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ABSTRACT 

In this paper, a novel minimumnoise structure is intro- 
duced for ladder-based biorthogonal filter banks. The 
proposed MInimum Noise LAdder-based Biorthogor- 
nal (MINLAB) coder ensures that the noise gain of 
the quantizers is unity, even though the system is not 
orthonormal. The coding gain of the optimal MIN- 
LAB coder is always greater than unity. For both the 
AR(1) and MA(1) processes, the MINLAB coder with 
2 taps outperforms the optimal orthonormal coders of 
uny number of taps. In addition to its superior cod- 
ing performance, the optimal biorthogonal coder has a 
very low design and implementational cost. Moreover 
the proposed coder enjoys many advantages that make 
it an attractive choice for lossy/lossless data compres- 
sion. 

1. INTRODUCTION 

Recently there has been considerably interest in ap- 
plying the ladder structure to data compression [1]- 
[4]. Fig. 1 shows a simple two-channel filter bank (FB) 
that uses only one ladder. In the absence of quantiz- 
ers, the FB has perfect reconstruction, regardless of 
the choice of P ( z ) .  The implementation and design 
of the biorthogonal system involve only P ( z ) ,  hence 
its complexity is very low. Even though the system is 
simple, its coding performance is comparable to that 
of orthonormal coders. 

The ladder-based FB has found applications in both 
the lossless and lossy coding of images. In [l], the 
authors apply the ladder structure for the high bit 
rate lossy/lossless coding of medical images. In [a], 
the S+P-transform was introduced and it was demon- 
strated that in the application of both lossy and loss- 
less image coding, the S+P transform produces excel- 
lent compression results. In [3], the optimal predictor 
with certain zero constraint is used as P ( z ) .  In [4], 
the authors proposed a ladder structure with integer 
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to integer transform for the lossless coding of images. 
However all the ladder-based coders considered above 
do not have the unity noise gain property. Therefore 
in the case of lossy compression, like most biorthogonal 
coders, the coding gain of the ladder structure FB is 
not guaranteed to be greater than unity. 

On the other hand, the class of orthonormal FB is 
known to have coding gain Cg 2 1. There has been a 
lot of interest in finding the optimal orthonormal FB 
that yields a maximum coding gain for a given input 
statistics [5], [6]. The theory of optimal orthonormal 
coder is closely related to the principle component FB 
and its solution is given in [5]. The optimal FIR case 
is solved in [6]. 

In this paper, a minimum noise structure is intro- 
duced for the ladder-based FBs shown in Fig. 1. The 
proposed MINLAB coder has the unity noise gain prop- 
erty. The coding gain of the optimal MINLAB coder 
is equal to the square root of the prediction gain and 
hence it is guaranteed to be greater than or equal to 
unity. The optimal biorthogonal coder can be solved 
using Levinson recursion. For both AR( 1) and MA( 1) 
processes, the proposed biorthogonal coder with 2 taps 
has a higher coding gain than any optimal orthonor- 
mal FB (with any number of taps). Many results in 
this paper will be stated without proof. The readers 
are refered to [7] for details. 

2. TRADITIONAL SUBBAND CODER 

Throughout this paper, we make some commonly used 
assumptions on the quantizers. Assume that the quan- 
tizers are scalar uniform quantizers and can be mod- 
elled as an additive noise source as indicated by the 
dashed line in Fig. 1. We assume that for a bi-bit quan- 
tizer, the variance of quantization noise qi (n )  satisfies 
uq, - U=, .  

In a traditional subband coder, quantizers Qi are 
placed directly after the subband signals zi(n) as shown 
in Fig. 1. The output noise qout(n) contains contribu- 
tion from both qo(n) and ql(n).  Due to the upsampler, 
the output noise is not a WSS process. To quantify the 
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Figure 1: Conventional subband coder using ladder. 

error, we use the average noise variance. Assume that 
ql(n) is white and uncorrelated with qo(n). Then one 
can show that the average noise variance is 

where Ep = s,"" lP(ej")I2g is the energy of the filter 
P ( z )  and U:, is the variance of the quantization noise 
q;(n) .  The noise gain for qo(n) is unity while q l (n )  is 
amplified by 1 + E p .  Due to this noise amplification, it 
is not guaranteed that the coding gain CG 2 1. 

3. THE MINLAB CODER 

In the traditional subband coder shown in Fig. 1, the 
input to P ( z )  at the analysis end is z(2n - l) ,  while 
the input to P ( z )  at the synthesis end is its quantized 
version, 5(2n - 1). That means, in the reconstruction 
process ql(n) is added to the top branch through the 
filter P ( z ) .  To avoid this, we can move the quantizer 
&I to the left, as shown in Fig. 2. This has the dramatic 
effect of making the noise gain unity. We will refer to 
Fig. 2 as the MInimum Noise Udder-based Biorthogo- 
nul (MINLAB) coder. To explain the unity noise gain 
property of this structure, note that from Fig. 2, we 
have the following relations: 

From the above equations and Fig. 2, we can conclude 
that the errors on the top and bottom branches are 
respectively 

yo(n) - 4 2 n )  = qo(n), y1(n) - z(2n - 1) = q1(n). 

Therefore the average variance of output error in the 
MINLAB coder is given by uiout = 0.5(u9,+uiI). That 
means, the noise gain is always one even though the FB 
is never orthonormal. Using our noise model, uioul can 
be rewritten as: 

where we have used the fact that U:, = U:. Applying 
the arithmetic mean geometric mean inequality to the 
above equation, we get 

with equality if and only if the bits are allocated as: 

where b = 0.5(bo + b l )  is the average bit rate. From 
the above derivation, we see that the average output 
noise variance uiout is minimized when the two quan- 
tizers have the same noise variance. The noise vari- 
ances uii and the quantization stepsize A; are related 
as uii = const * A:. The MINLAB coder is optimal 
if the stepsizes of the quantizers are equal. Therefore 
we conclude that the equal slepsize rule is optimal for 
the MINLAB. Entropy coding can be applied to fur- 
ther compress the quantizer output. If we define the 
coding gain of the coder as the ratio of the error vari- 
ance in PCM over that of the coder, uiout. Then under 
the optimal bit allocation (l) ,  the coding gain can be 
written as: 

Optimal P ( % )  
From (2), the coding gain CO is maximized if a;, 

is minimized. The optimal solution of P ( z )  such that 
is minimized can be obtained from the well-known 

linear prediction theory. To see this, let P ( z )  be an 
FIR filter of the form P ( z )  = C:&p(n)z-". Then 
the optimal solution is precisely the optimal predictor 
of z(2n) based on the observations of z(2n - 2k - l), 
for - N  5 k < N .  Noncausal predictor can be used 
here since we are predicting the even samples from the 
odd samples. A causal implementation of such a sys- 
tem is always possible by inserting enough delays at 
appropriate places in Fig. 2. Let z ( n )  be a real-valued 
wide sense stationary process with autocorrelation co- 
efficients r(k). Then using the orthogonality principle, 
the optimal p(n)  that minimizes is the solution of 
the following equation 

R,P = r, (3) 

where p = [p(-N) p ( - N  + 1) . . . p ( N  - 1)IT, r = 
[ r ( 2 N  - 1) r ( 2 N  - 3 )  . . . r(1) r(1) . . . r ( 2 N  - 1)IT, 
and the matrix R, is 

r(0)  ~ ( 2 )  . . . r ( 4 N  - 2) 
r(0)  . . .  r ( 4 N - 4 )  

r (4N - 2) r ( 4 N  - 4) . . . r (0 )  

R, = 
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Figure 2: The MINLAB coder. 

Since R, is the autocorrelation matrix of the signal 
z ( 2 n  - l), it is positive definite. Therefore the above 
normal equation can be solved in O ( N 2 )  by using the 
Levinson fast algorithm. The optimal predictor p is 
given by popt = R;'r. And the minimum achievable 
variance u$o,min is given by 

N - 1  

& = r(0)  - rTR;'r = r(0) - pOpt(k)r(2k -t 1). 
k = - N  

And the prediction gain is Gp = u$/u$o,min = U:/& 2 
1. The prediction gain is unity if and only if all the 
observations are uncorrelated to the target of predic- 
tion z ( 2 n ) .  Using ( 2 ) ,  the maximum coding gain of the 
MINLAB coder is CG,,, = a. 

Note that in the derivation of (3),  we have assumed 
that the autocorrelation matrix of the quantized obser- 
vations 2(2n - 1) is very close to that of the original 
observation. This assumption is valid only when the 
bit rate is high so that the quantization noise variance 
is small. In the case of low bit rate coding, the auto- 
correlation matrix of 2(2n - 1) can differ significantly 
from that of z ( 2 n  - 1). This can result in a substan- 
tial loss in coding performance. In [7], the minimum 
mean-square-error (MMSE) predictor is derived. 

Linear phase property: The optimal predictor popt = 
R;'r has linear phase, i.e., p, t (n)  = p,t(-n - 1). To 
see this, note that the matrix R, satisfies JR,J = R,, 
where J is the reversal matrix. Since the vector r is 
symmetric, we have Jr = r. Using these properties, we 
can rewrite (3) as R,(Jp) = r. Comparing this equa- 
tion and (3),  we conclude that Jpopt = popt. Hence 
P ( z )  has linear phase. 

4. MERITS OF MINLAB CODER 

The MINLAB coder in Fig. 2 enjoys many advantages 
[7]. In the following, we list some of them: 

1. Low design and implementational cost: The design 
of the optimal MINLAB coder is simple. Unlike 
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the optimal orthonormal coder, no constrained op- 
timization and no spectral factorization is needed. 
Optimal MINLAB coder can be obtained by us- 
ing Levinson algorithm. To implement the anal- 
ysis or synthesis bank, we need only one filter 
P ( z ) .  Moreover the optimal P ( z )  has linear-phase. 
Therefore the complexity of the biorthogonal coder 
is roughly a quarter of that of an orthonormal 
coder of the same order. 

Low delay: It is known that the delay of an or- 
thonormal coder is proportional to the filter order. 
The longer the filters are, the larger the system de- 
lay is. In the MINLAB coder, if P ( z )  is a causal 
filter, then the system delay is only one sample 
regardless of the filter order. As the prediction 
gain increases with filter order, so is the coding 
gain. Therefore we can improve the performance 
of such a biorthogonal coder without introducing 
extra system delay. 

Lossy/lossless compression: Let the input x ( n )  be 
a discrete amplitude signal with stepsize A,. For 
many applications, the inputs are integers. Sup- 
pose the output of P ( z )  is quantized using a quan- 
tizer Qp. Then the MINLAB coder can be modi- 
fied for lossless compression as follows: 

(a) Set the stepsize of Qp be an integer multiple 
of A,. That is, Ap = n A ,  for some integer n .  
Normally n = 1. And any type of quantizer 
(round off or truncation or ceiling) can be 
used as Qp. 

(b) Set the stepsizes of the subband quantizers as 
A0 = A, = A,. And use entropy coding to 
encode the outputs of QO and Q1. 

Therefore by varying the stepsizes of the quantiz- 
ers, we can get both lossy and lossless compression 
with the same structure. 

Incorporation of EZW algorithm: It can be shown 
[7] that the MINLAB coder in Fig. 2 can be gener- 
alized to obtain a tree structure MINLAB coder. 
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Such a system continues to enjoy all of the p r o p  
erties listed above. Using this wavelet-type MIN- 
LAB coder, the embedded zerotree wavelet (EZW) 
algorithm can be applied. 

Example I .  AR(I) Inputs: Let the input be an AR( 1) 
process with r(k) = plkl for 0 < p < 1. For this AR(1) 
process, we compare the performance of the following 
various coders: 

1. Let P ( z )  = p(-l)z+p(O). From the normal equa- 
tion (3), we get the optimal predictor as p(0)  = 
p(-1) = p/(l + p 2 ) .  The optimal coding gain 
has the closed form expression CGMINLAB(~) = 
J(l + p2)/(1 - p2) ,  where the index 2 indicates 
that the predictor has 2 taps. But in this case 
only 1 multiplier is needed. 

2. Take P ( z )  = p ( 0 ) .  The optimal predictor is simply 
P ( z )  = p and the coding gain is CGMINLAB (1) = 
l/JW. 

3. Consider the coding gain for optimal orthonormal 
coders with infinite taps and 4 taps. It was shown 
in [5]-[SI that the coding gains are respectively 

C G o r t h o ( m )  = (J1 - ( 1 6 / ~ ~ ) ( t a n - ~ p ) ~ )  and 

CGortho(4) = J(1 + 1/3p2)/(1 - p 2 ) -  

-1 

4. The DPCM of order one is optimal in this case as 
the input is an AR(1) process. Its coding gain is 
given by CGDpCM(1) = 1/(1 - p 2 ) .  

5. Suppose that we use the traditional biorthogo- 
nal coder in Fig. 1. Then it can be shown 
that the maximum achievable coding gain for 
a two-tap filter P ( z )  is given by CGtrad;t(2) = 

= (1 + p2)/(1 - p 2 ) J m ,  where Ep 
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Figure 4: Coding gain for MA( 1) process. 
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These gains are shown in Fig. 3. It is clear from 
the figure that CGDPCM(1) > CGMINLAB(2) > 
C G o r t h o ( m )  > CGortho(4) > ~ G M I N L A B ( ~ )  for all Po$- 
sible p. Therefore we see that for AR(1) process, the 
optimal MINLAB coder with 2 taps (1 multiplier) out- 
performs the optimal orthonormal coder with infinite 
number of taps. 

Example2. MA(1) Inputs: Let the input be an MA(1) 
process with r(0)  = 1, r(f1) = p for 0 < p < 0.5, and 
r(k) = 0 for all the other I C .  One can show [7] that 

the five cases defined in Example 1. All these gains 
are shown in Fig. 4. The MINLAB coder with 2 taps 
outperforms all the other coders, including the DPCM 
and orthonormal coders. 
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