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A New Class of Optimal
Biorthogonal Subband Coder

See-May Phoong,Member, IEEE,and Yuan-Pei Lin,Member, IEEE

Abstract—In this letter, we introduce a novel two-channel
biorthogonal subband coder. The new coder employs the ladder
structure (or so-called wavelet with lifting scheme). The coding
gain of the biorthogonal coder is always greater than or equal
to unity, and it can be expressed in closed form. Moreover
the proposed coder has a very low complexity and the perfect
reconstruction property is structurally preserved. Given any filter
order, the optimal solution can be found by the well-known
Levinson fast algorithm. For both AR(1) process and MA(1)
process, the proposed biorthogonal coder with 2 taps has a higher
coding than the optimal orthonormal coder with infinite number
of taps.

Index Terms—Compression, optimal coder, subband coding,
wavelet coding.

I. INTRODUCTION

RECENTLY, there has been considerably interest in apply-
ing the ladder structure to subband coding. Fig. 1 shows

a simple two-channel filterbank (FB) that uses only one ladder.
In the absence of the quantizers, such a biorthogonal system
always has the perfect reconstruction [that is,
for all possible ], regardless of the choice of . In
other words, the FB is structurally perfect reconstruction.
The analysis filters and synthesis filters are,
respectively,

. The implementation and design of the
biorthogonal system involve only , hence the design and
computational cost is very low. Note that such a FB can never
be orthonormal unless is zero. The ladder structure has
been applied to lossless coding of images, and satisfactory
coding results can be obtained, as demonstrated in [1]–[3]. In
the case of lossy compression, like most biorthogonal coder,
the coding gain of the ladder structure FB is not guaranteed
to be greater than unity.

On the other hand, the class of orthonormal FB is known
to have coding gain . There has been a lot of
interest in finding the optimal orthonormal FB that yields a
maximum coding gain for a given input statistics [4]–[6]. It
is shown in [4] that the analysis and synthesis filters of an
optimal orthonormal FB are the ideal filters that satisfy the
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Fig. 1. Conventional subband coder using ladder.

majorization and decorrelation properties. The optimal finite
impulse response (FIR) case is solved in [5] and [6]. In this
paper, we propose a new class of the FIR biorthogonal FB
by modifying the ladder structure. The new coder has all the
advantages of the ladder based FB. The optimal biorthogonal
coder can be solved using Levinson recursion. Furthermore it
is guaranteed that the new coder has coding gain . For
both autoregressive (AR) process and moving average (MA)
process of order one, the proposed biorthogonal coder with 2
taps has a higher coding gain thanany optimal orthonormal
FB (with any number of taps).

1) Noise Model and Bit Rate:In this work, we make some
commonly used assumptions on the quantizers. Assume that
the quantizers are scalar uniform quantizers and can be mod-
eled as an additive noise source. Therefore,

(as indicated by the dashed line in Fig. 1), where
and are, respectively, the input and output of the quan-
tizers. We assume that for a-bit quantizer, the variance of
quantization noise satisfies:

(1)

where is the variance of the input and is some
constant depending only on the statistics of . Assume
that and are the number of bits assigned to and

, respectively. The average bit rate in this case is
.

A. The Traditional Subband Coder

In a traditional subband coder, quantizers are placed directly
after the subband signals as shown in Fig. 1. The output
noise contains contribution from both and . It is
not difficult to see that the noise gain for is unity while

is amplified by . One can verify that under the
assumption that is white and uncorrelated with ,
the average variance of output error is given by

(2)
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Fig. 2. New subband coder using ladder.

where is the energy of the filter
. It represents the noise amplification of the quantizers

. Due to the noise amplification, it is not guaranteed that
the coding gain . In the following, we will show how
to eliminate the noise amplification by judiciously placing the
quantizers .

II. A N OVEL BIORTHOGONAL SUBBAND CODER

Consider Fig. 1. Note that the input to at the analysis
end is , while the input to at the synthesis end
is the quantized version of . It is this mismatch that
causes the amplification of . To avoid this mismatch, we
can simply move the quantizers to the left, as shown in
Fig. 2. It is not difficult to verify that in this case, the average
variance of output error is given by

(3)

The above equation is valid for any additive noise source.
We do not make any assumptionson and . That
means, the noise gain isalways one even though the FB is
never orthonormal. If the quantizers used are scalar quantizers
that satisfy (1), then (3) can be rewritten as:

(4)

where we have used the fact that . Applying
the arithmetic mean geometric mean inequality to the above
equation, we get

(5)

with equality if and only if the bits are allocated as:

(6)

If we define the coding gain of the coder as the ratio of the
error variance in direct quantization [as in (1)] over that of
the coder, . Then under the optimal bit allocation (6), the
coding gain can be written as:

(7)

A. Optimal Biorthogonal Coder

From (7), the coding gain is maximized if is
minimized. The optimal solution of such that is
minimized can be obtained from linear prediction theory. To

see this, let be an FIR filter of the form

(8)

Then the optimal solution is precisely the optimal predictor of
based on the observations of

. Noncausal predictor can be used
here since we are predicting the even samples from the odd
samples. A causal implementation of such a system is always
possible by inserting enough delays at appropriate places in
Fig. 2. Let be a real-valued wide sense stationary process
with autocorrelation coefficients . Then the optimal
that minimizes is the solution of the following equation

...
...

...
. . .

...

...

...

...

(9)

The above equation can be solved in by using the
Levinson fast algorithm. And the prediction gain

(10)

The above inequality follows from the linear prediction theory.
The prediction gain is unity if and only if all the observa-
tions are uncorrelated to the target of prediction . The
following theorem summarizes the results we have so far.

Theorem 1: Consider the subband coder in Fig. 2, where
is as in (8). The coding gain of the coder is maximized

when is chosen as the optimal prediction filter obtained
from (9). The maximum coding gain is given by

(11)

where is the prediction gain in (10). The coding gain is
always greater than or equal to unity, with equality if and only
if the autocorrelation coefficients of satisfy
for .

III. M ERITS OF THEPROPOSEDBIORTHOGONAL CODER

The biorthogonal coder in Fig. 2 enjoys many advantages.
In the following, we list some of its advantages.

1) Structurally Perfect Reconstruction: Similar to the or-
thonormal FB, the proposed biorthogonal FB has a
structurally perfect reconstruction implementation, as in
Fig. 2.

2) Equal Step Size Rule: From (3) and (4), we see that the
average output noise variance is minimized when
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the two quantizers have the same noise variance. The
noise variances and the quantization step size
are related as . Therefore we conclude
that the coder continues to be optimal if the stepsizes of
the quantizers are equal.

3) Unity Noise Gain: The synthesis bank does not amplify
the quantization noise. Hence, the optimal biorthogonal
coder has a coding gain . Moreover one can
show [7] that a finite-order optimal biorthogonal coder
has a unity gain if and only if the optimal orthonormal
coder [4] of the same order has a unity gain.

4) Simple Design: The design of the optimal biorthogonal
coder is simple. Unlike the optimal orthonormal coder,
no constrained optimization and no spectral factorization
is needed. Optimal biorthogonal coder can be obtained
by using Levinson algorithm.

5) Low Complexity: To implement the analysis or synthesis
bank, we need only one filter . Moreover the
optimal has linear-phase.To see this, note that
the vector on the right hand side of (9) is symmetric. It
is not difficult to show that the optimal predictor
obtained from (9) is symmetric, i.e., .
Therefore the complexity of the biorthogonal coder is
roughly a quarter of that of an orthonormal coder of the
same order.

6) Coding Gain Increases with : It is well known that the
prediction gain is a non decreasing function of .
Hence, the coding gain increases when the filter order
increases.

7) A Very Low Delay Coder: Let the filter be a causal
FIR filter of the form . Then regardless
of the filter length , the coder in Fig. 2 has a delay
of only one sample [i.e., ]! The
optimal solution of is the given by the optimal
causal predictor of based on the observations of

.
8) Integration of Lossy and Lossless Coder: Let the input

be a discrete amplitude signal with step size.
Suppose the output of is quantized using step size

. Then lossless coding can be obtained from Fig. 2 by
setting the step sizes of the quantizers .
By varying the stepsizes of the quantizers, we can
get both lossy and lossless compression with the same
structure.

9) Application to Finite Length Input Signal: In a conven-
tional subband coder, when the input has finite length,
the total number of samples in the subband increases due
to linear convolution with the analysis filters unless these
filters have length 2. Therefore periodic extension is used
to solve this problem. In the proposed biorthogonal coder
in Fig. 2, to reconstruct the output signal we need only
to retain samples in the subbands ( samples
of and samples of where denotes
the largest integer ). No periodic extension is needed!

Example 1—AR(1) Inputs:Let the input be an AR(1)
process with for . One can verify [7] that
the coding gain is optimized when .

Fig. 3. Coding gain comparison for AR(1) process.

Fig. 4. Coding gain comparison for MA(1) process.

In this case, the optimal coding gain has the closed form
expression , where the
index 2 indicates that the predictor has 2 taps. If we use
a one-tap predictor, the optimal predictor and
the gain is . These gains are
shown in Fig. 3. For comparison, we also show the gains
for optimal orthonormal coders (with infinite taps and four
taps). It was shown in [4]–[6] that the coding gains are,
respectively, and

.
Example 2—MA(1) Inputs:Let the input be an MA(1)

process with , for ,
and for all the other . The coding gain
for the four cases considered in Example 1 are, respec-
tively [4]–[7], ,

, and
. It is not difficult to verify that

.
These gains are shown in Fig. 4.

IV. CONCLUDING REMARKS

In this work, we have derived a number of properties
of the novel biorthogonal coder in Fig. 2. We showed that
the biorthogonal coder has many advantages enjoyed by the
orthonormal coder but it has a lower design and computational
cost. Many of its features make the biorthogonal coder a
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valuable and attractive alternative to orthonormal coder. The
following extensions are possible for the new system [7].

1) For a more general biorthogonal FB with more than one
ladder, the structure can be modified so that the noise
gain is still unity.

2) Using a tree structure, one can obtain a wavelet-type
decomposition. This tree structure extension continues
to have many of the properties listed in Section III.

3) We can also generalize the idea to the uniform-
channel case. The -channel biorthogonal transform
coder (a transform coder has a constant polyphase ma-
trix) has the same coding gain as the Karhunen–Loeve
transform (KLT), but it has a much lower design and
implementation cost than the KLT. In the special case
of AR(1) process, the optimal biorthogonal transform
coder has a closed form expression, and no optimization
is required.
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