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ABSTRACT 

The DMT (discrete multitone modulation) technique has 
been widely applied to data transmission over fading chan- 
nels of twisted pairs. It has been shown that the DMT sys- 
tem with ideal filters can achieve within 8 to 9 dB of the 
channel capacity of ADSL. The DFT based DMT system 
is proposed as a practical DMT implementation but its op- 
timality is never asserted. In this paper we will show that 
the DFT based DMT systems are asymptotically optimal 
although they are not optimal for finite number of chan- 
nels. The DFT based DMT system and the DMT system 
with ideal filters achieve the same bound. However, for a 
modest number of channels the optimal transceiver can pro- 
vide substantial gain over the DFT based system as will be 
demonstrated by examples. 

1. INTRODUCTION 

Recently there has been great interest in applying the dis- 
crete multitone modulation (DMT) technique to high speed 
data transmission over fading channels such as ADSL and 
HDSL [1][2]. Fig. 1 shows an M-channel DMT system 
over a fading channel C ( z )  with additive noise e(n).  The 
channel is divided into M subchannels using the transmit- 
ting filters Fk(z) and receiving filters Hk(z) .  The input 
is parsed and coded as modulation symbols, e.g., QAM 
(quadrature amplitude modulation). With judicious power 
and bit allocation, DMT can provide significant gain over 
fading channels. In [3], Kalet shows that the DMT system 
with ideal filters can achieve within 8 to 9 dB of the channel 
capacity of ADSL. 

In the widely used D l T  based DMT system, the trans- 
mitting and receiving filters are DFT filters. For a given 
probability of error and transmission power, bits can be al- 
located among the subchannels to achieve maximum total 
bit rate Rb,maz. Very high speed data transmission can be 
achieved using DFT based DMT system at a relatively low 
cost [ 11. This technique is currently playing an important 
role in high speed modems for ADSL and HDSL. 
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In the DMT system the bit rate Rb,maz depends on the 
choice of the transmitting and receiving filters. The use: of 
more general orthogonal transmitting filters instead of DFT 
filters is proposed in [4]. From the view point of multiidi- 
mentional signal constellations it is shown that, for AWGN 
fading channels the optimal transmitting and receiving fil- 
ters are eigen vectors associated with the channel. How- 
ever in ADSL or HDSL applications, the channel noise is 
often the colored NEXT noise due to cross talk [3]. For fad- 
ing channels with general colored noise source, the optimal 
transceiver is derived in [5].  The optimal transceiver decom- 
poses the channel into eigen channels by incorporating the 
channel frequency response and the noise power spectrum. 

The DFT based DMT system is proposed as a practical 
DMT implementation but its optimality is not asserted. In 
this paper we will show that the DFT based DMT systems 
are asymptotically optimal. The performance of the DFT 
based DMT systems becomes close to that of optimal DMT 
systems when the channel number M is sufficiently large. 
Furthermore the asymptotical performance of these two sys- 
tems is the same as that of the DMT system with ideal filters 
in [3]. Although the DFT based DMT system is asymptoti- 
cal optimal, the optimal transceiver provides significant gain 
over the DFT based system for a modest number of chm- 
nels. An example with NEXT noise source will be given to 
demonstrate this. 

2. ZERO IS1 DMT TRANSCEIVER 

Consider the system model of an M-channel DMT 
transceiver over a fading channel C ( z )  with additive noise 
e ( n )  in Fig. 1 .  Suppose the channel C ( z )  is an FIR filter 
with order L,  which is a reasonable assumption after chan- 
nel equalization. In practice, to cancel IS1 (inter-symbol in- 
terference) some degree of redundancy is introduced and the 
interpolation ratio N > M .  Usually we have N = M + L. 
The length of the transmitting and receiving filters is also 
N .  

Polyphase representation. The DMT system can be re- 
drawn as in Fig. 2 using polyphase decomposition [2]. The 
transmitter G is an N x M constant matrix; the Icth clol- 
umn of G contains the coefficients of the transmitting filter 
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Figure 1: An M-channel DMT system over a fading channel. 

Fk(z).  The receiver S is an M x N constant matrix; the 
kth row of S contains the coefficients of the receiving fil- 
ter Hk ( z ) .  The matrix C ( z )  is an N x N pseudo circulant 
matrix [6] with the first column given by 

0) = (CO c1 . .. CL 0 ... 

where {cn};=, is the channel impulse response. The con- 
dition for zero IS1 becomes SC(z)G = I. 

Figure 2: The polyphase representation of the DMT system. 

DFT based DMT systems. In the DFT based DMT 
system (Fig. 3), the transmitting and receiving filters are 
DFT filters. Redundancy takes the form of cyclic prefix. 
Define W as the M x M DFT matrix with [W],, = 
1 / m e - j 2 T m n / M ,  for 0 5 m,n < M .  One can verify 
that D I T  based DMT system has transmitter and receiver 
given by 

G = [WW,]', S = r 1 [ 0  W], (1) 

where W1 is a submatrix of W that contains the 
first L columns of W and I? is the diagonal matrix 
dzhg(Co,Cl,.-. , C M - l )  with {Ck}E;' denotingthe M 
point DFT of cn. 

Zero IS1 DMT systems. Using singular value decompo- 
sition, we can decompose CO as, 

CO = Iuou1] (t) VT = UoAVT, (2) 
N x M  

U 

where U and V are N x N and M x M unitary matrices. 
The column vectors of U and V are respectively the eigen- 
vectors of CoCF and CFCo. The matrix A is diagonal and 
the diagonal elements Xk are the singular values of CO. 

Consider the case that the transmitter is a unitary trans- 
formation followed by padding of L zeros, in particular 

G = ( T ) ,  (3) 

where Go is an arbitrary M x M unitary matrix. For zero 
ISI, we can choose 

s = G ; ~ v A - ~ u ; ~ .  (4) 

When the transmitter is chosen as Go = VT, the receiver 
is S = A-lUOT. This becomes the DMT system developed 
in [4]. 

3. TRANSMISSION POWER 

For a given average bit rate Rb, the design of the transmitter 
and receiver affects the required transmission power. Let 
RN be the N x N autocorrelation matrix of the channel 
noise process e(n). The M x 1 output noise vector of the 
receiver has autocorrelation function given by 

R = S R N S ~ .  

Let the number of bits allocated to the k-th channel be bk ,  

then the average bit rate is Rb = k CL;' b k .  The actual 
bit rate is +Rb, where T is the sampling period of the sys- 
tem. Let P(Rb, P,, M )  be the transmission power required 
for the M channel transceiver to achieve an average bit rate 
of Rb and probability of error Pe. With optimal bit allo- 
cation, the transmission power for the given transceiver is 
minimized and is equal to [5] 

P(Rb, Pe, M )  = c ~ ~ ~ ~ ~ ' ~ ( ~ E ~ ~ [ S R N S ~ ] ~ ~ ) ~ / ~ ,  
(5 )  

where the constant c depends on the given probability of 
symbol error P, and the modulation scheme. 

In the DFT based DMT system, the receiver is S = 
I?-l[O W] as given in (1). In this case we can verify that 
transmission power is 

PDFT(Rb, pe, M )  
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Figure 3: An M-channel DFT based DMT system. 

From ( 5 )  we see that the transmission power can be further 
minimized by optimizing the transceiver. Using the optimal 
transceiver, the minimum transmission power is [ 5 ]  

4. ASYMPTOTICAL PERFORMANCE 

In this section we will show that the DFT based DMT sys- 
tems are asymptotically optimal although they are not opti- 
mal for finite number of channels. For a given error prob- 
ability and bit rate, we will show that the power required 
in DFT based DMT system approaches that of the optimal 
system for large M .  In particular, 

Note that this is the same bound achieved by the DMT sys- 
tem with ideal filters as derived in [3]. The proof can be 
done in two steps. 

Step I: Using the distribution of eigenvalues for Toeplitz 
matrices [7], we are able to show that 

lim det(A2)1/M = lim det(rtI ' ) l lM 
M+03 M + m  

(7) 

where C(ejw) is the Fourier transform of cn. 

can show that 
Step 2: Using properties of positive definite matrices, we 

lirn (det(U,TRNUo))l'M 
M+03 

On the other hand, properties of Toeplitz matrices give us 
[81> 

With the equalities in (7)-(9), we can establish (6). 
Proof of(7): Eq. (7) is a result for sequences of asymp- 

totically equivalent matrices. Define the strong norm I I . I I 
and the weak norm I . I of an n x n matrix A respectively as 

1 
n 

, IAl = (-trace(AtA))'I2. 

Two sequences of n x n matrices An and Bn are said to 
be asymptotically equivalent [7] if 

and llAnll, IlBnll 5 Mi < CO, lim [An - BnI = 0. 
n-+O 

Suppose An and Bn have eigenvalues Qn,k  and Pn,k ,and 
MO 5 (Yn,k,Pn,k 5 Mi. In [7], Gray shows that 

where F(.)  is an arbitrary function continuous on [MO, MI]. 
To show (7), we observe that 

det(A2) = l-IL;'AE, and det(I'+I') = IIE;11Ck12. 

The values A i ,  for k = 0,1 , .  . . , M - 1, are the eigenval- 
ues of AM = CTCo, where the subscript M indicates that 
AM is an M x M matrix. Now we construct a sequence of 
matrices that is asymptotically equivalent to AM and their 
eigenvalues are Define 

eo = (IM ; ) Co. 

Then it can be verified that e o  is an M x M circulant mawix 
with the first column given by 

(CO c1 ... CL 0 ... o)? 
It is known that circulant matrices can be diagonalized by 
DFT matrices, 

where I' is the diagonal matrix in (1). Let BM = ei&,, 
then the eigenvalues of BM are lek 1 2 .  It can be verified that 
AM and BM are asymptotically equivalent, so 

eo = w r w t ,  

. M-1 ~ M-I 
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The second equality of (7) follows readily from the fact that 
c k  are the M points DFT of cn. AA 

Proof of (8): Note that the matrix U ~ R N U O  is the 
M x M leading principle submatrix of P = U T R ~ U ,  
where U is as defined in (2). Let the eigenvalues of P be 
ordered as 70 5 y1 5 . . . 5 y ~ - 1 .  Using the interlacing 
property of eigenvalues for positive definite matrices [9], it 
can be shown that det ( U ~ R N U ~ )  is bounded between the 
product of the M largest eigenvalues and the product of the 
M smallest eigenvalues, i.e., 

7071 * * * Y M - l  5 det(UcRNU0) 5 ?’LYL+I ’*‘?”-1.  

Suppose the power spectral density See (ej“) of the channel 
noise has minimum Smin > 0 and maximum Sma, < CO. 

Then these eigenvalues are bounded between Smin and 
Sma, , in particular, 

Smin I 70 I YI 5 . . . 5 Y N - 1  L smaz. 

It follows that 

Combining the above two equalities, we have 

Also observe that det P = det R N .  The matrix RN is 
Toeplitz and it is the N x N autocorrelation matrix of 
See (ej“). It is known that [ 101 

lim (detRN)l”  = e z p  ([:1nsee(e3”)G) . dw 
N+CU 

Letting M go to CO in (lo), we arrive at (8). AA 
Note that the DMT system developed in [4] does not 

achieve this bound asymptotically. To see this, let C ( z )  = 
1, then the transmitter and receiver are identity matrices. 
The coding gain of the system in [4] is one regardless of the 
number of channels. On the other hand, the coding gain cor- 
responding to the asymptotic bound in (6) is always greater 
than one if the channel noise is not white. 

Example. Suppose the channel C ( z )  is an FIR filter of 
order 1 and C(z) = 1 + 0.52-l. For the same probability 
of error and same bit rate, Fig. 4 shows P D ; T ( R b r P e r M ) ,  

the ratio of power needed in optimal system over the power 
needed in the DFT-based system. We plot the ratio as a 
function of M for two different noise sources, the AWGN 
and NEXT noise source, which is colored channel noise due 
to cross talk [3]. 

From Fig. 4 we see that, for both noise sources the ratio 
approaches unity as the channel number M 

PO t(Rb,Pe,M) 

increases. But for the NEXT noise channel, the ratio ap- 
proaches unitary only for very large M .  We can see that for 
a modest number of channel the optimal system provides 
substantial gain. 
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Figure 4: The ratio of the power needed in the optimal DMT 
system over the power needed in DFT based system for the 
same probability of error and the same bit rate. 
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