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Periodically Nonuniform
Sampling of Bandpass Signals
Yuan-Pei Lin,Member, IEEE,and P. P. Vaidyanathan,Fellow, IEEE

Abstract— It is known that a continuous time signal x(t)x(t)x(t)
with Fourier transform X(�)X(�)X(�) band-limited to j�j<j�j<j�j<�=2 can
be reconstructed from its samplesx(Tx(Tx(T

0
n)n)n) with TTT 0===2�=�=�=�: In

the case thatX(�)X(�)X(�) consists of two bands and is band-limited
to ���0< j�j<�< j�j<�< j�j<�

0
+++�===2, successful reconstruction ofx(t)x(t)x(t) from

x(Tx(Tx(T
0
n)n)n) requires an additional condition on the band positions.

When the two bands are not located properly, Kohlenberg showed
that we can use two sets of uniform samples,x(x(x(2TTT 0n)n)n) and
x(x(x(2TTT 0n+ dn+ dn+ d1););); with average sampling period TTT 0, to recover
x(t):x(t):x(t): Because two sets of uniform samples are employed, this
sampling scheme is called Periodically Nonuniform Sampling of
second order [PNS(2)]. In this paper, we show that PNS(2) can
be generalized and applied to a wider class. Also, Periodically
Nonuniform Sampling of LLLth-order [PNS(LLL)] will be developed
and used to recover a broader class of band-limited signals.
Further generalizations will be made to the two-dimensional case
and discrete time case.

I. INTRODUCTION

I T is well known that a continuous time band-limited signal
can be reconstructed from its samples. If has

bandwidth as shown in Fig. 1, can be recovered from
its samples as long as the sampling period
where A lowpass interpolation filter as
shown in Fig. 2 can be used to recover (Fig. 3). Suppose
now has total bandwidth but consists of two
bands as in Fig. 4. Successful reconstruction from
depends on the relative positions of these two bands [1]. A
necessary and sufficient condition is that the frequency
(indicated in Fig. 4) must be an integer multiple of
More generally, it can be shown that a much wider class of
signals with total bandwidth can be recovered from samples
at To be more specific, define the support of
[denoted by ] to be the set of frequencies for which

Then can be obtained from if and
only if no two frequencies in overlap under modulo
operation [2]–[5]. Such signals are calledaliasfree and
their supports are referred to asaliasfree zones.

When the two bands of (Fig. 4) were not properly
located, Kohlenberg [6] proposed a periodically nonuniform
sampling approach to recover Two sets of samples,

and where as shown in
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Fig. 1. Band-limited signal with bandwidth�:

Fig. 2. A lowpass interpolation filter.

Fig. 3. Reconstruction ofx(t) from uniform samples by using a lowpass
filter F (�):

Fig. 4. Band-limited signal with two bands and total bandwidth� = 2�:

Fig. 5, are used; the average sampling rate is stillThis
sampling and reconstruction scheme can be described by the
diagram shown in Fig. 6. It is shown in [6] that can be
successfully reconstructed by properly choosingand the
synthesis filters and This is called periodically
nonuniform sampling of second order [PNS(2)] [7], for there
are two sets of uniform samples involved. Recently, general

th-order periodically nonuniform sampling [PNS()] and
reconstruction (Fig. 7) for such two-bands signals has been
considered in [8]. Using PNS( sampling allows more free-
dom in choosing the locations of the samples. Reconstruction
of two-band signals from the samples of filtered outputs
are studied in [9] and [10]; conditions on the filters for
reconstruction are presented. These conditions are extended in
[11] for the more general class, namely those whose frequency
support consist of several intervals. The reconstruction of
signals from nonuniformly sampled versions has also been
addressed in [12] and [13].

1057–7130/98$10.00 1998 IEEE
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Fig. 5. Illustration of second-order periodical nonuniform sampling.

Fig. 6. Reconstruction ofx(t) using periodical nonuniform sampling of
second order, whereT = 2�=�:

Fig. 7. Reconstruction ofx(t) using periodically nonuniform sampling of
Lth order.

Fig. 8. Periodically nonuniform sampling and reconstruction in discrete time
case.

In the discrete time case, sampling is replaced by decima-
tion. Periodically nonuniform sampling of th order retains

sets of samples,
for some integer The decimated signal

is called the th polyphase component of [14];
the operation of PNS( sampling retains the th, th,

th polyphase components. In [15] and [16], PNS(
sampling and reconstruction (Fig. 8) has been considered for
a very restricted subclass of-band signals. The subclasses
addressed therein are those signals whose frequency supports
are the union of bands, each band with bandwidth and
band edges at integer multiples of e.g., the one shown
in Fig. 9 (the definition of -band signal here is different
from that in [13]). It is shown in [16] that such an-band
signal can be reconstructed from its first polyphase
components, i.e.,

In this paper, we first generalize the results in [6] and [16]
to a significantly wider class of signals in terms of signal fre-
quency supports. The supports considered in [6] are the union
of two intervals, each of length Generalization will be made

Fig. 9. An L-band signal with restricted band edges.

to the class of signals [17], which is the collection of
signals whose supports are the union of two nonoverlapping
aliasfree sets.1 We will show that this class of signals
can be reconstructed from PNS(2) samples. An extension of
this result to the more general class using th-order
periodically nonuniform sampling scheme will be developed.
We will see that the 2-D counterpart of this can be shown
in a similar manner. Furthermore, the discrete time version
of these will be addressed. In this regard, we find that 1-D
discrete time signals can always be reconstructed
from their first polyphase components. However, in 2-D
discrete time case,only a subclass of signals allows
reconstruction from polyphase components.

A. Paper Outline

In Section II-A, we provide a review of Kohlenberg’s results
[6]. The generalizations presented in later sections depend to
some extent on this review. In Section II-B, we will show that
the reconstruction of two band signals in [6] isstable, although
the reconstruction filters are not stable in the Bounded Input
Bounded Output sense. The definition of stable reconstruction
will also be given in Section II-B. The results in [6] are
generalized for the more general continuous time
signals. The generalization to discrete time signals
is straightforward, and the main results will be mentioned
briefly in Section III. We present, in Section IV, the 2-D
version (continuous time) of the theorem given in Section
III. Generalizations in this case follow routinely. However,
the 2-D discrete time case exhibits some unusual behavior
and will therefore be addressed in greater detail in Section
V. A conclusion is given in Section VI. Some preliminary
versions of the results derived here have been presented at
recent conferences [17], [18].

B. Notations

1) Boldfaced lower case letters are used to represent vec-
tors, and boldfaced upper case letters are reserved for
matrices. The notations and represent the trans-
pose of and the absolute value of the determinant of

2) Fourier transforms.The Fourier transform of a 1-D
continuous time signal is denoted by [1]. For
a 2-D signal where is a vector, the Fourier
transform is where is a frequency vector.
For discrete time signals, the Fourier transforms of a
1-D sequence and a 2-D signal are denoted,
respectively, by and

3) The support of [denoted by ] is defined as
the set of frequencies for which

1Throughout this paper, we will assume that aliasfree(T ) sets contain only
finitely many intervals.
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4) Aliasfree( signals and aliasfree zones.A signal is
called aliasfree if the sampling of with period
does not create aliasing. In this case, the support of
is referred to as an aliasfree zone. Equivalently, an
aliasfree zone can be defined as a set such that no
two frequencies in the set overlap under modulo
operation.

5) The notation represents the collection of signals
whose frequency supports are the union ofnonover-
lapping aliasfree sets.

6) The characteristic function of a set is defined as

otherwise.

II. RECONSTRUCTION OFTWO-BAND

SIGNALS FROM PNS(2) SAMPLES

A. Reconstruction from Periodically Nonuniform Samples [6]

Consider the two-band signal in Fig. 4 and the sampling
scheme in Fig. 6. In each channel, the sampling period is

and the average sampling period is We first
derive a general expression for the recombined signal in terms
of the input and synthesis filters. The Fourier transforms of

and (as indicated in Fig. 6) in terms of the inputs
are, respectively,

and

(1)

The recombined signal is
and we have

(2)

As the total bandwidth of is and the sampling period
is in each channel, aliasing occurs in and
However, with a priori knowledge of the band position of

a proper choice of and synthesis filters will allow
us to cancel aliasing. The value of depends on the band
positions of

To see this, let be the part of restricted to
positive frequencies, i.e.,

otherwise.

Let be the part of restricted to negative frequen-
cies. Then both and are aliasfree signals. By
(1), the signals and consist of repeated copies
of i.e., repeated copies of and Because
the bandwidth of each is and the sampling
period is in each channel, the repeated copies of each
will fill the whole frequency line.

Fig. 10. Shifted copies ofX1(�) and relative location toX0(�):

Among the shifted copies of we see from Fig. 10
that only and contribute to

in the interval where is
the smallest integer greater or equal to In particular,

Because and are nonoverlapping, can be
rewritten as

A similar expression can be derived for for the interval
Let be an integer function defined as

and

Fig. 11(a) (3)

Then we can write (2) as

where the support of is as defined in Section
I-B. Similarly,

Using the above two expressions for and we have

for (4)

From (2), we see that if for
then for . It follows that if
the following conditions are satisfied.

and

(5)

We can find and that satisfy (5) if there exists
such that for every This requires
that is not an integer for any Since

takes on only four values, and we can
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(a)

(b)

Fig. 11. Sketches of (a)�(�) and (b)F0(�):

always find such that In particular, we
can find rational that satisfies this condition. For example,
choose where is an integer coprime with and

then for all When
we can solve (5) and obtain the synthesis filters. Therefore, we
can always recover a two-band signal from the sequences

and Summarizing, we have the following
theorem [6].

Theorem 1: Let be a two-band signal, each band of
length as shown in Fig. 4. Then can be reconstructed
from and through the following
formula.

(6)

where is such that is not an integer for any
The synthesis filters are given by

and (7)

where is as defined in (3) and the characteristic function
of a set is as defined in Section I-B.

Remark on the Synthesis Filters:Observe that the function
defined in (3) is piecewise constant [Fig. 11(a)]. The

synthesis filters given in (7) are functions of and are
hence piecewise constant [Fig. 11(b)]. The synthesis filters

are constant with four different heights in four intervals.
This leads to the property that the synthesis filters can be
viewed as a linear combination of four ideal filters, each with
bandwidth This observation will be useful in showing the
stability of the reconstruction in the next subsection.

B. Stability of Reconstruction

Consider a signal that can be reconstructed from a
sequence with through the following equation.

(8)

pointwise for each Suppose we add an error sequenceto
and the corresponding reconstructed signal is

Then the reconstruction is stable if a small incurs
only a correspondingly small (in some sense) error More
precisely, the reconstruction is pointwise stable if there exists

independent of such that

where

-norm of

Observe that by Cauchy inequality, (8) yields

For the case where is an ideal brick-wall filter with
bandwidth (Shannon reconstruction)

In this case,

(9)

holds for arbitrary sequence with From (8),
we have by linearity; hence

So the reconstruction is pointwise stable.
Returning now to the reconstruction scheme in Fig. 6, the

signals and are

and

Using the fact that each synthesis filter is a sum of ideal filters,
it follows that

and

As we have

and the reconstruction is pointwise stable.
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(a)

(b)

(c)

(d)

Fig. 12. Example 1. (a) Support ofX(�); (b) shifts ofX1(�); (c) sketch
of �(�), and (d) sketch ofF0(�):

III. PERIODICALLY NONUNIFORM SAMPLING OF TH ORDER

The signals considered in [6] and [8] have two bands as
shown Fig. 4; the frequency support is the union of two
disjoint intervals. The two intervals (call them and
have length and are therefore aliasfree zones, where

In this section, we will generalize the results in [6]
and [8] and show that and do not have to be intervals.
As long as and are disjoint aliasfree zones [i.e.,

is can be recovered from PNS(2) samples.
An example of signal is shown in Fig. 12(a).
We can verify that and as indicated in Fig. 12(a) are
aliasfree and is where

In fact, we will show that reconstruction from PNS samples
can be achieved for the more general signals, those
whose frequency supports can be expressed as the union of

nonoverlapping aliasfree sets. In this case, we use PNS
sampling of th order [PNS ]. In the PNS sampling
of there are sets of samples,

Referring to Fig. 7, the sampling
period is in each channel, and the average sampling period

is As the total bandwidth of is aliasing occurs
in each channel. We will see that judicious choice of delays

and synthesis filters enable the reconstruction of from
PNS samples.

In the th channel, contains samples and
consists of shifted versions of

By the nature of we can partition the
support of into nonoverlapping aliasfree sets,

Define to be the part of on
i.e., Each is aliasfree

its shifted copies fill the whole frequency line upon sampling
at a period

Consider only the frequencies on the set In addi-
tion to the signal contains shifted
copies, one from each for Say these
shifted copies are shifted, respectively, by

Then,

for Because are nonoverlapping, can be
rewritten as

(10)

Notice that the functions thus defined are piecewise
constant over because is the union of finitely
many intervals. Under mild conditions to be discussed below,
there will exist a set of reconstruction filters such
that that aliasing terms are cancelled and

in Fig. 7. The details are given next.
Lemma 3: A signal can be recovered from

its PNS samples if the equation below has a solution for
every

...
...

...
...

...
...

(11)

In particular, if the matrix is nonsingular, we can solve
(11) and obtain the synthesis filters.
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Proof of Lemma 3:The recombined signal
or

i) When By the expression
we have if the

synthesis filters are zero outside of support of
ii) When We can use (10) to simplify the

expression of

A rearrangement of the above expression gives us

(12)

We can make the following observations. For
the reconstructed signal is free from aliasing error if

for and
in which case is simply

Combining i) and ii), we can reconstruct successfully if
the synthesis filters for are nonzero
only on the support of and if for the synthesis
filters satisfy

and

(13)

These conditions can be written as the matrix form in (11).
Remarks: If is nonsingular on the support of

the synthesis filters are unique on the support of For
we can follow a procedure similar to that in Lemma

3 and show that for

if and only if

where is nonsingular for all whenever
is nonsingular for every frequency on support of
Therefore, if is nonsingular on the support of
[hence is nonsingular for then the synthesis
filters are necessarily zero for

Notice that if we choose for
Then becomes a Vandermonde matrix as shown in (14)
at the bottom of the page. The condition for nonsingularity
becomes much more tractable. More precisely, we have the
following theorem.

Theorem 2: Consider a signal There always
exist and synthesis filters such that
can be reconstructed from

and In particular, we
can choose

and

are not integers for any (15)

The existence of such is guaranteed. In this case, is
nonsingular and is given by

where is as given in (14) and
Furthermore, in this case, the reconstruction is stable.

Proof: The condition for nonsingularity of the Vander-
monde matrix in (14) is

This can be rewritten as (15). The nonoverlapping property
among implies that whenever

On the other hand, the support of consists of
finitely many intervals; and can take
on only finitely many integer values. So we can always find
rational that satisfies (15). For a chosen solving (11)
gives us the solutions of the synthesis filters which
are functions of The piecewise constant property of

implies that are also piecewise constant and can
be viewed as a linear combination of some ideal brick-wall
filters. Therefore, following the reasoning in Section II-B,
we conclude that the reconstruction of from its PNS
samples is stable.

Remarks:

1) Under the assumption that is the union of
nonoverlapping aliasfree zones, is unique for
any frequency Because are now union of intervals,

could take on more than four values, which is
the case for two-band signals. The number of intervals
contained in is finite and so is the number of values

can assume.
2) We only address the class of signals whose supports

are the union of nonoverlapping aliasfree zones.
In this case, the signals have total bandwidth For a
signal whose support is the union ofoverlapping

...
...

...
...

(14)
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Fig. 13. Band-limited aliasfree(M)signal with total bandwidth2�=M:

aliasfree zones, the actual total bandwidth could be
In this case, we can always add to some

hypothetical region to make it the union of nonover-
lapping aliasfree zones, and the above theorem can
be applied.

3) Stability of Reconstruction.The synthesis filters
are nonzero only on according to (7). On
they are functions of and are hence piecewise
constant. Much like the two-band case in the previous
section, the synthesis filters can be regarded as a
linear combination of some ideal brick-wall filters; the
argument for stability of reconstruction in two-band case
continues to hold for the class.

Example 1: Consider the signal shown in
Fig. 12(a). For there is only one beta function
The shifted versions of are as shown in Fig. 12(b),
which shows that and overlap with

In the interval where overlaps with
the value of is 3 and in the interval where
overlaps with the value of is 4. A sketch of
is given in Fig. 12(c). In this case, is a piecewise constant
function with constant values in six intervals. For successful
reconstruction of from and the value
of should be such that is not an integer for
any As assumes four values and
can be any real number other than and where

is any integer. For example, can be any number in the
interval The synthesis filter for the choice

is as sketched in Fig. 12(d). The other synthesis
filter

Discrete Time Case:If a discrete time signal has
Fourier transform restricted to the intervals shown
in Fig. 13, we can decimate by without creating
aliasing. This idea is routinely used in cosine modulated
filter banks [19]. But if the bands are not located at integer
multiple of we need to use periodically nonuniform
sampling techniques. In the discrete time case, decimation
of a signal by an integer is equivalent to retaining the
first polyphase component of that signal; in a periodically
nonuniform sampling of th order (Fig. 8), the sets of
samples are the th, th, th polyphase components.
Similar to the continuous time case, aliasfree property
for discrete time sequences and aliasfree zones can be
defined. We use to denote the class of signals
whose frequency supports are the union ofnonoverlapping
aliasfree zones. Note that in Fig. 8, the total data is
times the original input; the nonuniform sampling scheme
makes sense only for In the 1-D continuous time
case, we saw that the class allows reconstruction from
PNS samples. Generalizations to the 1-D discrete time case
follow fairly routinely. However, such generalizations fail in

Fig. 14. Lattice ofTTT :

the 2-D discrete time case, which will be discussed in Section
V.

IV. TWO-DIMENSIONAL CONTINUOUS TIME UNIFORN

AND PERIODICALLY NONUNIFORM SAMPLING

For 2-D signals, aliasfree property and aliasfree
zones can be defined as in the one-dimensional (1-D) case.
But now the sampling period is a nonsingular matrix

and the samples are located on the lattice defined by
i.e., located at for all integer vectors For example, the
lattice of

is as shown in Fig. 14. A 2-D signal is called aliasfree
if the sampling of with matrix does not create aliasing.
In this case, the support of [Fourier transform of
is called an aliasfree zone or aliasfree set.

As mentioned in Section I, the sampling theorem for two-
band signals is well known: a two-band signal with
total bandwidth (Fig. 4) allows reconstruction from uniform
samples if band edge is a integer multiple of

A two-dimensional (2-D) extension of two-band signals
is the class of two-parallelogram (Two-P) signals [18]. A signal

is calledTwo-P if its support consists of two identical
parallelograms, e.g., as shown in Fig. 15. We derive in Section
IV-A a sampling theorem for theTwo-P class parallel to that
for 1-D two-band signals. When reconstruction from uniform
samples fails, we then seek reconstruction from periodically
nonuniform samples, analogous to Section III. In Section IV-B,
we present a periodically nonuniform sampling theorem for the
more general class which is the collection of signals
whose frequency supports are the union ofaliasfree sets.
The Two-Pclass is, by definition, a subclass of

A. Sampling Theorem for Continuous Time Two-P Signals

Recall that the key issue in the 1-D bandpass sampling
theorem is to sample at the critical sampling rate without
creating aliasing, so that we can reconstruct the original signal
from samples. The sampling rate represents how fast the
samples are acquired or how densely located the samples are.
The second meaning in the 2-D case is represented by the
quantity calledsampling density. The sampling density for
a sampling matrix is

Consider aTwo-Psignal (as shown in Fig. 15) whose
two parallelograms are shifted versions of



LIN AND VAIDYANATHAN: PERIODICALLY NONUNIFORM SAMPLING OF BANDPASS SIGNALS 347

Fig. 15. Typical support of a two-parallelogram signal.

where the symmetric parallelepiped of a matrix
is the set

For a one-parallelogram signal with frequency support
the critical sampling density is The

area of the support of is twice that of the
critical sampling density for is So the sampling
theorem to be established for theTwo-P class is a necessary
and sufficient condition such that allows critical alias free
sampling, i.e., can be reconstructed from where

is some matrix with The 1-D sampling
theorem for two-band signals hints that the two parallelograms
in the support of should be somehow properly located.
The details of this are given in the following theorem.

Theorem 3: Let be a continuous timeTwo-Psignal and
let the support of be the union of two parallelograms
described by and
Define Then is aliasfree for some
matrix satisfying if and only if the following is
true:the vector has at least one nonzero integer element.

Proof of Theorem 3: (Necessity of the condition.)Recall
that when we sample a signal using a sampling matrix

the Fourier transform of the output is

which consists of shifted and expanded versions of
The expanded version consists of two identical par-
allelograms that are shifted versions of where

If the frequency plane will be filled
by So if is aliasfree the frequency plane is
tiled by the parallelogram of

For convenience, we normalize the frequency plane by
the new axes and are the two entries of

After normalization, the support of appears
as the union of two squares (Fig. 16), denoted byand
with and
and the relative position of and is described by the
vector So if the original frequency plane is tiled by the
parallelogram of the new normalized plane is
tiled by the unit squares of Observe that in a
square tiling, we can always find at least one set of parallel
lines (Fig. 17) and all the cells are bounded by these lines. For
example, in the tiling of Fig. 17(a), we can observe one set of
parallel lines and all the squares are bounded by the horizontal

Fig. 16. Support of a two-parallelogram signalX(�) with normalized axes.

(a)

(b)

Fig. 17. Square tiling with (a) horizontal lines and (b) vertical lines.

lines (horizontal square tiling). In the tiling of Fig. 17(b),
however, we can observe vertical lines, and the squares are
bounded by these vertical lines (vertical square tiling). Notice
that in a horizontal tiling, any two unit squares have integer
vertical distance, whereas in a vertical tiling, any two cells
have integer horizontal distance. So the passbandsand
being two cells in a horizontal or vertical tiling, have integer
horizontal or vertical distance. As and are separated by

the vector must have one integer element. Whenhas
one zero element, say the squares and are
confined to the same two vertical parallel lines–vertical tiling.
So the vertical distance betweenand is necessarily an
integer as well, i.e., is also an integer. Therefore must
have at least one nonzero element.

Sufficiency of the Condition:To show the condition is suf-
ficient, we will construct a sampling matrix with

such that is aliasfree In particular, the
following can be used for i) when is a nonzero integer
and ii) when is a nonzero integer:

i)

ii) (16)

It can be verified that corresponding to these two choices,
shifts of constitute the patterns in Fig. 18(a) and (b). It can
be further verified that the blank space left will be filled by
the shifts of when is given above. That is, the shifts of

and are interlaced perfectly; and is aliasfree
Remark: The preceding theorem shows that the relative

positions of the two parallelograms determines whether aTwo-
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(a)

(b)

Fig. 18. The patterns formed byS and its shifts corresponding to the two
cases ofLLL in (15).

P signal can be recovered from for some matrix
with However, for a given matrix with

whether is aliasfree depends not only
on the relative positions of two parallelograms, but also on
the shape of the parallelograms. In particular, it can be shown
that must have one integer column vector. This
situation does not arise in the previous 1-D case because in
1-D shapes are not involved.

B. Periodically Nonuniform Sampling and Reconstruction

In this subsection we will show that 2-D signals can
be recovered from samples obtained throughth-order period-
ically nonuniform sampling, i.e., samples at

A sampling and reconstruction theorem
similar to that derived in the previous section for 1-D
signals will be developed.

In each channel, contains samples , and
consists of shifted versions of

Since is similar to the 1-D case, can
be written as the sum of and shifted copies of

Denoting these shifted copies by for
we have (17), shown at the bottom of the

page. By imitating the procedures in the proof of Lemma 3,
the following lemma can be shown.

Lemma 4: A 2-D signal can be reconstructed
from if and only
if the equation below has a solution for every

(18)

where the matrix is given by (19), shown at the
bottom of the page. If is nonsingular for all
we can solve (18) and obtain the synthesis filters.

Observe that the choice

leads to a Vandermonde for all If, further-
more, there exists such that is nonsingular, then we
can always reconstruct signals from PNS samples.
The existence of such is guaranteed as to be shown in the
theorem to follow.

Theorem 4: A 2-D signal can be
reconstructed from PNS samples

Proof: This will be done in two steps. We first show that
nonsingularity of is assured if is such that

integer

and

integer for (20)

Then we show that there always exists such
i) The matrix is nonsingular if

and

This condition can be rewritten as (20).
ii) Because assumes values from a finite collection of

integer vectors, the total number of distinct vectors represented
by for and

for (17)

...
...

...
...

(19)
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Fig. 19. An illustration pertaining to the proof of Theorem 5.

for is finite, say Let us call these distinct vectors
The conditions in (20) can be rewritten as

(21)

If we draw a graph with and as the two axes, for
each the equation integer represents
a set of parallel lines. Equation (21) says that the points on
these lines are not permitted. We havesets of such parallel
lines. For example, let Then there are two sets of
parallel lines (Fig. 19) and only the points on the lines are
not permitted. We can, therefore, always findthat is not on
these lines, i.e., satisfies (20).

With a nonsingular the synthesis filters can be
uniquely determined from (18).

V. TWO-DIMENSIONAL DISCRETE TIME

SAMPLING AND RECONSTRUCTION

In the 2-D discrete time case, aliasfree property,
aliasfree zone and can be defined in the
same manner, where is now a nonsingular integer
matrix. In Section IV, we developed the sampling theorem for
continuous timeTwo-P signals (Section IV-A). The discrete
time counterpart of this theorem can be found in [19]. In this
section, we consider the reconstruction of 2-D discrete time

class from samples. In the 1-D case, the
discrete time results completely parallel that in the continuous
time. However, the situation is quite different in the 2-D case.
A 2-D discrete time signal cannot always
be reconstructed from of its polyphase components. An
example of such will be presented.

Following similar procedures as in previous sections, the
following lemma for reconstructing signals can be
established.

Lemma 5: A 2-D discrete time signal can
be recovered from of its polyphase components if and only

if the following equation has a solution for every
as shown (22), shown at the bottom of the page.

In the 1-D case, we can always choosesuch that
is a nonsingular Vandermonde matrix for every
However, it is not always possible to do so in the 2-D case.
In fact, the above equation may not have a solution for some

in which case cannot be reconstructed from
of its polyphase components. To explain this, we take a

closer look at
The matrices and : It can be verified that the

matrix above is an submatrix of a matrix
called the generalized DFT matrix, possibly with some row
and column exchanges. The matrix is of dimensions

and the elements of are given by

where the notation denotes the set of integer vectors of
the form Let be the Smith form of [14],

When and are properly ordered, it can be verified that
where denotes a DFT matrix

given by

(23)

The notation denotes the Kronecker product. The Kronecker
product of two matrices and is defined as

...
...

Although DFT matrices are Vandermonde, is not
Vandermonde in general and neither are its submatrices
obtained by retaining the first columns and some rows.
The natural question to ask next is whether a particular set
of will make nonsingular for all
In terms of the generalized DFT matrix the question
can be recast as follows: can we find columns of
such that for arbitrarily chosen rows of the resulting
submatrix is always nonsingular? The answer is, unfortunately,
no. Although for every frequency there always
exist such that is nonsingular. The same may

...
...

...
...

...
(22)
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yield a singular for a different frequency vector
The following is an example which demonstrates that there are
cases when (22) is not solvable with frequency independent

Example 2: Consider a discrete time 2-D signal
where and The four vectors in

are

Order by letting then the generalized
DFT matrix is

(24)

The support of as shown in Fig. 20, consists of two
aliasfree zones, and The set is the union of
three regions and With we only have one
beta function, Observe that

.

So for is a submatrix of obtained by
keeping the zeroth and first rows of and two columns

That is, is a sub-matrix of

obtained by keeping two columns. As to which two columns, it
depends on the choice of and Without loss of generality,
we can assume We see that (22) has a solution for

only if is or We can do the same thing
for and and reach the following necessary condition
such that (22) has a solution in each:

.

There is no common solution of for the three regions;
(22) does not have a solution for all in the support of

Therefore, cannot be reconstructed from two of
its polyphase components.

Although it is not always possible to reconstruct a
signal from of its polyphase components, it is always
possible to do so when assumes the following Smith form
decomposition:

where (25)

Fig. 20. A U(MMM; 2) signal that cannot be reconstructed from two of its
polyphase components.

The corresponding generalized DFT matrix is the
DFT matrix Similar to the reconstruction of 1-D

signals, choose

where is the unimodular matrix in the Smith form decom-
position of in (25). Then will be nonsingular for all

and by (22) we can invert to obtain the
synthesis filters.

VI. CONCLUSIONS

In this paper, we consider the reconstruction of a class
of continuous time bandpass signals, the class. The
frequency supports of this class of signals consist of
aliasfree sets. We show that signals allow recon-
struction from periodically nonuniform samples of order
[PNS This is an extension of the work by Kohlenberg
that addresses the reconstruction of two-band signals from
PNS(2) samples. We have also generalized the results to
the 2-D continuous time class and 1-D discrete
time class. In the discrete time case, the PNS
samples are essentiallypolyphase components of the signals.
However, the generalization fails in the 2-D discrete time

a 2-D discrete time signal does not allow
reconstruction from polyphase components.
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