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ABSTRACT 

Recently DFT based discrete multitone modulation 
(DMT) systems have been widely applied to various 
applications. In this paper we study a broader class 
of DMT systems using more general unitary matrices 
instead of DFT matrices. For this class we will show 
how to design the optimal DMT systems over fading 
channels with colored noise. Examples will be given to 
show the improvement over the traditional DFT based 
DMT system. In addition we introduce a modified 
DFT based DMT system. The new system has the 
same complexity but better noise rejection property. 

1. INTRODUCTION 

Recently there has been considerable interest in ap- 
plying the discrete multitone modulation (DMT) tech- 
nique to high speed data transmission over fading chan- 
nels such as ADSL and HDSL [1][2]. In the widely used 
DFT based DMT system (Fig. l), the channel is di- 
vided into a number of subchannels by using DFT ma- 
trices. High speed data transmission can be obtained at 
a relatively low cost [l]. In the DFT based DMT sys- 
tem, a certain degree of redundancy known as cyclic 
prefix is added to achieve IS1 free transmission over 
fading channels [1][2]. 

In [6] Kasturia et. a1 advance the DMT system using 
more general unitary matrices instead of DFT matri- 
ces. When the channel noise is AWGN, the authors 
show that the optimal transmitter and receiver are 
composed of eigenvectors of some Toeplitz matrices as- 
sociated with the channel impulse response. However 
for applications such as ADSL, the dominating noise 
source is usually crosstalk and the noise is colored [l]. 

In this paper, we will use a polyphase approach [2J 
to study the DMT system. Using this approach, we 
will derive a modified DFT based DMT system which 
has a better noise rejection property than the tradi- 
tional DFT based system at the same cost. Moreover 
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optimal transceiver for colored noise will be studied 
in details. In particular, we will show how to assign 
bits among the channel so that the total tranmitting 
power can be minimized for a given bit rate. Based 
on the optimal bit allocation the design of the optimal 
transceiver is derived. Futhermore we will see that al- 
though the DFT based DMT system is not optimal, for 
AWGN fading channels, its asymptotical performance 
approaches that of the optimal system when the num- 
ber of channels is large. 

2. POLYPHASE REPRESENTATION OF DMT 
SYSTEMS 

Consider Fig. 2, where an M-channel DMT system is 
shown. Usually the channel is modelled as an LTI fil- 
ter C(z )  with additive noise e (n) .  Assume that C(z )  is 
an FIR filter of order L (a reasonable assumption af- 
ter channel equalization) and e(.) is a zero-mean WSS 
random process. For a given channel number M, the 
interpolation ratio N is chosen as N = M + L .  As re- 
dundancy is introduced in this case, we say the system 
is over interpolated. The filters F k ( z )  and H k ( z )  are 
called transmitting and receiving filters respectively. In 
the DMT system, F k ( z )  and H k ( z )  have length 5 the 
interpolation ratio N .  

Using polyphase decomposition the DMT system can 
be redrawn as in Fig. 3 [2]. The tranmitter G is an 
N x M contant matrix; the kth column of G contains 
the coefficients of the transmitting filter Fk(z) .  The 
receiver S is an M x N contant matrix; the kth row of 
S contains the coefficients of the receiving filter H~(z). 
The matrix C(z) is an N x N pseudo circulant matrix 
[4] with the first column given by 

(COCl . . . cL 0 . . . o)T 
where c, is the channel impulse response. 

Perfect reconstructwn condition. From Fig, 3, we see 
that the overall transfer function of the DMT system 
is 

T(z) = SC(z)G. (1) 
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Figure 1: An M-channel DFT based DMT system 

Figure 2: An M-channel DMT system over a fading channel. 

Figure 3: The polyphase representation of the DMT 
system 

When T(z)  = I we say the DMT system has IS1 free 
property or perfect reconstruction (PR); the outputs 
are identical to the inputs except delays in the absence 
of channel noise. 
Interchange of the transmitting and receiving filters 

One immediate advantage of the polyphase approach 
is that it tells us how to interchange the trasmitting and 
receiving filters and still preserves the PR property. To 
see this, observe that the pseudo-circulant matrix C ( z )  
satisfies, 

where J,v is the N x N reversal matrix. Using (1) and 
(2), we can exchange the transmitter and receiver: if a 
DMT system with transmitter receiver pair (G, S) is 
perfect, then the DMT system (ST, G T )  is also perfect. 
This implies that, we can exchange the transmitting 
filters and receiving filters and the system is still perfect 
even when the channel is a fading channel. 

3. MODIFIED DFT BASED DMT SYSTEMS 

The block diagramof DFT based DMT system is shown 
in Fig. 1. The transmitter performs two operations: 

computing the M-point inverse DFT of each input 
block and adding L cyclic prefix. The redundancy al- 
lows the receiver to remove IS1 and the overall system 
is perfect. The receiver consists of an M-point DFT 
matrix and M scalars 1/ck, for k = 0, I , . . .  , M - 1, 
where c k  are the M-point DFT of the channel impulse 
response. It has the great advantage that the whole 
system is almost channel independent except the M 
scalars 1/ck. 

One can verify that the transmitter G = [WW#, 
where W is the M x M DFT matrix with [W],, = 
W"" and W = e-j2a/M and W1 is a submatrix of 
W that contains the first L columns of W. The re- 
ceiver is S = A-'[O W], where A is the diagonal ma- 
trix diag(C0, c ~ ,  . . . , CM-l). Note that the kth row 
of S contains the coefficients of the kth receiving filter 
Hk(z). So the receiving filters are DFT filters of length 
M and hence the frequency responses will have a main 
lobe of width 27rIM. 

Now if we exchange the transmitter and the receiver 
(with slight modification), we get the modified DFT 
based DMT system. 

G = (:+) , S = A-'[WWl]. 

The modified system has the same complexity as the 
conventional case. But the new receiving filters are 
DFT filters with length N instead of M in the con- 
ventional case. The allows the new system to enjoy 
additional advantages. First, the new receiving filter 
have narrower bandwidth 2 a l N .  Fig. 4 gives a com- 
parison of the conventional and new receiving filters for 
the same transmitting power. Only the first receiving 
filters of these two systems are shown as the other re- 
ceiving filters are shifted versions of the first filter. The 
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narrower main lobe in the modified case gives better 
performance in rejecting out of band noise. Moreover, 
the new receiving filters have longer length. The chan- 
nel noise will be averaged over a longer block and the 
effect of impulsive noise will be reduced. 

-'OO 0.W5 0.01 0.015 

Figure 4: The magnitude responses of the first receiv- 
ing filters in the conventional DFT based DMT system 
and the modified system for L = 32 and M = 256. 
(Frequency normalized by 2 ~ )  

4. GENERALIZED PERFECT DMT SYSTEMS 

The transmitter of the modified DFT system can be 
viewed the coding of the input block using DFT vectors 
plus padding of L zeros. We can generalize the system 
by letting the transmitter be 

G =  (Ggo) (3) 

where Go is an arbitary M x M unitary matrix. With 
N = M + L ,  we can partition C(z) as C(z) = 
[CO C,(z)]  where CO is an N x M lower triangular 
Toeplitz matrix. It follows that 

C(z)G = CoGo. 

Now the condition for perfect reconstruction becomes 
SCoGo = I; that is, S should be an left inverse of the 
constant matrix CoGo. Using singular value decompo- 
sition (SVD), we can decompose CO as, 

CO = w(t) VT = UoAVT, (4) 
N x M  U 

where U and V are N x N and M x M unitary matri- 
ces. The column vectors of U are the eigenvectors of 
C0C;f and the column vectors of V are the eigenvectors 
of C;fCo. The matrice A is diagonal and the diagonal 
elements Xk are the singular values of CO, which are 
nonzero as CO has full rank. The SVD of CO immedi- 
ately gives us one possible choice of S, 

s = G;FvA-'u;F. ( 5 )  

However the above equation gives only one possible 
solution. To obtain all solutions, we note that the PR 
condition SCoGo = I only requires that S be a left 
inverse of CoGo. As CoGo is of dimensions N x M ,  
the receiver S is not unique. In fact, we can choose 
S = G;fVA-' (I A) UT,  where A is an arbitrary 
M x L matrix. The flexibility can be exploited to im- 
prove the frequency selectivity of the receiving filters 
or to minimize the total output noise power [7]. The 
discussion of the later is given next. 
MMSE receiver 

When the DMT system is perfect, the output 
noise comes entirely from the channel noise. We de- 
fine the output average noise power EN as EN = 
l / M ~ ~ ~ ' i ? ~ k .  Then the optimal choice of A that 
minimizes EN is given by [7] 

For the same transmitter Go = V ,  Fig. 5 shows the 
reduction in noise power when A is introduced. The 
channel used in this example is C ( z )  = 1 + pz-' and 
the noise source is the NEXT dominated crosstalk [l]. 

mo 

Figure 5: The average noise power as a function of p 
for the channel 1 - pz- ' .  The solid line is the average 
noise power of the MMSE receiver. 

5 .  OPTIMAL DMT SYSTEM 

We first derive the bit allocation formula for the gener- 
alized DMT system such that the transmitting power 
can be minimized for a given bit rate. Then we show 
how to design the optimal transceiver for arbitrary col- 
ored noise. 

Let the bit rate in the k-th channel be b k ,  then the 
total average bit rate is b = CL;' b k .  The input 
power of the k-th channel is nf which is also the out- 
put signal power of the k-th channel at the receiver 
end due to the PR property. Suppose the output noise 
power of the kth channel is For most modula- 
tion systems under high bit rate assumption, we have 
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a:k2-2bk - - CZ:, , where the constant c depends on the 
given probability of symbol error P,. Define P(b)  as 
the transmitting power needed for transmitting b bits. 
Then it can be shown that [7] 

P(b)  2 c ~ ~ * E , ” ~ ,  where Eo = n:i1Z:, (6) 

The equality holds if and only if the bits are optimally 
allocated according to 

bk = b - logs:,, + log Eo/2M. (7) 

Let us define the coding gain CQ as Pdireet(b), the power 
needed for transmitting b bits when there is no bit al- 
location, over P(b) .  Without bit allocation, bk = b,  for 
k = O,l , . . .M - 1; P&eet(b) = c 2 2 b ~ E ~ 1 ~ ~ k .  The 
coding gain of bit allocation is 

The above inequality follows from the arithmetic mean 
over the geometric mean inequality. 

From Fig. 6 we see the last part of the transmitter 
is the unitary matrix GTV. Let us call it Q .  It can 
be shown that the optimal Q is determined by the au- 
tocorrelation matrix Re, of G, which is as indicated 
in Fig. 6. In particular the codinggain CQ is maxi- 
mized if Q is the KLT matrix for Re,, i.e., QTReeQ 
is a diagonal matrix [7]. The maximized coding gain is 

CQmaz = htr(kee) /  (det & e )  
1 / M  

. 

Figure 6: Block diagram of the receiver. 

For the same probability of error and same bit 
rate, Fig. 7 shows POpt(b, M)/PDFT(b, M), the ratio of 
power needed in optimal system over the power needed 
in the DFT-based system. We plot the ratio as a func- 
tion of M for two different noise sources, the NEXT 
dominated noise and AWGN. The channel used in this 
example is C ( z )  = 1 + O . b - ’ .  
AWGN channels 

When the channel noise is a white process, the au- 
torrelation matrix Re, = UZI is a diagonal matrix. The 
optimal Go is simply Go = V. (This optimal solution 
of Go in this case is consistent with what Kasturia et. 
a1 have obtained for AWGN channels from the view 
point of multidimentional signal constellations.) The 

. - AWGN 
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Figure 7: The ratio of the power needed in DFT based 
DMT system over the power needed in the optimal sys- 
tem for the same probability of error and the same bit 
rate. 

coding gain is 

Although the DFT based DMT system are not opti- 
mal in general, it is asymptotically optimal for AWGN 
fading channel. In particular, for a given error proba- 
bility and bit rate, the power required for transmitting 
b bits in DFT based DMT system becomes very close 
to the power required in the optimal system when M 
is sufficiently large [7]. From Fig. 7 we can see that for 
the AWGN channel, the ratio Popt(b, M ) / P D m ( b ,  M )  
approaches unity as M increases. 
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