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I. ~ ~ t r o ~ ~ c ~ ~ o ~  
The M channel maximally decimated filter bank shown 

in Fig. 1.1 has been studied extensively, (see references 
in [l]). When the system in Fig. 1.1 is alias free, it is an 
LTI system with transfer function T ( z ) ,  as indicated in 
Fig. 1.1. T ( z )  will be called the overall response. 

A maximally decimated filter bank is well-known for 
its application in subband coding. Another application of 
maximally decimated filter banks is in block filtering, [a].  
Convolution through block filtering has the advantages 
that parallelism is increased and data is processed at a 
lower rate. However, the computational complexity is 
comparable to that in direct convolution. In [3], filter 
banks are used to map long convolutions into smaller ones 
in the subbands. Computations are then performed in 
parallel at a lower rate. 

More recently 641, another type of filter bank convolver 
has been developed. In this scheme the convolution is 
performed in the subbands and for a fixed rate the re- 
sult of convolution is more accurate than direct convolu- 
tion. This type of filter bank convolver also enjoys the 
advantages of block filtering, parallelism and lower work- 
ing rate. Nevertheless, like block filtering, there is no 
computational saving. 

In this paper, we introduce the new under-decimated 
system. A filter bank is said to be under-decimated if the 
number of channels is more than the decimation ratio in 
the subbands. Two types of low-complexity filter banks 
can be used for the new system, the DFT filter bank and 
cosine modulated filter bank [5]. 

Fig. 1.2 shows the setup of the under-decimated sys- 
tem; it has 2M channels but is decimated only by M .  
In both DFT filter bank case and cosine modulated fil- 
ter bank case, the system is approximately alias free and 
overall response is equivalent to a tunable multilevel fil- 
ter. Properties of the DFT filter banks and the cosine 
modulated filter banks can be exploited to simultane- 
ously achieve parallelism, computational saving and lower 
working rate. Furthermore, in both filter banks the im- 
plementation cost of the analysis bank is comparable to 

~ 
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that of one prototype filter plus some low complexity mac 
trices. The individual analysis and synthesis filters ha.ve 
complex coefficients in the DFT filter bank but have real 
coefficients in the cosine modulated filter bank. 
1.1 Notation and definition 

1. Boldfaced lower case letters are used to represent 
vectors and boldfaced upper case letters are used to 
represent matrices. The notations AT,  A* and 
represent the transpose, conjugate and transpose- 
conjugate of A, respzctively. We define the 'tilde' 
notation as follows: A(z) = At(l /z*) .  

2. A filter N ( z )  with impulse response h(n)  is called a 
Nyquist(N) filter if one of the following two applies. 
(1) C k = O  N-l ~ ( e i ( " - 2 " k / N ) )  = c for some constant c. 
(2) h ( n ) p  is nonzero only when n = 0. The notation 
h ( n ) l ~  denotes the N fold decimated version ofh(n:. 

11. DFT Filter Banks 
The system in Fig. 1.2 is called a BFT filter bank 

if the analysis filters are shifted versions of a prototype 
P ( z )  on the unit circle. Similarly for the synthesis bank. 
For simplicity, let the synthesis prototype $ ( z )  = I " ( x ) .  
As we will only consider FIR filters, some delays can be 
added to make the individual filters causal. The analysis 
filters and synthesis filters have the following form. 

On the unit circle H ~ ( z )  or Fk(z)  is just a shift of P ( z )  or 
P ( z )  by h / M  except a scalar. Fig 2.1 shows the support 
of the synthesis filters. The analysis filters are scaled and 
time-reversed versions of the synthesis filters exept some 
delays. 

We now show that with proper design of P ( z ) ,  this 
DFT filter bank is approximately alias free and the over- 
all response is equivalent to a tunable multilevel filter. 
Moreover, the overall response can be a real-coefficient 
linear-phase filter as desired. Efficient implementation of 
the DFT filter bank will also be discussed. 
2.1 Suppression of aliasing error 

Consider the under-decimated system in Fig. 1.2, a 2hrP 
channel filter bank decimated by M .  The suppression of 
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~ ~ , ~ n s ~ ~ ~ ~ ~ ~ ~  in the subbands can 
orially. Take the first subband as an 

se of decimation followed by expansion, 
- 1 image copies of Hg(z),  as shown 
( 2 )  has stopband edge less than T / M ,  

Lese image copies will be suppressed to the level of the 
.topband attenuation of P(z) .  The reasoning of aliasing 
x Jppression in the other subbands follows, 

We now present the mathemati-cal counterpart of the 
above discussion. The output, X ( t ) ,  is related to the 
(q?lLt, X ( z ) ,  by 

i = O  

'ih alias transfer function, As(x), is defined as 

T h e  under-decimated system is alias free i fAi ( t )  = 0, for 

With analysis filters and synthesis filters chosen as in 
, =  4 2 ,  ..., M - 1 .  

(2.1)> the alias transfer function is 

Ass ram e 

P'(zW2"F(z) w 0, i = 1 , .  . . , M - 1. (2.51 

'This assumption is reasonable if P ( z )  has stopband edge 
less than n / M  and large enough stopband attenuation. 
In this case Aa(z) x 0 and the DFT filter bank is almost 
dim free. Notice that the degree of alias suppression 
miproves with the stopband attenuation of P(z) .  

be overall response of the DFT filter bank 
FCX a 2M channel system decimated by M as shown in 

Fig. 1.2, the overall response T ( z )  [I] is 

_. 2M-1 

Substitute the expression of N k ( z )  and Fk(z) in (2.1), 
then 

. 2M-1 

T;dhen (P(d")I2 is a Nyquist(2M) filter, it can be shown 
that the addition of uklP(e j (W-ka lM)) )2  in (2 .7)  will no6 
result in any bumps or dips in the magnitude response of 

T(z) .  The definition ofa Nyquist filter is given in Sec. I. 
Detailed explanation can be found in [l]. With (2 .7) ,  we 
can plot a typical magnitude response of T ( z )  as in Fig. 
2.3, which shows that the otverall response is equivalent 
to a multilevel filter. Since the value of ak can be chosen 
freely, T(z)  is actually a tunable multilevel filter. 

Furthermore, if P ( z )  has real coefficients and we choose 
ak = U Z M - k ,  k = 1 , 2 , .  . ., M, it can be verified that the 
resulting T ( z )  is a linear-phase real-coefficient filter. 
2.3 Implementation of the DFT filter banks 

bank. To see this, express P ( z )  as 
There exist efficient implementations for the DFT filter 

2M-1 

P(2) = En(z2M)z-", (2 .8)  
n=O 

where En(z)  is the nth type 1 polyphase component of 
P ( t )  [l]. The analysis filters can be rewritten as 

2M-1 

H k ( Z )  = ak E n ( z 2 M ) W - - k n Z - n ,  0 5 IC < 2 M .  
n = O  

(2.9) 
Let 

h(z) = [Ho(z) H&) .  . . H 2 M 4 ( 2 ) ] ?  (2.10) 

The vector h(z) takes the foirm 

h(t)  = A W * E ( z ) e ( z ) ,  (2.11) 

where e(.) = [l z- ' .  . . z - ( ~ ~ - ~ ) ] ~ ,  A and E are diag- 
a n d  matrices with A k k  = u k  and [E(z) ]kk  = E k ( z Z M ) .  
The DFT matrix W has entries Wkn = Wkn, 0 5 1, n < 
2M. Eq. (2.11) renders a picture of polyphase implemen- 
tation for the analysis bank, Fig. 2.4. The complexity is 
that of the prototype filter P ( z )  plus a DFT matrix and 
some scalars. Similarly for the synthesis bank. Notice 
that all the computations involved in the filter bank are 
performed after the M-fold decimators; parallelism, lower 
rate and lower complexity are achieved at the same time. 

111. Cosine Modulated Filter Banks 
In the DFT filter bank, the analysis and synthesis fil- 

ters have complex coefficients. The new under-decimated 
cosine modulated filter bank comes into play if real coef- 
ficients are desired. 

A filter bank, Fig. 1.1 or Fig. 1.2, is said to be cosine 
modulated if all analysis and synthesis filters are gener- 
ated by cosine or sine modulation of one or two p ro te  
type filters. In this section we introduce the new under- 
decimated cosine modulated filter bank. As in Fig. 1.2, 
the new system has 2M chaniiek but is decimated by M .  
Individual analysis and synthesis filters have real coeffi- 
cients. Aliasing is suppressed to the level of the stopband 
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attenuation of the prototypes and the overall response is a 
linear-phase tunable multilevel filter. Furthermore, there 
exists efficient implementation of this cosine modulated 
filter bank. The complexity of the analysis bank is that 
of the prototype filter plus two DCT matrices (Appendix 
A) and some scalars. The complexity of an M x M DCT 
matrix is of order only M log(M) [B]. Complexity for the 
synthesis bank is similar. 
3.1 Construction of the new system from the con- 
sideration of alias cancellation and suppression 

In the cosine modulated filter bank, all analysis and 
synthesis filters have real coefficients. Each filter has 
positive and negative spectral occupancy as opposed to 
single-sided spectral support in the DFT filter bank. This 
incurs a problem that we do not have in the DFT filter 
bank. More details and a proposed solution of this new 
problem are given below. 

Let P ( z )  be the prototype of the analysis filters. As 
in DFT-filter bank, we take the synthesis prototype 
Q ( z )  = ~ ( z )  for simplicity. Let P~(z) = P ( Z W ~ + + O . ~ ) ,  k = 
0 , 1 , .  . . ,2M-1. We can combine Pk(z)  and P ~ M - I - ~ ( z ) ,  
to get real-coefficient filters. For instance, 

Fig. 3.1 shows the spectral supports of the synthesis fil- 
ters. The analysis filters are scaled and time-reversed 
versions of corresponding synthesis filters except some de- 
lays. 

Aliasing error created in the subbands is now very dif- 
ferent from that in the DFT filter kank because each filter 
consists of two shifts of P ( z )  or P(z) .  To illustrate this 
situation, consider the kth subband. Due to decimation 
followed by expansion, Pk(z)  has M - 1 image copies and 
- p Z ~ - ~ - k ( z )  also has M - 1 image copies. Since every 
filter has real coefficients, inspecting the overlapping be- 
tween images of Pk(z )  and P ~ M - I - ~ ( z )  is sufficient. Re- 
ferring to Fig. 3.2, of the M - 1 image copies of Pk(z) ,  
M - 2 of them fall into the stopband of F ~ M - I - ~ ( z )  p r e  
vided that P ( z )  has stopband edge less than T / M .  If 
P ( z )  has large enough stopband attenuation, these im- 
ages will be suppressed by P ~ M - I - ~ ( z ) .  However, one of 
the image copies of P k ( z )  will overlap with the spectral 
support of P ~ M - I - ~ ( z ) .  In particular, one image copy of 
Pk(z)  will overlap with P Z M - ~ - ~ ( Z )  from the right when 
k is even and from the left when k is odd. Fig. 3.2 shows 
the case when k is even. This type of aliasing error can 
not be suppressed in the synthesis bank. 

Our solution to  this problem is to introduce a second 
subsystem that has similar aliasing error to cancel the 
existing one. For this particular purpose, the filters of the 
second subsystem are required to have a stacking similar 

- 
- 

- 

to that of the first subsystem. Let the second subsystem 
have analysis filters H k  (2) and synthesis filters F k  ( z ) ,  k = 
M, M + 1,. . . , 2 M  - 1. We have found that with the 
following choice, the negative of the alias component from 
the first subsystem will occur in the second subsystem. 

Specifically, the k + M subband creates the negative of 
the aliasing error from the kth subband. Through this 
construction the spectral supports of filters in the second 
subsystem resemble that of filters in the first subsystem. 

We now verify that indeed the alias transfer function 
Ai(z) FS 0. With filters constructed as in (3.1) and the 
expression of alias transfer functions in (2.3), we have 

If P ( z )  satisfy (2.5), then Ai(.) FS 0. 
3.2 The overall response T ( z )  

Using (3.1) and (2.6), the overall response is 

a 2M-1 

The above expression for the overall response is similar 
to that in the DFT filter bank, (2.7). If lP(ejw)I2 is a 
Nyquist(2M) filter, T ( z )  is a tunable multilevel filter as 
in the DFT filter bank. Also from (3.2), we know the 
overall response has linear phase. 

Summarizing, we have shown that with filters con- 
structed in (3.1), the system in Fig. 1.2 is a cosine modu- 
lated filter bank with approximate alias cancellation and 
the overall response is a linear-phase tunable multilevel 
filter. As shown in Appendix A, complexity of the analy- 
sis bank is that of the prototype filter P ( z )  plus two DCT 
matrices and some scalars. 
Alternative stacking of filter responses 

In addition to the configuration of filters shown in Fig. 
3.1, a different stacking can also be applied. Fig. 3.3 
shows this alternative. The spectral supports of the sec- 
ond set of synthesis filters are different from the spec- 
tral supports of the first set of synthesis filters. Again 
the analysis filters are scaled and time-reversed versions 
of synthesis filters except some delays. In this case, the 
scheme of alias cancellation stills works and the argument 
that the overall response is a tunable multilevel filter con- 
tinues to hold after minor adjustments. 
Remark. In the discussion of DFT and cosine modu- 
lated filte_r banks, we have chosen the synthesis prototype 
Q ( z )  = P ( z )  for simplicity. It can be shown that both 
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systems still function like tunable multilevel filters with 
approximate alias suppression if (1) P(zW2)Q(z)  M 0 
and (2) P(z)Q(z)  is Nyquist(2M). 

IV. Design techniques 

For the design of the prototypes, we have found two 
simple methods. 
Shortcut design: The constraints for the prototypes 
can be easily satisfied through the following two steps. 
(I.) Design a Nyquist(2M) P ( z )  with stopband edge less 
than T/M. (2) Design Q(z)  such that the passband 
of Q ( z )  covers the passband and transition bands of 
P ( z )  but P(zW2)  falls into the stopband of Q(z) ,  Fig. 
4.1. As Q(z)  is so designed and P ( z )  is Nyquist(PM), 
P(z)&(z)  will be very close to a Nyquist(2M) filter and 
P(zW2)&(z )  M 0. Notice that this design technique in- 
volves no optimization at all. 

Kaiser window de_sign: In this approach, the synthesis 
prototype &(z)  = P(z) .  The analysis prototype P ( z )  is 
designed through Kaiser window. The impulse response 
of P(x)  is p ( n )  = w(n)hi(n), where w(n)  is a Kaiser win- 
dow and hi(n) = sin(w,n)/nn is the impulse response of 
the ideal filter with cutoff frequency w,, [l]. After we 
choose the stopband attenuation and the width of the 
transition band, the length of the window can be esti- 
mated by a formula developed by Kaiser. In this case, the 
window is completely determined. The cutoff frequency 
w, is_the only parameter left to be optimized such that 
P ( z ) P ( z )  is close to a Nyquist(2M) filter. Using the sec- 
ond definition for a Nyquist filter, we can choose a simple 
objective function, $hKaiser = ma%,,+ I p ( n ) * p ( - n ) l l 2 ~ .  
We can adjust the parameter w, to find the best Po(%) 
which yields the smallest # ~ ~ i ~ ~ ~ .  Experiments show that 
$Kaiser is a convex function of w,. Very good design can 
be obtained as will be demonstrated in Example 4.1. 

Example 4.1 Tunable multilevel filter. A 20 channel 
cosine modulated under-decimated filter bank is used in 
this example. In this case M = 10. The prototypes are 
designed through Kaiser window approach. The analy- 
sis prototype P ( z )  is linear-phase with order N = 110, 
stopband attenuation 75 dB, passband edge wp = 0.0471. 
and stopband edge wJ = 0.098~.  The synthesis protc- 
type Q ( z )  is the time reversed version of P ( z ) ,  Q ( z )  = 
Z - ~ R ( Z ) .  Fig. 4.2(a) show the magnitude response of 

After designing the P ( z ) ,  we can tune a k  to obtain 
the desired overall response, T ( z ) .  For instance, we set 

and a8 = a9 = a10 = 0.3. The magnitude response of the 
resulting T ( z )  is plotted in Fig. 4.2(b). Since T(z)  has 
linear phase, we do not show the phase response. Fig. 
4.2(c) shows the corresponding dB plot of Fig. 4.2(b). 

P(z>* 

a0 = a1 = 1, a2 = a3 = a4 = 0, a5 = a6 = a7 = 0.7 

Appendix A. 

as in (2.8). The analysis filters are 
Express P ( z )  in terms of type 1 polyphase components 

H k ( Z )  = 2 E ; y  akEn(-Z2M) cos($(lc + 0.5)n), 
H ~ + M ( z )  = 2C:ft1 akE,(-zZM)sin($(k + 0 . 5 ) ~ ) ~  

k = O , l ,  ..., M - 1 .  

Let h(z) be as in (2.10), then - 
T 

where A, A, Eo(zM) and El(z‘) are diagonal ma- 
trices with A k k  = (-1)”Akk = A ~ + M , ~ + M  = 
ak,  [Eo(zM)Jkk = E ~ ( - z ~ ~ ) ,  and [ E i ( ~ ” ) ] k k  = 
E ~ + M ( - z ~ ~ )  for k = 0,1 , .  . . , M  - 1. The matrices C 
and S are of dimension M x M with 

0 5 k, n, < M .  [Clkn = COS(&(k + 0.5)n) 
[S]kn = sin(&(k + 0.5)n), 

It  can shown that C and S are related by S = ACJ, 
where J is an M X  M matrix with nonzero entries Jkn = 1, 
when k + n = M ,  0 5 k, n < M .  Using this property, we 

have T = (: :c) (i ;“) 
With all these informations, we can draw the imple- 

mentation of the cosine modulated filter bank in Fig. A . l .  
The matrix J merely reorders the inputs and requires no 
computation. From the block diagram, we observe that 
the complexity of the analysis bank is that of the analysis 
prototype filter plus two DCT matrices and some scalars. 
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A 
X(Z)=T(Z)X(Z) 

Fig. 1 .l. M channel maximally decimated filter bank. 

A 
X(Z)=T(Z)X(Z) 
+aliasing terms 

. 

Fig. 1.2. 2M channel under-decimated filter bank. 

Fig. 2.3. A typical magnitude response o f  T(z), 
a multilevel filter. 

Fig. 2.4. Efficient implementation of the 
analysis bank of the 2M channel DFT filter bank. 
The DFT matrix, W is of dimension 2M by 2M. 

Fk 

w 
FM- 1 Fo Fo FM-l 

. . a  a . .  1 b- 
-n -(M-1)dM -n/M o n/M ( M - l ) d M  n 

 PI^ ( 2 ~ ~ )  H~ ( J O W - ~  F, H, (PW~) H~ Fig. 3.1. Spectral support of the 
synthesis filters. 

-4n/M -2n/M 0 27dM 4n/M 0 

Fig. 2.2. Image copies of h ( z )  due to  
ecimation followed by expansion and 

the spectral support of Fo(z). image copies of P k  

-(k+3) -k-I -k -k+l k-2 k-1 k k+l k+2 

Fig. 3.2. Image copies of Pk(z) due t o  decimation followed by 
expansion and the spectral support of Fk(Z) when k is even. 
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/ . A . \  0 

* 0 . 0  e . .  

Fig. 3.3. Spectral support of synthesis filters 
for a different stacking. 

dB -50 F \ 
-100 1 
-I 50 

0.0 0.1 0.2 0.3 0.4 0.5 
Normalized frequency 

-n/M 0 n/M 2n/M 

Fig. 4.1. The passband of Q(z) covers the passband 
and transition band of P(z) but P( ej"w2) falls into 
the stopband of Q(z). 

Normalized ifrequency 

Fig. A.l. Efficient implementation of the 
analysis bank of the under-decimated cosine 

50 

dB 

-1 50 I I I 

0.0 0.1 0.2 0.3 0.4 0.5 
Normalized frequency 

Fig. 4.2. Example 4.1. (a) The magnitude response 
of the prototype, P(z>. (b) The magnitude response 
of the overall response T(z). (c) The magnitude 

modulated 2M channel filter bank. response of the overall response T(z) in dB plot. 
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