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Abstract—Hybrid precoding that combines analog RF pro-
cessing and digital baseband processing has been shown to be
a promising technique for transceivers with limited number of
RF chains. The RF processing, due to power and complexity
issue, is typically done using phase shifters. A recent study
shows that hybrid precoding is no loss of generality if each
coefficient of the analog precoder is implemented using two
phase shifters. In this paper we consider two possible imple-
mentation structures that use Two pHase shIfters for each
Coefficient (THIC). These two structures, having the same
performance when the phases can take on continuum values,
behave differently upon quantization, as the analysis shows. For
a small number of quantization bits, the precoder implemented
using THIC is a good approximation of the unquantized one.
With 3-bit phase shifters, the performance is close to that of the
unquantized system in multiuser communications, where the
performance is more sensitive to quantization errors. While
the analysis in this paper is done assuming high-resolution
quantization, simulations show that the result is accurate even
for coarse quantization.

I. INTRODUCTION

The performance of a MIMO system is known to improve
with the number of antennas on the two transmission ends.
Recent advances show that it is feasible to pack a large
number of antennas in a small area, particularly in millimeter
wave (mmWave) communication systems that use small
wavelengths. However cost and power constraints often
prohibit having one dedicated RF (radio frequency) chain
for each antenna [1][2]. Innovative techniques have been
proposed in the literature to overcome the RF limitation.

A promising technique is the so called hybrid precoding
scheme, in which analog processing of RF signals is com-
bined with digital processing in the baseband to improve
the performance within the RF chain constraint. Analog RF
processing, due to power and complexity consideration, is
typically implemented using phase shifters [3][4] and the
elements of the analog precoder are of unity magnitude.
It has been shown that having two RF chains is sufficient
to achieve the full beamforming gain [5]. Exploiting the
sparsity nature of mmWave channels, the analog precoder
proposed in [3] employs column vectors that correspond to
some dominating transmission paths, appropriately chosen
using orthogonal matching pursuit. The digital precoder can
further enhance the system performance when more RF
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chains are available. Based on the work of [5], it is further
shown in [6] (and also independently in [7]) that for the
transmission of Ns substreams, the number of RF chains
needed for achieving the full multiplexing gain is just Ns.
This is done by implementing each coefficient of the optimal
unconstrained precoder using two phase shifters and the
digital precoder does nothing but scaling each substream
properly.

In practical applications, the phase shifters are controlled
digitally and assume a finite number of values, depending
on the quantization bits. Quantization of the phases can
cause a significant degradation to the system performance
[24][9]. The high cost of high-resolution phase shifters has
motivated the design of systems that use one-bit phase
shifters [24][10]. A genetic algorithm is proposed in [11]
to design beamformers using low-resolution phase shifters.
A heuristic design of the RF precoder with quantized phase
shifters is proposed in [12] by designing the precoder itera-
tively. In [13], vector quantization technique is employed to
design codebooks for the RF precoder. Quantization effect
of phase shifters on mmWave beamforming antenna arrays
is evaluated in [14].

In this paper we consider quantization of phase shifters for
the RF precoder in a hybrid precoding scheme. Two possible
implementation structures that use Two pHase shIfters for
each Coefficient (THIC) of the analog RF precoder are
considered. These implementation structures achieve the full
multiplexing gain when the phase shifters are not quantized,
but they behave differently in the presence of quantization.
We analyze the mean square quantization errors (MSQE)
of the two structures. With the second structure, the quan-
tization errors of individual phase shifters do not contribute
to the overall quantization error in the same manner. The
performance benefits from appropriate allocation of quanti-
zation bits. As a result one of the two phase shifters can be
of a lower resolution and achieve a performance comparable
to that of the first structure. For the case the number of
substreams transmitted is one, i.e., beamforming case, we
derive a lower bound of the SNR degradation due to quan-
tization. The bound, establishing a connection between the
quantization error and the resulting SNR degradation, allows
us to give an estimate of the SNR degradation based on
MSQE. Although the analysis is done under the assumption
of high-rate quantization, simulations show that the results
are accurate even in coarse quantization. Examples show
that with an average of two-bit quantization, the quantized
THIC hybrid precoder that employs the minimum number
of RF chains is less than 1 dB away from the optimal
unconstrained system that is endowed with one RF chain
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Fig. 1. A MIMO communication system with hybrid precoding.

per antenna. In comparison to a conventional RF precoder
that uses one phase shifter per coefficient, only half as many
RF chains are needed. Furthermore, with 3-bit phase shifters,
the performance is close to that of the unquantized system in
multiuser communications, where the performance is more
sensitive to quantization errors.

Notation. The variance of a random variable x is denoted
as σ2

x. The 2-norm of a vector f is denoted as ||f || and the
k-th entry of f is denoted as [f ]k. The notation A† denotes
the transpose and conjugate of a matrix A. The expectation
of a random variable x is denoted by E[x].

II. SYSTEM MODEL

Consider the wireless system with Nt transmit antennas
and Nr receive antennas in Fig. 1. The channel is modelled
by an Nr × Nt matrix H with Nr × 1 channel noise n.
We assume the channel is slow fading so that the channel
does not change during each channel use. The noise vector
n is assumed to be additive white Gaussian with zero
mean and variance σ2

n. Suppose the numbers of RF chains
at the transmitter and the receiver are, respectively, N t

rf

and N t
rf and the number of substreams transmitted is Ns.

The input of the transmitter is a Ns × 1 vector s, whose
elements s0, s1, · · · , sNs−1 are modulations symbols that
are assumed to be uncorrelated, of zero mean and of variance
σ2
s0 , σ

2
s1 , · · · , σ

2
sNs−1

.
The transmit precoding matrix F, of dimensions Nt×Ns,

is the product F = FrfFbb. The matrix Fbb, of size
N t
rf × Ns, represents the baseband processing while Frf ,

of size Nt ×N t
rf , corresponds to the RF signal processing

that consists of phase shifters. Although Frf can be imple-
mented using phase shifters, its entries are not necessarily
of constant magnitude. For example, the entries can be the
sums of two phase shifters. Similarly, the receive matrix is
of the form G = GbbGrf , where Gbb is Ns × Nr

rf and
it represents the baseband processing at the receiver. The
matrix Grf , of size Nr

rf ×Nr, corresponds to the RF signal
processing. Like Frf , the matrix Grf is implemented using
phase shifters, but its entries are not necessarily of constant
magnitude.

The transmitter output is x = FrfFbbs. As the input
modulation symbols of the transmitter are uncorrelated
and of zero mean, the total transmit power is Pt =∑Ns−1
i=0 ||fi||2σ2

si , where fi is the i-th column vector of the
precoder F. The receiver output vector is ŝ = Ts+e, where
T = GHF and e = Gn. When the receiver is zero-forcing
and T = INs , the number of bits that can be transmitted is
given by

Rb =

Ns−1∑
i=0

log2

(
1 +

σ2
si

Γσ2
ei

)
, (1)

e jθ

+

e jφ

(a)

e jθ

+
e jφ
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Fig. 2. Phase shifter implementation, (a) Structure I, and (b) Structure II.

where σ2
ei is the variance of the i-th entry of the noise term

e and Γ is the SNR gap that depends on the desired error
rate, e.g., Γ = − ln(5BER)/1.5 [15].

III. PHASE SHIFTER IMPLEMENTATION OF PRECODER
COEFFICIENTS

In most earlier designs, the analog RF precoder is con-
strained to have constant magnitude due to phase shifter
implementation. It is shown recently that the coefficients of
the analog RF precoder can be of non-constant magnitude
by using two phase shifters for each coefficient [6]. In
particular, it is observed that a complex number c = rejα

with 0 ≤ r ≤ 2 can be expressed as c = ejθ + ejφ, where

θ = α+ cos−1(r/2), φ = α− cos−1(r/2).

The result suggests that the multiplication of a number by
a scalar c with magnitude ≤ 2 can be implemented as
Structure I in Fig. 2(a).1 When the phases θ and φ are
quantized to a finite set of values, so is c. Alternatively,
we can express c as

c = ejθ(1 + ejφ), (2)

where θ and φ are now related to the magnitude and phase
of c in a different manner. The expression in (2) gives rise to
Structure II in Fig. 2(b), which also uses two phase shifters
and a combiner. The two structures in Fig. 2 yield the same
result when θ and φ are not quantized. In the presence of
quantization they have different performance as to be shown
in the following analysis.

Let us consider the quantization of a complex scalar
c = rejα with r ≤ 2 using the two structures in Fig. 2 by
quantizing the phases θ and φ. The following assumptions
are made in the quantization of θ and φ.
A1. The quantization errors of θ and φ are uncorrelated.

That is δθ = θ̂ − θ and δφ = φ̂− φ are uncorrelated,
where θ̂ and φ̂ are respectively the quantized values
of θ and φ.

A2. The quantization error δθ is assumed to be uncorre-
lated with θ, of zero mean, and uniformly distributed
over the interval [−∆θ/2,∆θ/2), where ∆θ is the
quantization step size. The same assumption is made
on the quantization error δφ.

These assumptions, commonly used in the analysis of
quantization error [16], is generally valid for high-rate
quantization. Let θ be drawn from an interval of length Vθ

1In actual implementation the power at the output is not higher than
that at the input when only passive devices are used. To reflect this fact,
it is more appropriate to do a scaling of 1/2 for each branch after the
splitter. The scaling does not affect the subsequent analysis on coefficient
quantization and it is not shown in the figure.
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and the number of bits for quantizing θ be bθ, then the
quantization step size is given by ∆θ = Vθ2

−b. In this case
the variance of quantization error σ2

δθ
= E[δ2θ ] can be given

in a closed form by

σ2
δθ

=
1

12
∆2
θ =

V 2
θ

12
2−2bθ . (3)

Although high-rate quantization is assumed in the deriva-
tions, we will see in the simulation examples that the result
is accurate even when the quantization resolution is low.

A. Quantization: Structure I
In Structure I, a scalar c = rejα is expressed as ejθ+ejφ.

When θ and φ are quantized to θ̂ and φ̂, correspondingly c is
quantized to ĉ = ejθ̂+ejφ̂. The quantization error ĉ−c is not
related to the quantization of θ and φ in a straight forward
manner. However when the quantization resolution is high,
the mean square quantization error (MSQE) E1 = E[|ĉ−c|2]
can be approximated in terms of those of θ and φ.

Lemma 1. Consider a random variable c = ejθ + ejφ that
is quantized by quantizing θ and φ. With high-resolution
quantization, the effective MSQE for Structure I can be
approximated as

E1 ≈ σ2
δθ

+ σ2
δφ
, (4)

where σ2
δθ

and σ2
δφ

are, respectively, the variances of the
quantization errors δθ and δφ.

A proof of Lemma 1 can be found in Appendix A. For 0 ≤
r ≤ 2 and 0 ≤ α < 2π, the ranges of θ and φ are both from
0 to 2π. Thus for both cases the intervals of quantization
are of lengths 2π and the step sizes for quantizing θ and φ
are ∆θ = 2π2−bθ and ∆φ = 2π2−bφ , where bθ and bφ are,
respectively, the number of bits used for quantizing θ and φ.
We obtain the effective error expression E1 = π2

3 (2−2bθ +
2−2bφ). In this case, we see the quantization errors of θ and
φ contribute equally to the overall error. Let the average
number of quantization bits be b = (bθ + bφ)/2. For a given
b, we choose bθ = bφ = b and we arrive at E1 = 2π2

3 2−2b.

B. Quantization: Structure II
An arbitrary scalar c = rejα with r ≤ 2 can also be

written as c = ejθ(1 + ejφ), where

θ = α− cos−1(r/2), φ = 2 cos−1(r/2). (5)

Thus we have the implementation as in Structure II
(Fig. 2(b)). Conversely we can express the magnitude and
phase of c as

r = 2 cos (φ/2) , α = θ + φ/2. (6)

When θ and φ are quantized to θ̂ and φ̂, correspondingly c is
quantized to ĉ = ejθ̂(1+ejφ̂). The quantization error is given
by ĉ−c = ejθ̂(1+ejφ̂)−ejθ(1+ejφ), which is not directly
related to the quantization errors of θ and φ. Assume r, δθ,
and δφ are uncorrelated, a reasonable assumption when the
quantization resolution is high. Like Structure I, the MSQE
E2 = E[|ĉ− c|2] can be approximated in terms of those of
θ and φ.

Lemma 2. Consider the quantization of a random variable
c = rejα with r ≤ 2. Express c as c = ejθ(1 + ejφ) and
quantize c by quantizing θ and φ. When r, δθ, and δφ are
uncorrelated, and the quantization resolution is high, the
effective MSQE E2 for Structure II can be approximated as

E2 ≈ E[r2]σ2
δθ

+ σ2
δφ
. (7)

A proof is give in Appendix B. For 0 ≤ r ≤ 2 and 0 ≤
α < 2π, the range of θ is from 0 to 2π. But unlike Structure
I, the range of φ now is from 0 to only π. This is because
φ = 2 cos−1(r/2) from (6) and r is a nonnegative number.
Thus the lengths of quantization Vθ = 2π and Vφ = π,
and the step sizes for quantizing θ and φ are, respectively,
∆θ = 2π2−bθ and ∆φ = π2−bφ . As a result, the variances
of δθ and δφ are, respectively,

σ2
δθ

=
π2

3
2−2bθ , σ2

δφ
=
π2

12
2−2bφ . (8)

We obtain the effective quantization error

E2 =
π2

3

(
E[r2]2−2bθ +

1

4
2−2bφ

)
. (9)

We see that the quantization errors of θ and φ do not
contribute to the overall error in the same way. Suppose
the average number of bits that can be used for quantizing
θ and φ is b, and we are allowed to allocate the bits between
θ and φ. Suppose bθ bits are used for quantizing θ and bφ
bits for φ. Then the bit allocation problem becomes

min
bθ,bφ,subject to (bθ+bφ)/2=b

E2 =
π2

3

(
E[r2]2−2bθ +

1

4
2−2bφ

)
.

The bit allocation problem can be solved using arithmetic
mean–geometric mean inequality [17], in particular E2 ≥
π2

3 2−2b
√
E[r2], where we have used the constraint bθ+bφ =

2b. The lower bound is independent of bθ and bφ; the optimal
bit allocation is such that the inequality becomes an equality,
i.e., the two terms E[r2]2−2bθ and 1

42−2bφ are of the same
value. Thus the optimal bit allocation is

bθ = b+
1

2
log2

(
2
√
E[r2]

)
, bφ = b− bθ,

and the resulting MSQE is E2 = π2

3 2−2b
√
E[r2]. The above

equation in general yields non integer solution, which can
be rounded to integers in practical implementation.

Joint scalar quantization. In the above derivation of
E2, the two phases θ and φ are quantized separately. One
is quantized without consideration of the other. Observe
that, instead of (5) we can also determine θ and φ using
φ = 2 cos−1(r/2) and θ = α − φ/2. If we first quantize φ
to φ̂, the desired unquantized value of θ is now changed
to α − φ̂/2, which can then be quantized to obtain θ̂.
Such an approach, still using scalar quantization, quantizes
θ and φ jointly and has a smaller quantization error as
we see next. Let the quantized θ be θ̂ = α − φ̂/2 + δθ.
Thus ĉ = ej(θ̂+φ̂/2)2 cos(φ̂/2) can be expressed as ĉ =
ej(α+δθ)2 cos(φ̂/2). Now the equivalent phase is affected
only by the quantization error δθ rather than both δθ and δφ
as in the previous case. When θ and φ are thus quantized,
the error can be approximated as (a proof given in Appendix
C. )

E ′2 ≈ E[r2]σ2
δθ

+ (1− E[r2]/4)σ2
δφ
, (10)
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assuming high-resolution quantization. The MSQE in (10)
is smaller than that in (9) by E[r2]/4σ2

δφ
. The ranges of θ

and φ are the same as before. Combining (8) and (10), we
obtain

E ′2 =
π2

3

(
E[r2]2−2bθ +

1

16
(4− E[r2])2−2bφ

)
. (11)

Note that in such a joint quantization of θ and φ, only scalar
quantization is needed. Quantization is done the same way
as discussed earlier except for the computation of the desired
θ.

Uniform quantization of magnitude. With Structure II,
the quantized magnitude r̂ is determined by the quantized
phase φ̂. When a uniform quantizer is used for quantizing
φ, the effective quantizer for the magnitude is not uniform
as r̂ = 2 cos(φ̂/2); there are more reconstruction points
around 2 than around 0. If we can choose the reconstruction
points for φ non-uniformly2, the effective quantizer for r
can be made uniform. In particular, we divide the interval
[0, 2] into 2bφ quantization bins, each of length 2/2bφ . Say
the center of the bins are r1, r2, · · · , r2bφ . We choose the
reconstruction points for φ to be {2 cos−1(ri/2)}2

bφ

i=1. With
uniform quantization of the magnitude, we can obtain the
mean square quantization error of r as σ2

δr
= (1/3)2−2bφ

using the formula in (3) for high-resolution quantization.
When the joint scalar quantization discussed above is em-
ployed, the error now becomes (a proof given in Appendix
D)

E ′′2 =
π2

3
E[r2]2−2bθ +

1

3
2−2bφ . (12)

Note that we can not do the same thing with Structure I. For
Structure I we have r̂ = 2 cos(θ̂/2−φ̂/2), which depends on
both θ̂ and φ̂ rather than a single phase. Therefore we do not
have direct control over the magnitude of the reconstruction
points like Structure II.

IV. QUANTIZATION: BEAMFORMING SYSTEMS

In this section, we consider the SNR loss of a beam-
forming system due to the quantization of the beamformers
based on the MSQE derived in the previous section. When
there is only one RF chain, N t

rf = Nr
rf = 1, only one

substream can be transmitted and Ns = 1. The system in
Fig. 1 becomes a beamforming system. In this case, the
precoder F = Frf = f is an Nt × 1 beamforming vector
and G = Grf = g is a 1 × Nr combining vector. The
transmission power is Pt = σ2

s ||f ||2. Let the singular value
decomposition of the channel be

H = UΛV†, (13)

where U and V are unitary, of sizes Nr × Nr and Nt ×
Nt, respectively. The diagonal elements of Λ are in non
increasing order, i.e., λ0 ≥ λ1 ≥ · · · ≥ λK−1, where K =
min{Nt, Nr}. Then the optimal beamforming vector is f =
v0, where v0 is the first column vector of V, and the optimal
combining vector g = u†0, where u0 is the first column
vector of U. The optimal overall signal to noise ratio is

SNR = λ20Pt/σ
2
n. (14)

2To implement a phase shifter with nonuniform phases, one can use the
combination of constant-phase phase shifters and switches as detailed in
[18].

A. Quantization of beamforming vectors
When there is only one RF chain, baseband processing

plays no part and beamforming is done entirely using
RF phase shifters. When the phase shifters are of finite
resolution, the transmit beamformer and receive combiner
are only quantized versions of the optimal beamformer and
combiner. Given the quantized beamformer f̂ , the optimal
unconstrained combining vector is no longer the left singular
vector of H corresponding to the largest singular value. It
is the one that is matched to Hf̂ . Let ĝ be the quantized
combiner. The receiver output is ŝ = ĝHf̂s+ĝn. The overall
SNR in this case is given by

SNRt,r =
|ĝHf̂ |2

||f̂ ||2||ĝ||2
Pt
σ2
n

, (15)

where the subscript t, r is added to indicate that both
transmit and receive sides are quantized. In what follows, we
summarize the steps for designing the quantized beamformer
and combiner. (1) For a given channel H, we compute
the right singular vector v0 that corresponds to the largest
singular value. (2) Normalize the optimal beamformer as
f = βfv0, where βf is a positive scalar such that the entries
of f have magnitude at almost 2. (3) Quantize each entry
of f using one of the two structures discussed in Sec. III.
Let the kth entry of f be fk = rke

jαk . With Structure I,
fk is quantized to f̂k = ejθ̂k + ejφ̂k , where θ̂k and φ̂k are
respectively the quantized values of

θk = αk + cos−1(rk/2), φk = αk − cos−1(rk/2). (16)

With Structure II, fk is quantized to [f̂ ]k = ejθ̂k(1 + ejφ̂k),
where θ̂k and φ̂k are respectively the quantized values of

φk = 2 cos−1(rk/2), θk = αk − φk/2, (17)

for joint scalar quantization of θk and φk. (4) Compute
the desired combiner (Hf̂)† and apply normalization g =
βg(Hf̂)†, where βg ≥ 0 is such that the entries of g have
magnitude ≤ 2. (5) Quantize g as in Step (3).

For each coefficient of the beamforming vector, two phase
shifters are needed when either Structure I or II is used.
A total of 2Nt phase shifters are needed for implementing
the transmit beamformer and 2Nr phase shifters needed for
implementing the receive combiner.

B. SNR degradation due to quantization
With the quantization of the transmit beamformer and

the receive combiner, the SNR is degraded. There is more
degradation when the vectors are more heavily quantized. It
turns out that a connection between the quantization error
and the resulting SNR degradation can be established. An
estimate of SNR loss can obtained based on the quantization
error, irrespective of the quantization scheme adopted.

We first consider the case when only the transmit beam-
forming vector f is quantized but not the combiner. Choos-
ing the unconstrained combiner as (Hf̂)†, then the SNR
at the combiner output is SNRt = ||Hf̂ ||2

||f̂ ||2
Pt
σ2
n
, where a

subscript t is used to indicate that the transmit beamformer is
quantized. In comparison with the SNR without quantization
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in (14), the SNR degradation Dt = SNR/SNRt is given
by

Dt =
λ20||f̂ ||2

||Hf̂ ||2
.

When both the beamformer and combiner are quantized, the
SNR is as given in (15). In this case, the SNR degradation
Dt,r = SNR/SNRt,r is

Dt,r =
λ20||f̂ ||2||ĝ||2

|ĝHf̂ |2
. (18)

To analyze the effect of quantization on the SNR degra-
dation, suppose the quantized beamformer is f̂ = f + df ,
where df is the quantization error vector, whose entires are
assumed to be uncorrelated random variables with zero mean
and variance σ2

df
. When the receiver side is also quantized,

suppose the desired normalized combiner is quantized to
ĝ = g+dg , where dg is the quantization error vector whose
entires are assumed to be uncorrelated random variables with
zero mean and variance σ2

dg
.

Lemma 3. Consider the case the quantization resolution is
high and the transmit beamformer is quantized but not the
receive combiner. As the number of transmit antennas Nt
tends to infinity, the average SNR degradation satisfies

Dt ≈ 1 + ||df ||2]/||f ||2 − ||Hdf ||2/(λ20||f ||2). (19)

For the case both beamformer and combiner are quantized,
we have

Dt,r ≈ Dt(1 + ||dg||2/||g||2), (20)

as Nt and Nr tend to infinity.

A proof can be found in Appendix E. The lemma makes
a connection between the quantization error and the SNR
degradation of the beamforming system. Such a connection
can be further used to quantify the average SNR degradation.
Notice that the last term on the right hand side of (19)
is equal to

∑Nt−1
k=0 λ2i /λ

2
0|[Vdf ]k|2/||f ||2. Each term in

the summation contains the factor λ2i /λ
2
0. Typically the

first few eigenvalues are significantly larger than the rest
for a large Nt and so

∑Nt−1
k=0 λ2i /λ

2
0|[Vdf ]k|2/||f ||2 �∑Nt−1

k=0 |[Vdf ]k|2/||f ||2, which is equal to ||df ||2/||f ||2 as
V is unitary. Therefore the last term on the right hand
side of (19) is much smaller than the second term. We
have the approximation Dt ≈ 1 + ||df ||2]/E[||f ||2 and
thus E[Dt] ≈ 1 + E[||df ||2/||f ||2]. For high-resolution
quantization, it is reasonable to assume that ||df ||2 and
1/||f ||2 are correlated. This leads to

E[Dt] & D̄t, where D̄t = 1 + E[||df ||2]/E[||f ||2], (21)

where the inequality is due to Jensen’s inequality for a
convex function and E[1/x] ≥ 1/E[x]. For the case
that both the beamformer and the combiner are quantized,
apply the approximation Dt ≈ 1 + ||df ||2/||f ||2] and
(20) becomes Dt,r ≈ 1 + ||df ||2/||f ||2 + ||dg||2/||g||2 +
||df ||2||dg||2/(||f ||2||g||2). Ignoring the last term, which
is a lot smaller then the first three, we get Dt,r & 1 +
||df ||2/||f ||2+ ||dg||2/||g||2. Taking the expectation of Dt,r
and using Jensen’s inequality as in the above derivation for
E[Dt] we arrive at

E[Dt,r] & D̄t,r, (22)

where D̄t,r = 1+E[||df ||2]/E[||f ||2]+E[||dg||2]/E[||g||2].

The bounds D̄t and D̄t,r can be used to estimate the
SNR loss due to quantization. The error term E[||df ||2] is
equal to Ntσ2

df
and E[||dg||2] = Nrσ

2
dg

, where σ2
df

and σ2
dg

are quantization errors of the coefficients and they can be
computed using the results derived in Sec. III. Observe that
D̄t and D̄t,r are directly related to the signal to quantization
error ratio. Let SQRq,t = E[||f ||2]/E[||df ||2], the signal to
quantization error ratio for the transmit beamformer. Simi-
larly, we can define SQRq,r = E[||g||2]/E[||dg||2], the sig-
nal to quantization error ratio for the receive combiner. Then
D̄t = 1+1/SQRq,t and D̄t,r = 1+1/SQRq,t+1/SQRq,r.
The computation of SQRq,t requires E[||f ||2], which can
be estimated using simulations or computed if statistics of
||f || are available. For example, assume the modulus of
each element of f is uniformly distributed over [0 2], then
E[||f ||2] = 4

3Nt. Using the MSQE derived for S2 in (12) and
applying optimal bit allocation between θ and φ, we have
D̄t = 1+2.85×2−2b, which is equal to 1.18 for b = 2. For
the case when only the receiver beamformer is quantized,
the loss can be obtained the same way. That is, we can
obtain around 85% of the SNR achieved by the unquantized
beamformer when only the transmit (or receive) beamformer
is quantized. The can be compared with the results in [19], in
which each receiver beamforming coefficient is implemented
using one phase shifter and Nt = 1, i.e., no quantization of
transmit beamformer. It is shown therein that around 66%
of the SNR achieved by the unquantized beamformer can
be obtained. Therefore when Nt = 1, S2 quantization that
uses two phase shifters for each beamforming coefficient has
an improvement of around 19%. Although a large antenna
size is assumed in the derivations, simulations show that
the accuracy of the estimate is not greatly affected by the
antenna size.

V. QUANTIZATION OF RF PRECODERS

For the beamforming case, it suffices to use only one
RF chain. For the transmission of Ns substreams, we only
need as many RF chains for both the transmitting and
receiving ends. First we consider the case that the number
of substreams is the same as the number of RF chains, i.e.,
Ns = N t

rf = Nr
rf . When there is no quantization on the

phases shifters, the optimal precoder is VNs , where VNs
consists of the first Ns column vectors of V, and V is the
unitary matrix given in (13). The optimal receive matrix is
U†Ns , where UNs consists of the first Ns column vectors of
U.

The quantization of the precoder is similar to the beam-
forming case. We normalize and quantize each column
vector of the optimal precoder as in Sec. IV-A. In particular,
the desired RF precoder is Frf = VNsβf , where βf
is a diagonal matrix with positive diagonal elements βf,1,
βf,2, · · ·βf,Ns and βf,k is such that the k-th column of Frf
has maximum magnitude equal to 2. Quantize each entry of
Frf using Structures I or II and call the quantized matrix
F̂rf , the analog precoder that can be implemented using
quantized phase shifters. The quantized F̂rf is different from
the optimal precoder, depending on the quantization resolu-
tion of the phase shifters. For the residual difference, we can
use digital processing Fbb to help with further precoding.
When the receiver is not constrained, it is shown in [20]
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that, for a given Frf the optimal Fbb that maximimizes the
capacity of the system is given by (F̂†rf F̂rf )−

1
2 Veff , where

Veff is the N t
rf × Ns unitary matrix that consists of the

right singular vectors of HF̂rf . At the receiver side, the
zero-forcing receive matrix that minimizes the total noise is
the Moore-Penrose left inverse of HF, where F = F̂rfFbb.
The row vectors of the left inverse are normalized to obtain
the desired Grf . That is Grf = βg((HF)†(HF))−1(HF)†,
where βg is a diagonal matrix with positive diagonal ele-
ments βg,1, βg,2, · · ·βg,Ns and βg,k is such that the k-th row
of Grf has maximum magnitude equal to 2. Quantize the
entries of Grf using Structure I or II to obtained Ĝrf , which
can be implemented using quantized phase shifters. With
the quantized Ĝrf , the product ĜrfHF is not the identity
matrix. There is some interference among the substreams.
To remove the interference, we can choose Gbb to be the
inverse of GrfHF.

In the above discussion, the number of RF chains is
the same as the number of substreams. When there are
more RF chains than substreams, Frf has more than Ns
columns and there are extra phase shifters. These phase
shifters can be used to reduce the quantization error of
some of the substreams. For example, suppose the extra
phase shifters are used for the first substream, then there
are more phase shifters to represent the coefficients of the
first column of the Frf and a higher resolution can be
achieved as discussed in Sec. III. In this case the solution
of zero-forcing Gbb is not unique. We can choose Gbb

to be the left inverse of ĜrfHF that has the smallest
total noise power, i.e., the Moore-Penrose inverse Gbb =
((ĜrfHF)†(ĜrfHF))−1(ĜrfHF)†.

VI. SIMULATIONS

For the evaluation of the proposed quantization schemes,
we adopt the clustered channel representation that is useful
for modelling multipath propagation. The channel consists
of Ncl clusters and each cluster contains Nray propagation
paths [21][22],

H =
1√

NclNray

Ncl∑
k=1

Nray∑
`=1

αk`ar(φ
r
a,kl, φ

r
e,kl)a

†
t(φ

t
a,kl, φ

t
e,kl),

(23)
where αk`, the complex gain of the `th ray in the kth cluster,
is assumed to a Gaussian random variable of zero mean and
unity variance. The azimuth (elevation) angle of departure
φta,kl (φte,kl) and azimuth (elevation) angle of arrival φra,kl
(φre,kl) are of a truncated Laplacian distribution [23][21].
The means of angles of departure (arrival) in azimuth and
elevation are assumed to be uniformly distributed over
[0 2π]. The vectors a†t(φ

t
a,kl, φ

t
e,kl) and ar(φ

r
a,kl, φ

r
e,kl) are,

respectively, the transmit and receive antenna array response
vectors. The array response for a uniform planar array
with M × N antennas is given by [a(φa, φe)]m+nM =
ej2πd(m cos(φe)+n sin(φe) cos(φa)), for 0 ≤ m < M and
0 ≤ n < N , where d is the antenna spacing normalized
by the wavelength. In the simulation examples, we assume
the antenna spacing to be half wavelength and d = 1/2.
The standard deviations of angles of departure (arrival)
in azimuth and elevation, also called angular spreads, are
assumed to be 7.5◦, unless mentioned otherwise, and we

use Ncl = 3 and Nray = 10 [21]. The clustered channel
model is used Examples 2–5 and 105 channels are used in
the performance evaluation.
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Fig. 3. Mean square quantization error as a function of b, the average
number of quantization bits.

Example 1. In this example, we compare the mean square
quantization errors when a scalar is quantized using the two
structures discussed in Sec. III. Consider the quantization
of a random variable c = rejα, where r is uniformly dis-
tributed over the interval [0, 2) and α is uniformly distributed
over [0, 2π). The quantization error is averaged over 105

realizations. Fig. 3 shows the MSQE for Structure I (S1)
and the three quantization schemes of Structure II (S2)
discussed in Sec. III. The theoretical errors are computed
using the formulas in (4), (9), (11), and (12). Although
the quantization error is analyzed in Sec. III under the
assumption of high quantization resolution, we can see from
Fig. 3 the results are accurate for b ≥ 2. The theoretical
and simulated curves overlap except for the case of very
low rate quantization b = 1. The simulated gain of S2
over S1 is therefore about the same as the computed gain
given in Example 1. In the following examples, joint scalar
quantization with uniform quantization of the magnitude will
be used for S2.

Example 2. In this example we consider a beamforming
system with one RF chain over a channel described by
(23). Fig. 4 shows the bit error rate (BER) performance
when QPSK symbols are transmitted and Nt = Nr = 16.
The coefficients of the optimal beamforming and combining
vectors are quantized as discussed in Sec. IV-A. The angles
φk and θk ((16) for S1 and (17) for S2) are quantized with
b = 1, 1.5, and 2 bits, where b is the average number
of quantization bits. Compared to unconstrained optimal
beamforming, the SNR degradation for b = 2 is around 0.8
dB with S2 and 2.5 dB with S1. When b = 1.5, the angles θk
and φk are quantized using 2 bits and one bit, respectively.
The performance of S2 with b = 1.5 is about the same as
that of S1 with b = 2 bits; a simpler one-bit quantizer can
be used for φk in S2 to achieve the performance of S1. The
gap between the two structures widens as b decreases and
the phase shifters are more heavily quantized.

Example 3. Consider a beamforming system with Nt =
Nr = 16 and one RF chain. Fig. 5 shows the simulated
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average SNR degradation and the estimated degradation
Dr and Dt,r computed using (21) and (22). By averaging
over 105 channels we obtain the average degradation E[Dt]
when only the beamformer is quantized and the average
degradation E[Dt,r] when both the beamformer and com-
biner are quantized. The crude approximations in (21) and
(22) that compute the degradation using the quantization
error variance give good estimates of E[Dt] and E[Dt,r].
Notice that the lower bounds given in (21) and (22) are
approximated. They can be larger than the actual SNR
degradation for a small b, where approximations are less
accurate, as can be observed from Fig. 5.

Example 4. Let Nt = Nr = 64, the number of RF
chains be Nrf = 2 and two substreams are transmitted.
Fig. 6 shows the transmission rate computed using (1) for
Γ = 6.6, which corresponds to a BER of around 10−5.
Equal power allocation is used between the two substreams.

The coefficients of Frf and Grf are each quantized by
quantizing the phase shifters using b = 2 as discussed
in Sec. V. Also shown in Fig. 6(a) are the curves of the
sparse precoding and combining (SPC) [3], in which each
coefficient of Frf is implemented using one phase shifter.
The phase shifters in SPC are also quantized using two bits.
For comparison we have shown the result of SPC with four
RF chains, in which case SPC uses the same total number
of phase shifters but twice the number of RF chains. We
see that S1 with two RF chains has a higher rate than SPC
with four RF chains. To have a comparable performance
with that of S1, SPC requires more than twice the number
of RF chains and thus more phase shifters. In other words,
with S1 (or S2), the number of RF chains can be reduced
by half. In 6(b), we plot the transmission rate for different
angular spread when Pt/σ

2
n = 0 dB. The azimuth and

elevation angular spreads at both the transmitter and the
receiver are the same. We can see that the performance of
S2 quantization is robust as angular spread increases.
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Fig. 6. Hybrid precoding system with Nt = Nr = 64 and Ns = 2; (a)
transmission rate vs. SNR, and (b) transmission rate vs. angular spread.

Example 5. In the previous examples, point-to-point com-
munication is considered. In this example, we demonstrate
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the average rate performance using S1 or S2 for downlink
multiuser transmission when Nt = 32, Nr = 8. The
number of RF chains at the base station is the same as the
number of users K. The multiuser beamforming vectors are
designed based on the zero-forcing beamforming method
[24], in which a hybrid beamforming scheme is used at
the base station. The analog beamformers of the users and
base station are computed without taking interference into
consideration and they are quantized using S1 or S2. The
digital precoder at the base station is designed so that
multiuser interference is canceled and the column vectors
of the digital precoder are normalized so that each user is
allocated the same power. We show in Fig. 7 the average
transmission rate per user as a function of K for Pt/σ2

n = 5
dB. We see that the average rate decreases with the number
of users. The gap between the unconstrained and constrained
cases increases with K. For K = 1, the average rate of
S2 with b = 2 is around 0.3 bits less than that of the
unquantized, but the difference increases to around 0.8 bits
for K = 16. If the average number of quantization bits b for
S2 is increased to 3, the gap can be narrowed to around 0.3
bits for K = 16. For more users, the performance is more
sensitive to quantization error and a higher quantization
resolution is needed to achieve near-optimal performance.
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Fig. 7. Average rate per user vs. numbers of users K.

VII. CONCLUSIONS

In earlier works of analog RF precoding, the coefficients
are optimized with the condition that the coefficients are
of constant magnitude. The condition can be much more
relaxed. That is, the analog processing consists of only
phase shifters and combiners and the coefficients need not
be of the same magnitude. The relaxation of the condition
gives rise to more general RF precoders and also different
possible implementation structures. In this paper we analyze
the quantization error of the precoder coefficients due to
phase quantization for two possible structures. In these two
structures, each coefficient of the RF precoder is represented
using two phase shifters, which seemingly increases the
number of phase shifters. However simulations show that

these structures can reduce the number of RF chains for a
given total number of phase shifters.

APPENDIX A
Proof of Lemma 1. The quantized value ĉ = e(jθ+jδθ) +

e(jφ+jδφ) can be written as four terms: ĉ = cos(θ + δθ) +
j sin(θ + δθ) + cos(φ + δφ) + j sin(φ + δφ). The first
term cos(θ + δθ) can be expressed as cos(θ) cos(δθ) −
sin(θ) sin(δθ). When the quantization resolution is high, δθ
and δφ are small and thus cos(δθ) ≈ 1 and sin(δθ) ≈ δθ.
So the first term cos(θ + δθ) can be approximated as
cos θ − δθ sin θ. Applying similar approximations on the
remains three terms of ĉ, we obtain ĉ ≈ cos θ − δθ sin θ +
j(sin θ + δθ cos θ) + cosφ− δφ sinφ+ j(sinφ+ δφ cosφ).
The quantization error is ĉ − c ≈ −δθ sin θ − δφ sinφ +
j(δθ cos θ + δφ cosφ). With this expression, we obtain the
approximation E1 ≈ E[δ2θ + δ2φ + 2δθδφ cos(θ − φ)]. Using
the assumptions that δθ and δφ are uncorrelated and have
zero mean, we get E1 ≈ σ2

δθ
+ σ2

δφ
.

APPENDIX B
Proof of Lemma 2. The quantization error can be rewrit-

ten as ĉ− c = cos(θ+δθ)+ j sin(θ+δθ)+cos(θ+φ+δθ +
δφ)+ j sin(θ+φ+δθ +δφ)−ejθ−ej(θ+φ). Applying angle
sum formulas for cosine and sine functions, we can further
express the error as ĉ − c = cos θ cos δθ − sin θ sin δθ +
j sin θ cos δθ + j cos θ sin δθ + cos(θ + φ) cos(δθ + δφ) −
sin(θ+φ) sin(δθ+δφ)+j sin(θ+φ) cos(δθ+δφ)+j cos(θ+
φ) sin(δθ + δφ)− cos θ− j sin θ− cos(θ+φ)− j sin(θ+φ).
Similar to the proof of Lemma 1, let us apply approxima-
tions for high-resolution quantization, in particular, cos δθ ≈
1, cos(δθ+δφ) ≈ 1, sin δθ ≈ δθ, and sin(δθ+δφ) ≈ δθ+δp.
With these approximations, we get ĉ − c ≈ −δθ sin θ −
(δθ + δφ) sin(θ + φ) + jδθ cos θ + j(δθ + δφ) cos(θ + φ).
Combining the terms yields |ĉ − c|2 ≈ 2δ2θ(1 + cosφ) +
δ2φ+ 2δθδφ(1 + cosφ). Note that (1 + cosφ) = 2 cos2(φ/2),
which is equal to r2/2 as φ = 2 cos−1(r/2). It follows that
|ĉ− c|2 ≈ δ2θr

2 + δ2φ + δθδφr
2. Using the assumptions that

r, δθ and δφ are uncorrelated and also that δθ and δφ have
zero mean, we arrive at (7).

APPENDIX C.
Proof of (10). The quantization error can be expressed as

ĉ−c = 2ejα(ejδθ cos((φ+δφ)/2)−cos(φ/2)). Applying the
approximations for high-resolution quantization, cos δθ ≈ 1,
sin δθ ≈ δθ, cos(δφ/2) ≈ 1 and sin(δφ/2) ≈ δφ/2,
we get ĉ − c ≈ 2ejα(−δφ/2 sin(φ/2) + jδθ cos(φ/2) −
jδθδφ/2 sin(φ/2)). Notice that the last term contains the
product of the two quantization errors, thus it is signifi-
cantly smaller than the first two. Ignoring the last term,
we get |ĉ − c|2 ≈ δ2φ sin2(φ/2) + 4δ2θ cos2(φ/2). Using
cos(φ/2) = r/2, we obtain the expression in (10).

APPENDIX D
Proof of (12). Let ĉ = r̂ejα̂ and the quantization error

be e = c′ − c. With joint scalar quantization, we know
α̂ = α + δθ and thus ĉ = ej(α+δθ)r̂. The error term
|e|2 = (ĉ−c)∗(ĉ−c) can be rewritten as r̂2+r2−2rr̂ cos δθ.
Expressing r̂ as r+δr, where δr is the quantization error of
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the magnitude, we get |e|2 = 4(r2 + rδr) sin2(δθ/2) + δ2r .
When δθ is small, we have sin(δθ/2) ≈ δθ/2. It follows
that |e|2 ≈ (r2 + rδr)δ

2
θ + δ2r . With the high-resolution

quantization assumptions A1 and A2, δr has zero mean and
is uncorrelated with r. Thus we get E ′′2 ≈ E[r2]σ2

δθ
+ σ2

δr
,

where we have used the assumption the r and δθ are
uncorrelated. Replacing σ2

δθ
by (π2/3)2−2bθ and σ2

δr
by

(1/3)2−2bφ , we get (12).

APPENDIX E
Proof of Lemma 3. The SNR degradation Dt can be

written in term of f and df as Dt = λ20||f + df ||2/||H(f +
df )||2. The denominator ||H(f + df )||2 = f†H†Hf +

f†H†Hdf + d†fH
†Hf + ||Hdf ||2 can be expressed as

λ20||f ||2 + λ20(f†df + d†f f) + ||Hdf ||2 using H†Hf = λ20f .
Therefore, we have

Dt =
1 + (f†df + d†f f)/||f ||2 + ||df ||2/||f ||2

1 + (f†df + d†f f)/||f ||2 + ||Hdf ||2/(λ20||f ||2)
,

(24)
where we have divided the numerator and denominator by
λ20||f ||2. Notice that ||f ||2 is in the order of Nt as the
entries of f are normalized to have maximum magnitude
equal to 2. When the quantization resolution is high and
Nt is large, the value of f†df/||f ||2 = v†0df/||f || is
typically small as v0 is of unit norm. So (f†df+d†f f)/||f ||2,
which is two times the real part of f†df/||f ||2, will be
a small quantity. On the other hand ||Hdf ||2/(λ20||f ||2) is
equal to ||Hdf ||2/||Hf ||2. Notice that ||Hdf ||2/||df ||2 ≤
||Hf ||2/||f ||2 as f is an eigen vector corresponding to the
largest eigen value of H†H. Rearranging the terms, we
get ||Hdf ||2/||Hf ||2 ≤ ||df ||2/||f ||2, which is a small
number when the quantization resolution is sufficiently high.
Therefore the last two terms in the denominator of (24) is
much smaller than unity. Using 1/(1+x) ≈ 1−x for small x,
we have Dt ≈ (1+(f†df +d†f f)/||f ||2 + ||df ||2/||f ||2)(1−
(f†df +d†f f)/||f ||2−||Hdf ||2/(λ20||f ||2)). Multiplying out

the terms, we get Dt ≈ 1 + ||df ||2/||f ||2 − ||Hdf ||2
λ2
0||f ||2

−

B1, where B1 =
(f†df+d†f f)

2

||f ||2
1
||f ||2 −

||df ||2
||f ||2

||Hdf ||2
λ2
0||f ||2

−
(f†df+d†f f)

||f ||2

(
||df ||2
||f ||2 +

||Hdf ||2
λ2
0||f ||2

)
. Notice that B1 ≈ 0 as each

term in B1 is a product of numbers much smaller than unity
and thus (19) follows.

To consider the degradation when both the transmitter and
recover are quantized, observe that the denominator term
|ĝHf̂ |2 in (18) is equal to |(g + dg)

†g|2/β2
g using g =

βgHf̂ . It can be expressed as (||g||4 + ||g||2(d†gg+g†dg)+

|d†gg|2)/β2
g and thus Dt,r = λ20||f̂ ||2||ĝ||2β2

g/(||g||4 +
||g||2(d†gg + g†dg) + |d†gg|2). Dividing the numerator and
the denominator by ||g||4, we have

Dt,r =
Dt||ĝ||2/||g||2

1 + (d†gg + g†dg)/||g||2 + |d†gg|2/||g||4
,

where we have used g = βgHf̂ and Dt =
λ2
0||f̂ ||

2

||Hf̂ ||2
. Notice

that in the denominator the last term is a lot smaller than the

first two due to the factor 1/||g||4 and also that the second
term is much smaller than unity. Ignoring the last term in
the denominator and using 1/(1 + x) ≈ 1− x for small x,
we have Dt,r ≈ Dt||ĝ||2/||g||2(1 − (d†gg + g†dg)/||g||2).
As ||ĝ||2/||g||2 = 1 + (d†gg + g†dg)/||g||2 + ||dg||2/||g||2,
we have Dt,r ≈ Dt

(
1 + ||dg||2/||g||2 −B2

)
, where B2 =

(d†gg+g†dg)
2/||g||4+(d†gg+g†dg)||dg||2/||g||4, a number

much smaller than ||dg||2/||g||2. Ignoring B2, we arrive at
(20).
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