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ABSTRACT 
The Lapped Orthogonal Transform (LOT) [ I ]  is a popu- 
lar transform and has found many applications in signal 
processing. Its extension, BiOrthogonal Lapped Transform 
(BOLT), has been investigated in detail in [2]. In this paper, 
we will study Lapped Unimodular Transform (LUT). All of 
these three transforms are first-order matrices with FIR in- 
verses. We will show that like LOT and BOLT, all LUTs can 
be factorized into degree-one unimodular matrices. The fac- 
torization is both minimal and complete. We will also show 
that all first-order systems with FIR inverses can be min- 
imally factorized as a cascade of degree-one LOT, BOLT, 
and unimodular building blocks. However unlike LOT and 
BOLT, unimodular filter banks of any order (which include 
LUTs as a special case) can never have linear phase. 

1. INTRODUCTION 

Consider the first-order Ad x M matrix 

A(z) = A0 + A1z-l. ( 1 )  

Such a matrix is also known as a lapped transform. When 
the matrix satisfies AT(z-')A(z) = I, i t  is called LOT [ I ]  
[4]. The LOTS have been widely applied in various appli- 
cations [I]. In this paper, we will study another class of 
matrices, namely unimodular matrices. A causal FIR ma- 
trix H(z) is unimodular if [det H(z)] = c for some c # 0. 
Here we will assume that c = 1 for notational simplicity. 
When the unimodular matrix has order one as in ( I ) ,  it will 
be called lapped unimodular transforms (LUT). Causal FIR 
unimodular matrices have the advantage that both their in- 
verses and themselves are causal FIR matrices. If they are 
used for the polyphase matrices of filter banks (FB), perfect 
reconstruction (PR) can be obtained by FIR analysis and 
synthesis filters. 

The earliest paper that studied the relationship between 
unimodular matrices and FIR PR FB is [ 3 ] .  Using the 
system-theoretic concepts, the authors showed a number of 
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properties of causal FIR unimodular matrices. In particular, 
the authors showed that there are examples of second-order 
unimodular matrices that cannot be factorized into degree- 
one unimodular matrices. Moreover it  was showed that any 
causal FIR matrix H(z) with [det H(z)] = C Z - ~  can be de- 
composed into a product of a unimodular matrix and a pa- 
raunitary (PU) matrix. Even though such a decomposition 
is not necessarily minimal, it proved that all FIR PR FBs 
can be captured by a PU matrix and a unimodular matrix. 
In [2], the authors introduced the most general degree-one 
unimodular system. The LUTs were characterized by some 
matrices with eigenvalues equal to zero. However the fac- 
torization of LUTs was not studied. 

It is well-known that unimodular matrices can be ex- 
pressed as a product of elementary matrices (defined and 
proved in [5 ] ) .  Elementary matrices can be realized by us- 
ing the lifting schemes [6] [7].  Lifting schemes enjoy the 
advantages of having low complexity and being structurally 
PR. That is, the FB continues to have PR even when the 
lifting coefficients are quantized. However such a represen- 
tation is not minimal and not unique. 

In this paper, we will show that all LUTs can be factor- 
ized into degree-one unimodular matrices. The factoriza- 
tion is both minimal and complete. We will also show that 
all first order systems with FIR inverses can be minimally 
factorized as a cascade of degree-one LOT, BOLT, and uni- 
modular building blocks. However unlike LOT and BOLT, 
unimodular FBs of any order (including the LUT) cannot 
have linear phase. As a potential application, we will show 
how unimodular matrices can be used to get a vector DPCM 
with FIR encoder and FIR decoder. 

Notations and Dejnitions: Boldfaced upper and lower 
case letters are used to denote matrices and vectors respec- 
tively. For a causal polynomial A(z) = A0 + A1z-l + 
. . . + A N Z - ~  with AN # 0, its order is equal to N while 
its degree is the minimum number of delay required to real- 
ize the matrix. For example, the matrix A(z) defined in ( I )  
has order one while its degree is equal to the rank of A 1. 
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2. SOME PROPERTIES OF LUT 

In this section, we will derive some properties of LUT that 
will be useful for the derivation of its factorization. 

Fact: Let A(z) = A0 + Alz-' + . . . + A N ~ - N  with 
AN # 0 be unimodular. Then we have (i) A N  is singular; 
(ii) A0 is nonsingular. 
Proof: Suppose A-'(z) = BO + BIZ-' + . . . + B K Z - ~ ,  
with BK # 0. By simple multiplication, we have 
ANBK = 0 and AoBo = I. This proves that AN is sin- 
gular and A0 is nonsingular. 

When the matrix A(z) = A0 + Alz-' is an LUT, then 
A0 is nonsingular while AI is singular. We can always 
rewrite an LUT as 

One immediate consequence of the theorem is that the in- 
verse of an LUT has an order of at most (A4 - 1). Using 
the Schur's unitary triangularization theorem [5] ,  we can al- 
ways write P = TATt, for some unitary matrix T and 
some lower triangular matrix A. The diagonal elements 
[Alii are the eigenvalues of P. Since A M  = 0 if and only 
if all of these eigenvalues are zero, we have proved: 

Corollary I :  An A4 x M matrix (I + P z - l )  is unimodular 
ifand only if all eigenvalues of P are zero. 

Remark: In [2] ,  the authors consider first order degree-p 
matrices of the form I - UVt + UVtz-l, where U and 
V are M x p matrices. It is shown that such a matrix is 
unimodular if and only if Vt U has all the eigenvalues equal 
to zero. 

3. FACTORIZATION OF LUT 
for some singular matrix P and some nonsingular matrix 
Ao. In the rest of the paper, we will focus on (I + Pz-I ) .  
Linear Phase Unimodular Filter Banks? A filter bank 
has linear phase if and only if its polyphase matrix E(z) = 
ELo Eiz-2 possesses the symmetry property: 

 EN-^ = EiD, 

where D is the anti-diagonal matrix: 

... 0 f l  

D =  [! '.:: :' i ) .  
f l  0 . . .  

These equations imply that the ranks of EN and Eo are the 
same. This contradicts fact that for an unimodular FB, Eo 
is nonsingular and EN is singular. Therefore, we conclude 
that unimodularfilter banks can never have linear phase. 

Theorem 1 An A I  x A f  matrix ofthe form-(I + Pz-') is 
unitnodular if and only if P '* = 0. Moreover if K is the 
smallest number such that PK = 0, then its inverse is given 
by 

I + ( -P )z - l+  (-P)%2 + . . . + ( -P)K--Iz-K+'.  

Proof: Suppose that (I + Pz-') is unimodular. Then there 
exists a causal FIR matrix B(z) = E:=, Biz-i such that 

(I + Pz-')(Bo + Biz-' + . . . + B L Z - ~ )  = I. 

After carrying out some algebraic calculation, we get 
PL+' = 0, and Bi = (-P)i f o r i  = 0, 1, . ._ , L. On 
the other hand, if P" # 0, then from matrix theory we 
know that P i  # 0 for all finite i. Therefore if PM # 0, 
there does not exist any FIR inverse. 

We will first derive the most general degree-one unimod- 
ular matrix and then show that all LUTs can be factor- 
ized into these building blocks. From previous section, 
we know A(z) = A0 + A1z-l can always be written as 
Ao[I + Pz-'1. A(z) has degree one if and only if P has 
rank one. Since P has rank one, P = uvt for some nonzero 
vectors U and v. From Theorem 1, we know that [I+ Pz -'I 
is unimodular if and only if PM = 0. Using the fact that 
PM = ( v ~ u ) ~ - '  . uvt, we conclude that vtu = 0. Hence 
the most general degree-one unimodular matrix is a cascade 
of a nonsingular matrix An and a building block D(z) of 
the form: 

D(z) = I + uvtz-', vtu = 0. ( 2 )  

Its inverse is given by D-'(z) = D(-z) = I - uvtz-', 
which is also a degree-one unimodular system. Using D(z) 
as a building block, we are now ready to show the factoriza- 
tion of LUTs. 

Theorem 2 The M x M matrix A(z) = An + A1z-l is a 
degree-p LUT if and only if it can be expressed as 

A(z) = AoDo(z)D1(z). . . Dp- lk) ,  (3) 

where Di(z) = I + uiv1z-l and A0 is nonsingu- 
lar: The vectors ui and vi are such that (i) both U = 
[UO u1 . . . up-l] and V = [VO VI  . . . vp-l] have fu l l  
rank: (ii) their product satisfies (here 'x  ' denotes the don't- 
care term): 

VtU = 

0 0 0 ... 0' 
x 0 0 ... 0 
x x 0 ... 0 
. . . .  
. . .  - .  . . . . .  
x x x ... 0, 

(4) 
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Proot If A(z) can be expressed as the product in (3) and 
(4), it is not difficult to verify that it is a degree-p LUT. 
Suppose that A(z) is a LUT, then it can be rewritten as 
A(z) = AoP(z), where P(z)  = [I + Pz-'1. As A(z) 
has degree p, rank of P is also p_. 20 there exist hl x p ma- 
trices U and V such that P = UVt . From Corollary I ,  we 
know that P has a! th_e eigenvalues equal to zero. Therefore 
the p x p matrix VtU has all the eigenvalues equal to zero 
(since any nonzero eigenvalue of AB is also an eigenvalue 
of BA.) Using Schur's unitary triangularization theorem, 
we can find a p x p unitary matrix T such that 

T W G T  = A, 

for some lower triangular matrix A wgh all the diagonal 
elements equal to zero. Letting U = UT and V = VT, 
one can verify that 

I + Pz-l  

=I + 6TVt 
=I + UVt 

where the vectors ui and vi are obtained from U = 
(UO u1 ... q - 1 )  a n d V  = (VO v1 ... v ~ - ~ ) .  
Note that the number of degree-one building blocks in the 
factorization (3) is equal to p, the degree of the LUT. Hence 
such a factorization is minimal. 

A note on the degree of cascasde of unimodular sys- 
tems: It is well known if we cascade two causal PU matri- 
ces of degree p1 and p2, the resulting system is a causal PU 
system with degree p1 + p2. The same is true for the class 
of CAusal Fir matrix with AntiCAusal Fir Inverse (CAFA- 
CAFI) [2]. For unimodular matrices, this is no longer true. 
For example, if we cascade two degree-one unimodular sys- 
tem, namely D(z) as in (2) and D( - z ) ,  the resulting system 
is the identity matrix which has a degree of zero! Therefore 
cascading more unimodular systems does not always result 
in  an unimodular system with a higher degree. However in 
the LUT case, the degree-one system Di(z )  in (3) cannot 
cancel each other, since if they do, the cascade system will 
have a degree smaller than p. 

Degrees of freedom: Any M x A4 degree-p LUT system 
is characterized by (3). The constant matrix A0 has A4' 
elements, and the 2p vectors ui and vi have 2Mp elements, 
but there are 0.5p(p + 1) constraints in (4). Therefore the 
degrees of freedom are given by M + 2A4p - 0.5p(p + 1). 

A unfactorizable unimodular matrix: Though all first or- 
der unimodular matrices (LUTs) are factorizable, there are 
unfactorizable unimodular matrices with order greater than 
one. One of such examples is 

G ( z )  = I + abtz-L, 

where bta = 0 and L 2 2. One can verify that G ( z )  
is unimodular and its inverse is given by I - Its 
degree is equal to L. In fact we can show that we are not 
able to extract any degree-one unimodular building block 
from G(z ) .  To see this, suppose that we can extract one 
D(z)  from the right hand side. Then G ( z )  = B(z)D(z), 
where B(z) is a causal unimodular matrix with degree L-1. 
Letting B(z) = I+Blz-I+ .  . .+BL-1zPL+l and carrying 
out the multiplication, we find that 

G ( z )  = B(z)D(z)  

= I + . . . + ( B L - ~  + B L - ~ u v ~ ) z - ~ + ~  + BL-lUVtz-L 

Comparing the coefficients of the z-L+l and z P L  terms, we 
get 

B L - ~  + B L - ~ u v ~  = 0 

BL-lUVt = abt # 0. 

Multiplying U to the right of the first expression, we get 
BL-lu = 0 as vtu = 0. This implies that abt = 0, a con- 
tradiction! Similarly, we can show that we cannot extract 
any degree-one block from the left hand side of G(z) .  

A different characterization of LUE In [2], a different 
degree-one unimodular system is introduced. It has the form 

h 

D(z)  = I - uvt + U V ~ Z - ' ,  vtu = 0. 

Comparing D(z)  with D(z) in (2), one can verify that 
D(z )  = (I - uvt)D(z). In [21, i t  is shown that the first- 
order system I - UVt + UVtz-' is unimodular if and 
only if the p x p matrix VtU has all the eigenvalues equal 
to zero. Using an approach similar tojhe proof of Theorem 
2, one can also factorize LUTs into D(z). It is not difficult 
to show that A(z) = A0 + A1z-l is a degree-pLUT if and 
only if 

A(z) = A ( l ) D ~ ( z ) D l ( z ) .  . . Dp-l(z),  

where ~ k ( z )  = I - UkVL + ukvLz-', and the vectors Uk 

and vk satisfy (4). 

h 

A 

4. LOT, BOLT, AND LUT 

In this section, we will compare three classes of first-order 
systems, namely Lapped Orthogonal Transform (LOT) 
[ I ]  [4], BiOrthogonal Lapped Transform (BOLT) [2] and 
Lapped Unimodular Transform (LUT). All of these trans- 
forms are first order matrices with FIR inverses. They can 
respectively be factorized into the following three different 
degree-one building blocks: 

Bk(Z) = I - vkv: VkVLZ-l ,  VLVk = 1; 

C k ( Z )  = I - UkVL + UkvLz-1, ULVk = 1; 

Dk(z) = I - U ~ V :  + u ~ v ~ z - ~ ,  U l V k  = 0. 
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Note that Bk(z), c k ( Z ) ,  and Dk(z) are respectively 
degree-one PU, CAFACAFI, and unimodular matrices. 
Combining the above results and those in [ l ]  [4] [2], we 
can summarize the factorization theorems for LOT, BOLT 
and LUT as follows: 

Theorem 3 Consider the jrst-order degree-p system 
A(z) = A0 + Ala-’. It is 

1. an LOT if and only ifA(z) = A(l)  Bo(.) Bl(z) 
.. . B,-l(z), where the vectors V k  are such that 
[vo v1 . . . vp-l]t[vo v1 . . . vp-l] = I, [I] [4]; 

2. an BOLT i fand only ifA(z) = A(l)  CO(Z) C,(z) 
. . . c,-1 ( z ) ,  where the vectors uk and vk are such 
that [vo v1 . . . v,-l]t[uo u1 . . . up-l] = A for  
some lower triangular matrix with all diagonal ele- 
ments equal to one [2 ] ;  

3. an LUT if and only if A(z) = A(l)  Do(.) 
D1(z) ... Dp-l(z), where the vectors uk (in- 
dependent) and vk (independent) ure such that 
[vo v1 . . . v,-l]+[uo u1 . . . up-l] = A f o r  some 
lower triangular matrix with all diagonal elements 
equal to Zero. 

First-order FIR system with FIR inverse: Consider a 
degree-p system A(z) = A0 + Alz-’. If [detA(z)] = 
z P L  for some integer L,  then it has an FIR inverse. It has 
been shown in [2] that such a system can always be charac- 
terized as: 

A(z) = A( 1) [I - fiqt + @tz-’] 

where ?i and v are M ,x tmat r ices  such that the eigen- 
values of their product VtU are either one or zero. Us- 
ing Schur’s triang_ula_rization theorem, we can find unitary 
T such that T tVtUT = A, where A is a lower tri- 
angular matrix with its diagonal elements equal t_o either 
one or zero. Let V = [VO v1 ... vp-l] = V T  and 
U = [UO u1 . . . up-l] = UT. Then one can verify that 
the matrix A(z) can be decomposed as 

- 

5. VECTOR DPCM WITH FIR ENCODER AND 
DECODER 

In a vector DPCM, we want to find the matrices P k  such 
that the variance of the following prediction error vector is 

minimized. 

e(n)  = x(n) + Plx(n - 1) + . . . + PLx(n - L) .  

The optimal solution is well known and can be obtained 
by solving the normal equations [8]. The transfer function 
P (z )  = I + P1z-l + . . . + P L Z - ~  is known as the pre- 
diction error polynomial [8]. At the decoder, we need to 
implement the inverse P-l(z). Though it is always stable 
[SI, P-’(z) is in general IIR. In some applications, FIR 
systems might be preferred. In this case, one can constrain 
P (z )  to be unimodular. One way to do this is to assume 
that P (z )  = Do(z)Dl(z). . . DN(z). This is in  general 
a loss of generality as there are unfactorizable unimodular 
systems. Then under the constraint viuk = 0 the vectors 
uk and vk can be optimized so that the variance of e(n)  is 
minimized. In the special case of one-step prediction, P(z) 
becomes an LUT and it  can always be expressed as in (3 ) .  
Therefore unlike scalar DPCM, a vector DPCM codec can 
have FIR encoder and FIR decoder! 
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