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ABSTRACT 

In this paper a new class of transforms named Prediction- 
based Lower triangular Transform (PLT) is introduced for 
signal compression. The PLT is a nonunitary transform that 
yields the same coding gain as the Kahunen-Loeve trans- 
form (KLT). Unlike KLT, the derivation of PLT does not 
involve any eigen problem. An M-dimensional PLT can be 
solved by Levinson-Durbin recursion formula in O ( M 2 ) .  
Moreover the complexity of PLT is less than one half of 
KLT. For AR( 1) inputs, the PLT has a closed form expres- 
sion and needs only ( M  - 1) multiplications. 

1. INTRODUCTION 

Transform coding has found many applications in various 
areas of signal processing and communication [I]. Fig. 1 
shows a transform coder implemented using multirate build- 
ing blocks. It is well known that the optimal unitary trans- 
form that yields the maximum coding gain is the KLT. The 
KLT is a unitary matrix that decorrelates the input autocor- 
relation matrix. It consists of eigenvectors of the input auto- 
correlation matrix. Due to its signal dependence and com- 
putational cost, the KLT is often only used as a benchmark 
for performance comparison. In many applications, sub- 
optimal signal independent transforms like discrete cosine 
transform (DCT) are often used. 

Recently there are interests in applying the KLT to uni- 
versal transform coding. By estimating the statistics from 
quantized data, the authors in [2] derive a class of uni- 
versal transform coders using KLT. No side information is 
needed because both encoder and decoder can access the 
quantized data. Promising experimental results are demon- 
strated. In [3], the authors introduce a classification based 
method using KLT. The signal space is divided into a num- 
ber of classes and a fixed transform is designed for each 
class. In the proposed two-stage algorithm, the encoder uses 
a collection of transfondbit allocation pairs. In [4], it was 
shown that under the assumption that the quantization noise 

THIS WORK WAS SUPPORTED BY NSC 87-2218-E-002-053 AND 
NSC 87-2213-E-009-052, TAIWAN, R.O.C. 

Yuan-Pei Lin 
Dept. Electrical and Control Engr. 

National Chiao Tung Univ. 
Hsinchu, Taiwan, R.O.C. 

is white, KLT is no loss of generality among all transforms 
(unitary or nonunitary). That means, for a given statistics 
the coding gain of the best non unitary transform cannot be 
better than that of KLT. In this paper, we introduce a class 
of optimal nonunitary transform that has the same coding 
performance as KLT. In addition to its excellent coding per- 
formance, the new transform has many other features that 
make it an attractive choice for signal compression. Many 
results in this paper will be stated without proof. Readers 
are referred to [5] for details. 

2. PREDICTION-BASED LOWER TRIANGULAR 
TRANSFORMS 

Consider Fig. 1. Let ~ ( n )  and y(n)  be respectively the 
input and output vectors of the transform T. Assuming that 
the input is real and WSS, then the M x M autocorrelation 
matrices are related as 

R, = TR,T? (1) 

Since R, is symmetric, its eigenvectors are orthonormal. 
By choosing these eigenvectors as the column vectors of T, 
R, is diagonal. In other words, the transform coefficients 
yi(n) are uncorrelated. Such a unitary transform T is the 
well-known KL,T. One can show [I] that KLT maximizes 
the coding gain of the transform coder. Let g: be the input 
variance and uLLT(k) be the variances of Zk(n) for KLT. 
Then under optimal bit allocation, the coding gain of KLT 
is given by [ 13 

However the KLT is not the only transform that has this 
decorrelation property. In fact, there exists a lower trian- 
gular matrix T such that the transform coefficients yk(n) 
are decorrelated. To see this, we need to use the following 
lemma from matrix theory [6] : 

Lemma 1 The LU decomposition of matrices [6]: Let A 
be an M by M nonsingular matrix. Suppose that all of its 
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Figure 1: An M-dimensional transform coder. 

principle submatrices AK are nonsingulal: Then A can be 
written as 

A = LDU, (3) 

in which L (respectively U} is a lower (respectively upper) 
triangular matrix with all diagonal entries equal to I ,  and 
D is a diagonal matrix. Moreover the matrices L, U and D 
are unique. In particulal; D is determined by det[D~] = 
det [AK], where K = 1, . . . , N.  

It is not difficult to show that if the matrix A is symmetric, 
then the unique matrices U and L in Lemma 1 are related 
as U = LT. Applying this fact to (l), we immediately 
see that there is a unique lower triangular matrix P such 
that PR, (M)PT is a diagonal matrix. Such a transform P 
will be called Prediction-based Lower triangular Transform 
(PLT). The reason for this name will become clear later. The 
geometric mean (CM) of the subband variances ugLT be- 
comes 

M-1 

k=O 

(4) 

The GM of ( T & ~  (11.) is the same as that of &,,( k ) .  How- 
ever the PLT is not unitary and one can show [5] that the 
quantization noise qi(n) in Fig. 1 will be amplified by the 
inverse PLT at the decoder. Therefore the coding gain of the 
PLT is less than thiat of KLT in (2) if the traditional trans- 
form coding structure in Fig. 1 is used. To solve this prob- 
lem, we will introduce a novel minimum noise structure for 
the PLT in the next section. 

Given any input with autocorrelation matrix R,, PLT can 
be obtained by using the Gaussian elimination in 0 ( M 3 ) .  
However since R, is Toeplitz, the computation of PLT can 
be done in 0 ( M 2 ) .  To see this, let p k , i  be the coefficients 
of P in the kth row and let 

Pk(Z) = 1 + p k , k - l Z - l +  .. . + p k , O Z - k ,  ( 5 )  

for k = 1,. . . , M - 1. If we take P k ( z )  as the kth or- 
der prediction filter of x(n) ,  then the transform coefficients 
y k  (n)  are the kth order prediction error e k ( n  - M + k + 1). 
Using the orthogonality principle from linear prediction the- 
ory [l], one can show that E { y k ( n ) y j ( n ) }  = 0 fork # j. 
From Lemma 1, we know that the lower triangular matrix 
with such a decorrelation property is unique. Therefore the 
matrix P formed by the prediction filter coefficients is the 
PLT. Hence P is called the prediction-based lower triangu- 
lar matrix. Using the Levinson-Durbin fast algorithm, all 
the kth order prediction filters (for k = 1, . . . , M - 1) can 
be obtained in c3(M2). The kth subband variance for PLT, 
ugLT(k), is equal to the kth order prediction error variance, 
E (  k ) .  Summarizing the results, we have 

Theorem 1 The PLF Consider the transform coder in Fig. 
1. Given any wide sense stationary input x(n),  there exists 
a unique lower triangular matrix P with unity diagonal ele- 
ments such that the transform coeficients y k  (n)  are uncor- 
related. The unique optimal lower triangular tran.s$orm can 
be obtained by choosing % ( z )  in (5) as the kth-order op- 
timal prediction error jiltel: Moreover the autocorrelation 
matrix of the subband vector y ( n )  is 

R, = diag(E(O), E ( 1 ) ,  . . . , E(M - l)), ( 6 )  

where E ( k )  is the prediction error variance of P k ( z ) .  

3. LADDER-BASED AND MINLAB STRUCTURES 
FOR PLT 

Using two different factorization forms of lower triangular 
matrices, we are able to find two structurally PR implemen- 
tations using ladder structure for PLT [5 ] .  In this paper, we 
will discuss only one of the structures and readers are re- 
ferred to [5] for the other. Note that the lower triangular 
matrix P can be decomposed as 
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Figure 2: Ladder-based implementation of a four-channel PLT coder. 

where the elementary matrix P k  is 

I k  O M - k - l x k )  

Using (7), we have P-l = P$-l . . . PT1. The inverses 
of these elementary matrices, Pa1 can be obtained by re- 
placing the nontrivial elements p k , i  in P with -pk,i .  Fig. 2 
shows the ladder-based implementation obtained from this 
factorization for the case of M = 4. The advantages of the 
ladder structure are two-fold: (1) In the absence of quan- 
tizers, the PLT coder continues to have PR even when all 
the multipliers p k , $  in the structure are quantized to a finite 
precision. (2) The inverse transform also has p k , i  as its mul- 
tiplier and it can be obtained by inspection. 

However, the PLT is a nonunitary matrix, so is its inverse. 
Hence the PLT coder does not have the energy preservation 
property. In general, the quantization noise generated in the 
subbands will be amplified at the decoder. To see this, con- 
sider Fig. 2. The inputs to the multipliers p k , i  at the encoder 
are the unquantized data while the inputs to the multipli- 
ers p k , i  at the decoder are quantized data. That means, the 
predictors at the encoder use unquantized data as their ob- 
servations while the predictors at the decoder use the quan- 
tized data. It is this mismatch that causes the noise amplica- 
tion. To avoid the mismatch of observations, one can mod- 
ify the structure so that the inputs to the multipliers p k , i  at 
the encoder are the quantized data instead of the original un- 
quantized values. The encoder of the modified structure for 
M = 4 case is shown in Fig. 3 and the decoder is the same 
as Fig. 2. From the figure, one can verify that the structure 
has the unity noise gain property. This property holds even 
for correlated and colored quantization noise. The imple- 
mentation in Fig. 3 will be referred to as MInimum Noise 
LAdder-based Biorthogonal (MINLAB) structure for PLT. 

Using the unity noise gain property and the fact that the GM 
of the subband variances is equal to det[R,], one can prove 
that the coding gain for the MINLAB PLT coder is the same 
as KLT. 

t 

PlO 

Figure 3:  The encoder of a PLT MINLAB structure, the 
decoder is the same as Fig. 2. 

Remark: As MINLAB coder has the unity noise gain prop- 
erty, its average output noise variance is minimized if all 
quantizers have the same noise variance. Therefore the 
equal stepsize rule is optimal and entropy coding can be 
used to encode the outputs of Qk. 

4. OTHER ATTRACTIVE FEATURES OF PLT 

Optimal Universal Transform Coders: Since the MINLAB 
structures are structurally PR, even when the multiplierspk,i 
in Fig. 3 are time-dependent, the PR property continues to 
hold. The statistics of the input can be adaptively estimated 
from the quantized data and these informations can be used 
to update the prediction filters. Since both the encoder and 
decoder have access to the quantized data, there is no need 
to send or store any side information. Given any input sig- 
nal, we can initialize the PLT as P(O) = I. After each input 
vector x(n) is encoded with P(n), the statistics can be up- 
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dated and the transfclrm P(n+l) can be computed in U ( M 2 )  
using the Levinson-IDurbin fast algorithm. After a few iter- 
ations, if the statistics of the input does not vary too fast, the 
rate of adaptation can be reduced. And the transform can be 
updated only after a number of input vectors are encoded. 

Lossless/Lmsy Transform Coders: In many applications, it 
is desired that a lossy coding system becomes lossless when 
a sufficient bit rate is available. Since the multipliers of KLT 
are real numbers, in practice they have to be quantized. In 
general KLT with quantized multipliers will not have the 
PR property. Therefore KLT in general cannot be used for 
lossless coding. On the other hand, the MINLAB structures 
for PLT can implement both lossy and lossless coders after 
some minor modifications. To see this, assume that the input 
values z(n)  are integers. If the outputs of all the multipli- 
ers (in both encoder and decoder) in Fig. 3 are quantized to 
integer, then the PR property continues to hold. This quan- 
tization can be rounidoff, truncation or ceiling quantization. 
Recall that PLT coder is optimal when equal stepsize rule is 
applied to in Fig. 3. Therefore we can set the stepsize 
nk of quantizer Qk to the same value and entropy coding 
can be used to encode the quantized subband signals. If 
all & = n > 1, then we have a lossy PLT coder. If all 
& = 1, then the F‘LT coder becomes lossless. Therefore 
we can implement both lossy and lossless coding with the 
same PLT coder by isimply adjusting the stepsizes &. 

!5. AR(1) INPUTS 

If the input is an AF:( 1) process with correlation p, then all 
the prediction error polynomials Pk ( 2 )  in (5) will have the 
same form (1 - pz - l ) .  The PLT in this case has the follow- 
ing closed form 

Once p is known, we can find P by inspection, no compu- 
tation is needed. Therefore the optimal universal PLT coder 
introduced in Section 4 becomes very simple, we need to 
estimate only one parameter p. The coding gain in this case 
becomes 

M - 1  

C G P L T , M I N ( M )  = (9) 

When M is large, the above gain approaches the coding gain 
of a DPCM coder. 

Also note that the transform in (8) is almost independent 
of the input signal. An M x M PLT for AR(1) process 
needs only (M-1) multiplications and additions. Thus its 
complexity is lower than the DCT which has a complexity 
of U ( M  log M ) .  Moreover the PLT in (8) is optimal for all 
AR( 1) processes, unlike DCT which is optimal only when 
p approaches 1. 

6. COMPARISON WITH KLT 

We will conclude the paper by providing a comparison of 
PLT and KLT 

1. PLT has the same coding performance as the KLT. 
2. The design cost of PLT is much lower than that of KLT. 

The implementational of PLT is less than one half of 
KLT. 

3. Unlike KLT, PLT has a structurally PR implementation 
using simple building blocks. 

4. PLT coders can implement both lossy and lossless 
compression while KLT in general cannot be used for 
lossless coding. 

5. Unlike KLT, PLT has the simple form in (8) €or AR( 1) 
inputs. In this case, the M-dimensional PLT takes only 
M - 1 multiplications and additions for each input 
block. Moreover it is almost signal independent. 
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