing any A(z) while preserving the PR at
the same time. Two approximation methods are
given in [6], namely FIR linear-phase PR FBs and
causal stable IIR PR FBs. In this paper, we will
consider only the IIR case. To get a good IIR low-
pass �lter H0(z), A(z) can be chosen as an Nth-
order allpass function. The phase response of A(z2)
can be optimized so that it approximates the de-
sired phase response:

6 �DA(e
2j!) =

�
(�2N + 1)! if ! 2 [0; �=2];
(�2N + 1)! � � if ! 2 (�=2; �].

(4)

It was shown[6] that if the lowpass �lter H0(z) ob-
tained by such method has an attenuation of x dB,
then H1(z) will be a highpass �lter with an atten-
uation of around x � 10 dB. Moreover F0(z) and
F1(z) will be lowpass and highpass �lters with an
attenuation of x � 10 dB and x dB respectively.
Therefore the design of an IIR FB reduces to the
design of a single allpass function with the phase
constraint in (4).

3. Low implementational cost: To implement such
FBs, we need to implement only one transfer func-
tion A(z). Note that all the computations are done
at half the input data rate. Suppose that the all-
pass function A(z) has order N , we need a total
of only 2N multiplications and 4N + 4 additions
per input sample to implement both analysis and
synthesis banks.

In addition to the above advantages, ladder structure
FBs have many other merits. For examples[6], (i) IIR
FBs designed using the above phase constraint are guar-
anteed to be causal stable; (ii) zeros of arbitrary multi-
plicity at ! = � of H0(z) can be easily imposed in the
design, for the purpose of generating wavelets with reg-
ularity property; (iv) nonseparable 2D PR FB with IIR
�lters can be obtained by applying a simple 1D to 2D
mapping.

3 Stability Triangular for Second-Order IIR
Transfer Functions

Given a general Nth-order polynomial, the necessary
and suÆcient conditions on the coeÆcients so that the
roots of the polynomial lie within the unity circle are
still unknown (to our knowledge). Fortunately this is
not true for the special case of second-order polynomial.
Consider a second-order polynomial of the form

D(z) = 1 + a1z
�1 + a2z

�2:



It was shown in Homework Problem 2-13 of [1] that the
zeros of D(z) lie strictly inside the unit circle if and
only if the coeÆcients a1 and a2 are strictly inside the
triangular region shown in Fig. 3.

Figure 3: The stability triangle.

4 IIR FBs with CSD CoeÆcients

As we have mentioned in Sec. 2, using the ladder struc-
ture, the design of IIR FBs reduces to the design of a
single allpass transfer function:

A(z) =
aN + aN�1z

�1 + : : :+ z�N

1 + a1z�1 + : : :+ aNz�N
:

There are many eÆcient methods for the design of all-
pass functions with real coeÆcients satisfying the phase
constraint given in (4) [6] [12]. In this paper, we assume
that we are given a real coeÆcient allpass function that
satis�es (4) approximately. To minimize the e�ect of co-
eÆcient quantization on the response, we will consider
the cascade form implementation. Suppose that A(z) is
factorized as

A(z) = A0(z)A1(z) : : : AK�1(z); (5)

where K is the smallest integer larger than N=2 and
Ai(z) are real-coeÆcient second-order allpass function:

Ai(z) =
ai2 + ai1z

�1 + z�2

1 + ai1z�1 + ai2z�2
:

Using the cascade form, one can quantize the coeÆcients
of Ai(z) by directly �nding the CSD(M,L) code in (1)
that is closest to the original coeÆcient. In the pro-
cess of quantization, one can restrict the CSD code of
ai1 and ai2 so that they lie strictly inside the stability
triangle in Fig. 3. By doing so, we can ensure the sta-
bility of the resulting discretized �lter. However such
direct quantization method will in general result in �l-
ters with unsatisfactory response, as we will see in the
design exmple. To improve the response of the transfer
function, we introduce the following iterative method.

Iterative Method for CoeÆcient Discretization

Instead of discretizing all the factors Ai(z) simultane-
ously, we discretize them sequencially. Suppose that
AJ (z) is the �rst factor to be discretized using CSD code
and ÂJ(z) is the corresponding discretized factor. Let
the phase response of AJ (z

2) and ÂJ(z
2) be 6 AJ (e

2j!)
and 6 ÂJ (e

2j!) respectively. De�ne

BJ(z) = A0(z) : : : AJ�1(z)AJ+1(z) : : : AK�1(z): (6)

That is, BJ(z) is the (N � 2)th-order allpass func-
tion obtained from A(z) by removing the factor AJ (z).
Given ÂJ (z), the real coeÆcient (N � 2)th order all-
pass function BJ(z) is no longer optimal. In other
words, the product BJ(e

2j!)ÂJ (e
2j!) may not approxi-

mate �DA(e
2j!) well enough. Therefore we re-optimize

BJ(z). The desired phase response for BJ (z
2) is:

�DBJ
(e2j!) = �DA(e

2j!)� 6 ÂJ (e
2j!): (7)

We can optimize the (N � 2)th-order allpass function
BJ(z

2) so that its phase approximates �DBJ
(e2j!). This

can be easily achieved using any methods described in
[6] [12]. We can again apply the above discretization
procedure on the re-optimized BJ (z) and one second-
order factor from BJ (z) is discretized. By repeating the
above procedure, we will arrive at a cascade form of A(z)
with discretized second-order factors.
To decide the ordering of the factors in the discretiza-
tion process, we introduce a sensitivity measure. The
sensitivity of the factor Ai(z) is de�ned as:

S(Ai) =

R �
0
j6 Ai(e

j!)� 6 Âi(e
j!)jd!p

(ai1 � âi1)2 + (ai2 � âi2)2
; (8)

where âi1 and âi2 are the CSD codes for the coeÆcients
ai1 and ai2 respectively. In this paper, the factor with
the highest sensitivity is chosen as the factor to be dis-
cretized.
Remark: During the design simulation, we found that
if the factor with the lowest sensitivity is chosen, then
the resulting �lter response may be worse than that of
direct discretization.

Example. In this example, the transfer function A(z)
is taken as an 6th order allpass function. The integer N
in Fig. 2 is therefore equal to 6. Therefore to implement
both the analysis and synthesis banks, we need a total
of 12 multiplications and additions per input sample.
For the CSD code expressed in (2), we take M = 10
and L = 3. So we need only 2 additions/subtractions
to implement each coeÆcient. The results of quantized
jH0(e

j!))j for direct quantization and our method are
shown in Fig. 3 and 4 respectively. As we can see from
the �gures that the proposed method is much better
than the direct quantization. The stopband attenua-
tions of the original �lter, �lter discretized with direct
quantization, and �lter discretized with the proposed
method are respectively 38.3 dB, 31.4 dB, and 37.4 dB.



The denominators of the factors discretized using our
method are

1 + (20 � 2�2 + 2�4)z�1

1 + (�2�1 + 2�3 + 2�5)z�1

1 + (�2�1 + 2�3 + 2�8)z�1 + (2�3 + 2�8)z�2

1 + (2�1 � 2�3 + 2�6)z�1 + (2�2 � 2�4 � 2�6)z�2:

Figure 4: IIR �lter quantized directly using CSD code.
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Figure 5: IIR �lter quantized by our proposed method
using CSD code.

5 Conclusions

In this paper, we introduce an iterative method for the
design of IIR PR FBs with powers-of-two coeÆcients.
The method does not need any integer programming
and converges very fast. Note that the same iterative
procedure can also be applied to design FIR PR FBs
with powers-of-two coeÆcients [13].
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