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Abstract—This study investigates how to quantize the masked
beamforming systems to maximize the secrecy rate for MISOSE
(multiple-input, single-output, single-eavesdropper) channels and
assume that this eavesdropper equipped with only single an-
tenna, where only partial channel state information (CSI) at
the legitimate receiver is available to the transmitter. In this
case, the artificial noise (AN) leaks to the legitimate receiver due
to CSI quantization. In the literature, all quantization bits are
used to quantize the beamforming vector. Then the null space of
this quantized beamforming vector is used to transmit the AN.
We find that such quantization schemes can result in serious
interference at the legitimate receiver. To overcome this issue, we
propose that the beamforming vector and the AN vector should
be quantized separately, where the beamforming vector should
be selected from a codebook to maximize the beamforming gain
and the AN vector should be selected from another codebook
to minimize the leakage (or interference). Theoretical results
show that separate quantization can significantly reduce the AN
leakage at the legitimate receiver. Furthermore, based on the
proposed quantization scheme, we show how to allocate bits
to separately quantize the beamforming vector and the AN
vector to maximize the secrecy rate. By using the proposed
quantization and bit allocation schemes, the secrecy rates of
masked beamforming systems can be improved compared to the
conventional quantization schemes. Simulation results corrobo-
rate the theoretical results.

Index Terms — Artificial-noise, masked beamforming, MISOSE,
quantization, codebook and secrecy rate.

I. INTRODUCTION

Achieving security in the physical layer has received exten-
sive attention recently, especially in wireless communications,
because wireless signals can be easily intercepted by unau-
thorized users. Research has been conducted on this issue and
there have been several interesting results, see e.g., [1]-[21].

In [1], Csiszár and Körner investigate the maximum se-
crecy rate between the transmitter and the legitimate receiver
by taking the eavesdropper into consideration. To attain a
non-zero secrecy rate, this study addresses that the channel
condition between the transmitter and the legitimate receiver
should be better than that between the transmitter and the
eavesdropper. To reflect the nature of randomness in wire-
less channels, the authors in [2] evaluated the achievable
secrecy rate, and proposed an on-off transmission scheme to
avoid eavesdropping. Notably the authors in [3] considered
the secrecy capacity for multiple-input single-output (MISO)
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channels assuming that the CSIs (channel state information) of
both the legitimate receiver and the eavesdropper are known to
the transmitter. In this case, the secrecy capacity is achieved
by beamforming/precoding toward a direction that is as or-
thogonal to the eavesdropper as possible, while simultaneously
being as close to the legitimate receiver as possible. The
authors in [4] considered the secrecy capacity for MISO
channels with multiple eavesdroppers in colluding fashion,
and generalized the model to MISOME (multiple-input, single-
output, multiple-eavesdropper) channels. A capacity bound for
MISOME channels was derived assuming that the CSI from
both the legitimate receiver and the eavesdropper are known
to the transmitter. The problems for MIMOME (multiple-
input, multiple-output, multiple-eavesdroppers) channels were
investigated by the same authors in [5]. Also, the secrecy
capacity of MIMO channels has been further widely treated,
e.g., [6]-[9]. In addition, recently the authors in [10] used
alternating optimization to maximize the secrecy rate of a
MIMOME channel.

The above research assumes that the CSI at the legitimate
receiver (CSI between the transmitter and the legitimate re-
ceiver) and at the eavesdropper (CSI between the transmitter
and the eavesdropper) are known to the transmitter. However,
the eavesdropper is in general passive and hence the CSI
at the eavesdropper is usually unknown to the transmitter.
Under this situation, the authors in [11] proposed to transmit
artificial-noise (AN) in the null space of the signal directions,
so as to impair the channel conditions at the eavesdropper. In
this work, we call this scheme “masked beamforming (MB)”
[4]. When full CSI at the legitimate receiver is known to
the transmitter, the AN in masked beamforming systems is
transmitted in the direction orthogonal to the signal directions.
Thus, the legitimate receiver does not receive the AN. Also,
the MB method is usually used with multiple antenna settings.
However, as pointed out in [11], some system models such
as wireless relay networks can also be manipulated and apply
this method to avoid eavesdropping. In [13] and [14], MB was
analyzed assuming that the transmitter knows partial CSI at the
eavesdropper while knows full CSI at the legitimate receiver.
In [15], the authors considered that masked beamforming has
channel estimation error and path loss. An important result
was presented in [15] that more power should be allocated
to beamforming vector to improve secrecy rates when the
channel estimation error is large. In addition, for MISOSE
channels, when full CSI at the legitimate receiver is known
to the transmitter, it was suggested in [16] that the power
allocation of AN is around half of the total transmit power
in the high SNR regime, and is around zero in the low SNR
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regime; power allocation of AN for MIMOME channels was
also studied in that work.

In some systems, only partial CSI at the legitimate receiver
is available to the transmitter, e.g., Frequency Division Du-
plexing (FDD) systems. Thus the legitimate receiver needs to
quantize the CSI and sends it back to the transmitter. Assume
that the transmitter can receive the feedback information cor-
rectly [22]-[28]. In general, the quantized CSI is represented
by a selected codeword from a predetermined codebook.
The construction of codebooks and selection criterions for
codewords have been extensively discussed in the literature,
e.g., see [23]-[27]. For the legitimate receiver, the leakage
of AN leads to interference and it can significantly degrade
the outage secrecy probability and the average secrecy rate
at the legitimate receiver. This issue was treated separately in
[17] and [18]. In these two studies, the authors proposed to
quantize the beamforming vector using all bit budget. Then
the vectors in the null space of this quantized beamforming
vector are used to transmit the AN. That is, the vectors
in AN directions are determined once the quantized beam-
forming vector is determined. We refer to this scheme as
“quantized masked beamforming (QMB)”. More specifically,
[17] analyzed the achievable secrecy rate due to quantization,
and pointed out that with only partial CSI, sometimes the
conventional beamforming system (without using AN) can
outperform the QMB scheme. The work [18] considered how
to allocate transmit power between the beamforming vector
and the AN, and found that when the number of quantization
bits is sufficiently large, one should allocate power evenly
between the transmitted signal and the AN, whereas when
the number of quantization bits is small, one should be more
conservative in allocating power to the AN. We notice that,
however, the quantization method in [17] and [18] in general
results in serious interference at the legitimate receiver when
the number of quantization bits is not sufficiently large. Our
goal here is to propose methods for reducing the interference
at the legitimate receiver due to quantization.

In this work, we consider multiple-input single-output
single-eavesdropper (MISOSE) channels, and assume that this
eavesdropper equipped with only single antenna. The MIS-
OSE channel can also be regarded as multiple-eavesdropper
equipped with single antenna operating in non-colluding fash-
ion. Also the eavesdropper is able to obtain full CSIs at
both the legitimate receiver and the eavesdroppers; while
the transmitter only knows partial CSI at the legitimate re-
ceiver and no CSI at the eavesdropper. We propose that the
beamforming vector and the AN vector should be quantized
separately for minimizing the interference at the legitimate
receiver. In addition, the overall quantization bits should be
properly allocated to quantize the beamforming vector and
the AN vector, so as to maximize the average secrecy rate.
We theoretically show that under a fixed bit budget, the
induced interference at the legitimate receiver using separate
quantization can be significantly reduced compared to that
using all bits to quantize the beamforming vector solely. This
result is interesting because in the literature, e.g., see [17]
and [18], intuitively all bits should be used to quantize the
beamforming vector.

Thus in the proposed quantization scheme, there are two
separate codebooks, both have dimension of Mt × 1, where
Mt is the number of transmit antennas. One codebook is
used to quantize the beamforming vector and the other is
used to quantize the AN vector. Based on the proposed
quantization scheme, we analyze the average secrecy rate.
From this theoretical result, we show how to allocate the
quantization bits to represent the beamforming vector and the
AN vector for maximizing the average secrecy rate. The results
show that more bits should be allocated to quantize the AN
vector when the number of total quantization bits is small.
Simulation results corroborate the theoretical results, and
provide useful references for practical designs. For instance, a
provided simulation result shows that when the total number
of quantization bits is 10, one should allocate 8 bits to quantize
the AN vector and only 2 bits to quantize the beamforming
vector.

The rest of this paper is organized as follows. Section
II introduces the system model and formulate the problems
according to whether or not full CSI is known to the trans-
mitter. In Section III, we show that the induced interference
at the legitimate receiver can be significantly reduced if
the beamforming vector and the AN vector directions are
quantized separately. In Sec. IV, based on the proposed
quantization scheme, the average secrecy rate is analyzed.
From this analytical result, we also derive the proposed bit
allocation for quantizing the beamforming vector and the AN
vector, so as to maximize the average secrecy rate. Simulation
results are provided in Section V, and conclusions are made
in Section VI.

Notation. All vectors are in lowercase boldface and matrices
are in uppercase boldface. (·)T and (·)H denote the transpose
and conjugate transpose of a matrix, respectively. The n × n
identity matrix is defined as In. tr(·) is the trace of a
square matrix. E{·} and σ2

{·} denote the mean and variance,
respectively. || · || is the ℓ2 vector norm. |S| is the size of a
set S. round [·] is a function which rounds a variable to an
integer. The log(·) function is with base 2. x v CN (0, σ2In)
represents that x is an n × 1 complex Gaussian vector with
zero mean and covariance matrix σ2In. Also, e is the base of
the natural logarithm.

II. SYSTEM MODEL AND BACKGROUND REVIEW

Masked beamforming (MB) systems are introduced in this
section. The discussions are divided into two subsections
depending on whether or not the transmitter knows full CSI
about the legitimate receiver.

A. Secrecy Rate with full CSI

We consider a system model, in which the transmitter
sends information to the legitimate receiver; the eavesdropper
attempts to decode the information. In this subsection, the
eavesdropper is assumed to know full CSI at the legitimate
receiver, and full CSI at the eavesdropper. The transmitter
knows full CSI at the legitimate receiver but no CSI at
the eavesdropper. This communication system is shown in
Fig. 1. The transmitter has Mt transmit antennas, the legitimate
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Fig. 1. A block diagram of the proposed scheme.

receiver has one receiving antenna, and the eavesdropper also
has one receiving antenna. Thus, we focus the discussion on
MISOSE scenario, where Mt > 1. Let x ∈ CMt×1 be the
data vector, and P be the transmit power. The transmit power
is constrained by E{∥x∥2} ≤ P . The signal received by
the legitimate receiver and the eavesdropper are expressed,
respectively, as

yl = hlx+ zl and ye = hex+ ze, (1)

where hl ∈ C1×Mt is the channel at the legitimate receiver,
and he ∈ C1×Mt is the channel at the eavesdropper. Moreover,
we assume that hl and he ∼ CN (0, IMt); in addition hl

and he are statistically independent. The channel is assumed
to have quasi-static Rayleigh fading. In other words, fading
coefficients are fixed during a transmission block for both hl

and he. Nevertheless, the channels are still random from block
to block. The terms zl and ze in (1) are the additive white
Gaussian noise (AWGN) and are both with zero mean and
unit variance. That is, we assume that the eavesdropper and
the legitimate receiver have comparable noise strength.

To achieve physical-layer secrecy, the transmitter encodes
the information using a wire-tap code and transmits x in the
direction of hl. Under the transmit power constraint P , the
rate of the legitimate receiver and the eavesdropper are given,
respectively, by

Rl = log
(
1 + P |hlx|2

)
, (2)

Re = log
(
1 + P |hex|2

)
. (3)

The authors in [11] propose to transmit artificial-noise (AN)
in the null space of hl to impair the receive quality at
the eavesdropper, and the scheme is referred to as “masked
beamforming (MB)” [4]. Thus the transmit signal can be
expressed as

x = ps+Na = ps+ g, (4)

where p ∈ CMt×1 is the beamforming vector with unit norm,
s is the transmitted symbol with signal power E{|s|2} = σ2

s ,
N ∈ CMt×(Mt−1) is a semi-unitary matrix that belongs to

the null space of the channel hl; that is, each column of
N is orthogonal to the channel hl, and a ∈ C(Mt−1)×1 ∼
CN (0, σ2

aIMt−1). We assume that s, N and a are statistically
independent. In addition, we define g = Na and call it “the
vector of AN direction” for convenience. From (4), the power
constraint becomes E{∥x∥2} = σ2

s + (Mt − 1)σ2
a ≤ P . MB

systems use partial power, say αP , to transmit signals, and
distribute the residual power, (1 − α)P , to the AN, where
α ∈ (0, 1]. Thus σ2

s = αP and σ2
a = (1−α)P/(Mt−1). When

full CSI at the legitimate receiver is available to the transmitter,
it is reasonable to use the normalized channel vector of hl as
the beamforming vector [3] and [11], i.e.,

p =
hH
l

∥hl∥
. (5)

Moreover, due to the use of the AN, the received signals at the
legitimate receiver and the eavesdropper in (1) can be rewritten
respectively as

yl = ∥hl∥s+ zl, (6)

and
ye = heps+ heNa+ ze. (7)

In addition, the rates in (2) and (3) can be reformulated as

RMB
l = log

(
1 + αP∥hl∥2

)
, (8)

RMB
e = log

(
1 +

αP |hep|2
(1−α)P
Mt−1 ∥heN∥2 + 1

)
. (9)

The achievable secrecy rate RMB
s for Gaussian input signals

was investigated in [3] and [4] and was defined as

RMB
s = RMB

l −RMB
e .

When RMB
s ≥ 0, a secure transmission can be achieved by

using wire-tap code; on the other hand, when RMB
s < 0,

the error rate at the eavesdropper does not go to infinity and
perfect secrecy is not guaranteed. The average secrecy rate
was defined as

E
{
RMB

s

}
= E

{
RMB

l −RMB
e

}
= E

{
log
(
1 + αP∥hl∥2

)}
− E

{
log

(
1 +

αP |hep|2
(1−α)P
Mt−1 ∥heN∥2 + 1

)}
. (10)

Note that the average secrecy rate is not an achievable rate in
the Shannon sense [19]; rather it is a performance metric that
is widely used in physical layer security (e.g., [2], [11] and
[18]).

B. Secrecy Rate with Partial CSI

In this subsection, we consider a case that only partial CSI at
the legitimate receiver is known to the transmitter. We will use
the random vector quantization (RVQ)-based codebooks [18]
to analyze the relationship between the number of quantization
bits and the average the secrecy rate.

An RVQ-based codebook W consists of 2B unit norm code-
words W , {w1, . . . ,w2B} and is usually called quantized
beamforming codebook (QB codebook), where the codeword
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is wi ∈ CMt×1 for i = 1, . . . , 2B , and B is the number of
the quantization bits. Moreover, wi for i = 1, . . . , 2B , are
isotropically distributed in CMt×1, and wi and wj for i ̸= j
are random and statistically independent. In the literature, e.g.,
see [17] and [18], the legitimate receiver quantizes the beam-
forming vector p by selecting a codeword that can maximize
the rate at the legitimate receiver, where the maximization is
measured by the inner product of the beamforming vector p
and the vectors in the codebook. Then the selected codeword
can be denoted as

wo = arg max
v∈{w1,...,w2B}

∣∣pHv
∣∣2 , (11)

and
cos2 θ =

∣∣pHwo

∣∣2 , (12)

where wo is called quantized beamforming (QB) vector, and
cos2 θ is the maximum value of vector inner product between
the beamforming vector p and the quantized beamforming
vector wo. Due to the limited feedback, the null space of p is
not available to the transmitter. Hence, the authors in [17] and
[18] proposed to use the null space of wo instead of p. For pre-
sentation convenience, we call this scheme “quantized masked
beamforming (QMB)”. We define Nwo ∈ CMt×(Mt−1) as the
semi-unitary matrix that belongs to the null space of wH

o .
From (4), the data vector with limited feedback becomes

x = wos+Nwoa. (13)

From (13), the received signal at the legitimate receiver and
the eavesdropper are rewritten respectively as

yl = ∥hl∥pHwos+ ∥hl∥pHNwoa+ zl, (14)

and
ye = hewos+ heNwoa+ ze. (15)

The average secrecy rate for the QMB scheme can be ex-
pressed as

E
{
RQMB

s

}
=E

{
RQMB

l −RQMB
e

}
= E

{
log

(
1 +

αP∥hl∥2 cos2 θ
(1−α)P∥hl∥2

Mt−1 sin2 θ + 1

)}

− E

{
log

(
1 +

αP |hewo|2
(1−α)P
Mt−1 ∥heNwo∥2 + 1

)}
,

(16)

where RQMB
l and RQMB

e are the achievable rates of the
legitimate receiver and the eavesdropper, respectively, under
limited-feedback environments. Also, note that ∥pHNwo∥2
can be formulated as below,

∥pHNwo∥2 = 1− |pHwo|2 = sin2 θ, (17)

due to (12).

III. PROPOSED QUANTIZATION SCHEMES

This section begins with quantizing all vectors in AN di-
rections. Then we show that better performance can generally
be achieved by quantizing a linearly combined vector of the
AN directions instead of quantizing all vectors.

Fig. 2. A geometric interpretation for interference in the QMB scheme, in
which the value of sin2 θ is decided once the quantized beamforming vector
is determined.

A. Quantization of Vectors in AN Directions

The studies in [17] and [18] pair the quantized beamforming
vector wo and the semi-unitary matrix Nwo . Thus Nwo is
determined once wo is determined. When full CSI at the
legitimate receiver is not available, wo does not lie in the
direction of p precisely. Hence, Nwo is different from N, and
p is not orthogonal to each column of Nwo , which induces
interference at the legitimate receiver. This is demonstrated in
a geometry viewpoint shown in Fig. 2. The interference power
appears at the denominator of RQMB

l in (16) and (17) that is
defined as

Il =
(1− α)P∥hl∥2

Mt − 1
sin2 θ. (18)

From (18), the interference at the legitimate receiver is highly
related to the value of sin2 θ. In general, this value is large in
QMB schemes, because it only quantizes the beamforming
vector, and the corresponding AN vectors are completely
determined by the quantized beamforming vector. If one can
quantize the beamforming vector and the vectors in AN
directions individually, the value of sin2 θ can be reduced.

Thus, the proposed scheme has an extra codebook called
quantized AN codebook (QA codebook). Let the number of
total quantization bits be B, the value of B is divided into
two parts. One is the number of bits for quantizing the optimal
beamforming vector BQB , and the other is the number of bits
for quantizing the AN vector BQA , i.e.,

B = BQB +BQA. (19)

Moreover, we define the size of QB codebook as NQB =
2BQB , and that of QA as NQA = 2BQA . The quantized
vectors (represented by a matrix) in AN directions can then
be expressed as

N = arg min
M∈{N1,...,NNQA}

∥pHM∥2, (20)

where Ni ∈ CMt×(Mt−1) is a semi-unitary matrix for
i = 1, . . . , NQA, and the columns of Ni are isotropically
distributed in CMt×1. By the use of QA codebook and (20),
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N is obtained; hence, (18) is redefined as

INl =
(1− α)P∥hl∥2

Mt − 1
∥pHN∥2. (21)

To evaluate the interference power at the legitimate receiver
in (21), one needs to know the mean value of ∥pHN∥2. The
following lemma analyzes the mean value of ∥pHN∥2:

Lemma 1 Let the size of QA codebook be NQA, and the best
codeword is selected using (20) to minimize ∥pHN∥2. Then
the mean value of ∥pHN∥2 can be shown to be

E
{
∥pHN∥2

}
= NQA · β

(
NQA,

Mt

Mt − 1

)
, (22)

where β(a, b) is the beta function defined by

β(a, b) =

∫ 1

0

ta−1(1− t)b−1dt.

Proof: Let n belong to the null space of N. Obviously,
n is isotropically distributed in CMt×1 as well. We know the
fact that

∥pHN∥2 = 1−|pHn|2 = 1−cos2(∠(p,n)) = sin2(∠(p,n)),

where ∠(p,n) is the angle between p and n. Then this Lemma
is proved by applying the derived mean value of sin2(∠(p,n))
in [26, Eq. (13)].

From Lemma 1, substituting sin2(∠(p,n)) into (21) yields

E
{
INl

}
=

(1− α)PMtNQA

Mt − 1
β

(
NQA,

Mt

Mt − 1

)
, (23)

where E{∥hl∥2} =Mt is used to obtain this equality.
INl in (23) is the interference at the legitimate receiver when

all vectors in AN directions are quantized. In the following
subsection, we show that quantizing a linearly combined
vector of the AN directions generally leads to a smaller
interference than quantizing all vectors in AN directions.

B. Proposed Quantization Scheme and Induced Interference

In this subsection, instead of quantizing all vectors in
AN directions, we propose to quantize a linearly combined
vector of AN directions, and this vector should minimize the
leakage. We notice that when the number of quantization bits is
moderate, the proposed quantization method can significantly
reduce the interference power in (18).

To reduce the interference power at the legitimate receiver,
we quantize a linearly combined vector g of AN directions,
and this vector should minimize the leakage. From a geometric
viewpoint, g should be orthogonal to the beamforming vector
p, i.e.,

|pHg|2 = 0.

However since only partial CSI at the legitimate receiver
is available to the transmitter, |pHg|2 ̸= 0, and quantiza-
tion is needed. Thus we construct a QA codebook N and
each codeword in N has dimension CMt×1; that is N ,{
n1, . . . ,nNQA

}
, where ni has the isotropically distribution

in CMt×1, and NQA is the size of the QA codebook. The

best codeword can be selected via minimizing the interference
power at the legitimate receiver,

no = arg max
v∈{n1,...,nNQA}

∣∣gHv
∣∣2

= arg min
v∈{n1,...,nNQA}

∣∣pHv
∣∣2 , (24)

and
cos2 ϕ = |pHno|2, (25)

where cos2 ϕ is the minimum value of vector inner product
between p and the selected codeword in N . Note that no is
a “quantized linearly combined vector of all AN directions”.
Moreover, no changes as the wireless channel hl changes, and
is not fixed. As a result, it is unlikely that the eavesdropper
can always lie in a direction that is orthogonal to no.

From discussion above, now we have two codebooks; one is
the QB codebook W for quantizing the beamforming vector,
and the other is the QA codebook N for quantizing the vector
in AN directions. Because W and N are individually and
randomly generated, these two codebooks are statistically in-
dependent. The legitimate receiver uses (11) and (24) to obtain
wo and no respectively. Note that the number of quantization
bits of the proposed scheme does not increase because we con-
strain the total number of bits as B = BQB+BQA. Moreover,
because no is of dimension Mt × 1, the memory requirement
for quantizing the vector in AN directions is actually less than
that for quantizing all vectors in AN directions, which has
dimension Mt × (Mt − 1).

Next, we analyze the interference at the legitimate receiver
for the proposed scheme, like what has been done for the
interference induced by quantizing all AN vector directions
in (23). After that we will show that quantizing a linearly
combined vector of AN directions indeed leads to a smaller
interference at the legitimate receiver than that obtained by
quantizing all vectors in AN directions.

From the discussion above, the transmitted signal of the
proposed scheme can be rewritten as

x = wos+ noa, (26)

where a ∼ CN (0, (1 − α)P ). The received signals at the
legitimate receiver and the eavesdropper can be rewritten
respectively given by

yl = ∥hl∥pHwos+ ∥hl∥pHnoa+ zl, (27)

and
ye = hewos+ henoa+ ze. (28)

The second term of the RHS (right-hand side) in (27) is
the interference due to the quantization of no. Thus the
interference power at the legitimate receiver for the proposed
scheme can be expressed as

Ino

l = (1− α)P∥hl∥2 cos2 ϕ, (29)

According to [26], the two terms ∥hl∥2 and cosϕ are indepen-
dent random variables with chi-square and beta distributions,
respectively. Hence we are able to treat them separately.
Let us evaluate the mean value of cos2 ϕ first, which is
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defined in (25). It has been shown in [24, Section III.C]
that x is defined as |uHv|2 where u and v are statistical
independent and isotropically distributed unit norm vector,
then x has beta distribution with parameters (1,Mt − 1).
Furthermore, the probability density function (PDF) of x is
f(x) = (Mt − 1)(1− x)(Mt−1)−1 and the cumulative density
function (CDF) of x is F (x) = 1−(1−x)Mt−1. With the aid of
order statistics [29], the PDF of the minimum sample xmin,
selected from NQA i.i.d. random variables x1, . . . , xNQA

, is
given by

fxmin(x) = NQAf(x) (1− F (x))
NQA−1

. (30)

As mentioned above, we define xi = |pHni|2 for i ∈
{1, 2, · · · , NQA}. Moreover, from (24) and (25) we know that
xmin = |pHno|2, so fxmin(x) can be obtained by substitut-
ing f(x) and F (x) of the beta distribution with parameters
(1,Mt − 1), which yields

fxmin
(x) = NQA(Mt − 1) (1− x)

NQA(Mt−1)−1
. (31)

Similarly, the CDF of xmin can be obtained as follows:

Fxmin(x) = 1− (1− x)
NQA(Mt−1)

. (32)

From (31) and (32), the mean value of xmin is obtained in the
following lemma:

Lemma 2 The mean value of xmin is given by

E {xmin} =
1

NQA(Mt − 1) + 1
. (33)

Proof: The mean value can be obtained by the definition
E {xmin} =

∫ 1

0
xdFxmin(x) and using (31), to yield (33).

From Lemma 2, by substituting xmin = cos2 ϕ into (29),
the mean value of Ino

l in (29) is obtained as follows:

E {Ino

l } =
(1− α)PMt

NQA(Mt − 1) + 1
. (34)

From (23) and (34), one can compare the interference values
induced by the proposed quantization and by quantizing all
vectors in AN directions in the following proposition:

Proposition 1 In a MISO system with Mt transmit antennas
and codebook size NQA, the ratio γ of the interference power
obtained by quantizing all vectors in AN directions and by
quantizing a linearly combined vector of AN directions can
be expressed as follows:

γ =
E{INl }
E{Ino

l }
=

[
N2

QA +
NQA

Mt − 1

]
· β
(
NQA,

Mt

Mt − 1

)
.

(35)

Proof: This proposition is a direct result and obtained by
using (23) and (34).
Experiment 1. The ratio γ for various values of NQA. This
experiment is to show that the proposed quantization indeed
leads to a better performance than quantizing all vectors in
AN directions. Let Mt = 3, 4 and 5. Fig. 3 shows the values
of γ as functions of NQA = 2BQA . The theoretical results
are evaluated using Proposition 1. Observe that the empirical
results corroborate the theoretical results in Proposition 1.
Also, the value of γ is greater than 1; this implies that the

proposed quantization leads to a smaller interference than
quantizing all vectors in AN directions. Moreover, we see that
the value of γ increases as the values of Mt and BQA increase.
Note that when Mt = 2, the nullity is one, and γ = 1. Thus
INl is equal to Ino

l in this case.
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Empirical result, Mt = 4

Proposition 1, Mt = 4

Empirical result, Mt = 3

Proposition 1, Mt = 3
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Fig. 3. The values of γ as functions of BQA for Mt = 3, 4 and 5.

IV. SECRECY RATE AND PROPOSED BIT ALLOCATIONS

In this section, we analyze the average secrecy rate for the
proposed scheme and derive an approximated upper bound for
the average secrecy rate. From this bound, we suggest how to
allocate bits to BQB and BQA under the total bit constraint
in (19).

A. Approximated Upper Bound for Average Secrecy Rate

In the proposed scheme, both the transmitter and the legiti-
mate receiver have two codebooks W and N , and the received
signals at the legitimate receiver and the eavesdropper are
given respectively in (27) and (28). Hence the average secrecy
rate of the proposed scheme can be formulated as follows:

E {R⋆
s} = E {R⋆

l −R⋆
e}

= E
{
log

(
1 +

αP∥hl∥2 cos2 θ
(1− α)P∥hl∥2 cos2 ϕ+ 1

)}
− E

{
log

(
1 +

αP |hewo|2

(1− α)P |heno|2 + 1

)}
. (36)

From (36), because hl and he are independent and two
independent codebooks W and N are used, the mean values
of R⋆

l and R⋆
e can be treated separately. We apply Jensen’s

inequality to the mean value of R⋆
l in (36). Then (36) can be

upper bounded by

E {R⋆
s} ≤ log

(
1 + E

{
αP∥hl∥2 cos2 θ

(1− α)P∥hl∥2 cos2 ϕ+ 1

})
− E

{
log

(
1 +

αP |hewo|2

(1− α)P |heno|2 + 1

)}
. (37)

We will maximize the bound in (37). Note that similar
technique to use a derived bound to analyze the relationship
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between the capacity loss due to quantization can also be found
in [23]. The bound in (37) is generally tight when NQA is suf-
ficiently large. This is because the interference leakage to the
legitimate receiver decreases as NQA increases; in addition,
the random variable αP∥hl∥2 cos2 θ is generally concentrated
to its mean and it turns out to be more concentrated when
logarithm is performed to this random variable. As a result,
the analytical results are close to the simulation results as will
be verified later in simulations.

To obtain a close-form expression for the approximated
upper bound of E {R⋆

s}, we need to analyze two terms, i.e.,
R⋆

l and R⋆
e in the RHS of (37). The following Lemmas will

help the analysis of E {R⋆
s}.

Lemma 3 In the proposed system, hewo and heno are
statistically independent.

Proof: See Appendix A.
From Lemma 3, we know that |hewo|2 and |heno|2 are also

statistically independent. Thus we are able to further analyze
the mean value to R⋆

e in the following Lemma.

Lemma 4 The mean value of R⋆
e is defined as Z and can

be expressed as in (38), given at the top of the next page and
E1(x) =

∫∞
x

e−t

t dt is the exponential integral.

Proof: See Appendix B.
For R⋆

l in (37), the analysis of statistically relationship
between ∥hl∥2 cos2 θ and ∥hl∥2 cos2 ϕ is necessary; thus, we
give the following Lemma.

Lemma 5 In the proposed system, the covariance between
|hlwo|2 = ∥hl∥2 cos2 θ and |hlno|2 = ∥hl∥2 cos2 ϕ tends to
be zero as NQA approaches infinity.

Proof: See Appendix C.
From Lemma 5, when NQA is sufficiently large, we know

that the covariance between numerator and dinominator of R⋆
l

in (37) is equal to zero approximately, so that we can obtain
the approximated mean value to the SINR in (37).

Lemma 6 If NQA is sufficiently large, the approximated
mean value of the SINR in (37) at the legitimate receiver can
be approximated by a product of X and Y given by

E
{

αP∥hl∥2 cos2 θ
(1− α)P∥hl∥2 cos2 ϕ+ 1

}
≈ XY, (39)

where X and Y are given in (40) and (41), shown at the top
of the next page.

Proof: See Appendix D.
From Lemmas 4 and 6, the following proposistion is ob-

tained to approximated upper bound the average rate for the
proposed scheme.

Proposition 2 In MISOSE channels, if NQA is sufficiently
large, the average secrecy rate for the proposed scheme can
be approximately upper bounded by

E {Rs} / log (1 +XY )− Z, (42)

where X,Y and Z are defined in (40), (41) and (38), respec-
tively.

Proof: This is a direct result using Lemmas 4 and 6.

B. Bit Allocations for BQB and BQA

In this subsection, we consider how to distribute the total
number of quantization bits B for BQB and BQA to maximize
the average secrecy rate, which is described in the following
proposition.

Proposition 3 In MISOSE channels, if NQA is sufficiently
large, the proposed bit allocation for maximizing the average
secrecy rate for the proposed quantization scheme is given by

B⋆
QA =

{
Bround

QA , Bround
QA < B,

B, Bround
QA ≥ B,

(43)

where Bround
QA is given in (44), shown at the top of the next

page.

Proof: See Appendix E.
Some observations can be made from (43) and (44). First

the proposed bit allocation is related to the number Mt of
transmit antennas, the parameter α of power allocation and
the total transmission power P . For general value of P , as
Mt increases, B⋆

QA decreases and this implies that more bits
should be allocated to the beamforming vector. Thus when
Mt is sufficiently large, the proposed scheme reduces to the
QMB scheme. Moreover, when the power of AN increases,
i.e., decreasing α, or when the transmission power P increases,
B⋆

QA increases and this implies that more bits should be
allocated to quantize one AN vector direction to maximize
the average secrecy rate. On the other hand, for large value
of P , B⋆

QA = B. This implies that using high transmission
power leads to eavesdropping more easily. Thus so we need
to increase BQA to combat the eavesdropping.

V. SIMULATION RESULTS

Simulation results are provided to verify the analytical
results in this section. The settings of the simulations are
as follows: The channel coefficients of hl are i.i.d. com-
plex Gaussian distributed with zero mean and unit variance.
The number Mt of transmit antennas is 4. The RVQ-based
codebooks are generated using the numerical methods in [24]
and [26]. The average secrecy rate is computed using more
than 100000 iterations. The total number of quantization bits
is B = BQB + BQA. For the proposed scheme, we use
(BQB , BQA) to represent the numbers of quantization bits
for the beamforming vector and linearly combined vector of
AN directions, respectively. For the conventional scheme, i.e.,
QMB in Sec. II-B, we use (B, 0) to represent that all bits
are used to quantize the beamforming vector, and all AN
directions are generated via the quantized beamforming vector.
Experiment 2. Secrecy rates for various values of power
allocation α. Let SNR= 25 dB and B = 10, Fig. 4 shows
the average secrecy rates as functions of various values of α
in MISOSE channels. The average secrecy rate with full CSI
is provided to serve as a performance benchmark. Observe
that the proposed idea to allocate some bits to quantize the
vector in AN directions indeed lead to a better performance
than to allocate all bits to quantize the beamforming vec-
tor (see the star, circle and dash lines). The proposed bit
allocation for BQB and BQA in Proposition 3 can further
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Z = E
{
log

(
1 +

αP |hewo|2

(1− α)P |heno|2 + 1

)}
=

 log e ·
(
1− 2

P e
2
P E1(

2
P )
)
, α = 0.5,

log e ·
(

α
1−2α

[
e

1
(1−α)P E1

(
1

(1−α)P

)
− e

1
αP E1

(
1

αP

)])
, otherwise,

(38)

X =
αPMt

(
1−NQBβ

(
NQB ,

Mt

Mt−1

))
(1−α)PMt

NQA(Mt−1)+1 + 1
, (40)

Y = 1 +
1(

NQA(Mt−1)+1
(1−α)PMt

+ 1
)2 [2(Mt + 1)(NQA(Mt − 1) + 1)

Mt(NQA(Mt − 1) + 2)
− 1

]
. (41)

Bround
QA ≈ round

 B

Mt
+
Mt − 1

Mt

log ((1− α)P ) + log

 Mt

(Mt − 1)Γ
(

Mt

Mt−1

)


 . (44)

improve the performance (see the star and the circle lines).
To see this, we run all combinations of bit allocations. i.e.,
(BQB , BQA) ∈ {(0, 10), (1, 9), . . . , (10, 0)}, the maximum
average secrecy rate is obtained when the bit allocation is
(2, 8) and α ≈ 0.6. Note that when we set α = 0.6,Mt = 5
and P = 25 dB, and substitute it to (44), we can theoretically
obtain the bit allocation (2,8) as well. Therefore from this
example, the proposed quantization and bit allocation schemes
can significantly increase the average secrecy rate when full
CSI is not available.
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The proposed scheme: (BQB , BQA) = (2, 8)

The proposed scheme: (BQB , BQA) = (5, 5)

QMB: (BQB , BQN ) = (10, 0)

Fig. 4. Average secrecy rates as functions of α for various schemes with
P = 25 dB and Mt = 4.

Experiment 3. Secrecy rates for various values of BQA.
Let SNR= 25 dB and the power allocation α = 0.5, the
average secrecy rates as functions of BQA are shown in Fig. 5
for B = 0, 1, . . . , 10 and 15. Observe that allocating an
appropriate value for BQA is important because it significantly
affects the average secrecy rate. That is, using inappropriate
value of BQA can seriously degrade the average secrecy rate.
This again shows that the proposed bit allocation is important
in improving the average secrecy rate. To verify the correctness
of the proposed bit allocation B⋆

QA in (44), we use this

equation to plot B⋆
QA as a function of B in Fig. 6. From

Fig. 6, the proposed bit allocations B⋆
QA = 8 when B = 10,

and B⋆
QA = 10 for B = 15. Also the size of step in Fig. 6 is

equal to 4 determined by the number of transmit antennas Mt

due to the first term of Bround
QA in (44). These analytical results

are accurate because the simulation results in Fig. 5 also show
that the proposed bit allocations are 8 for B = 10. Moreover,
from these two figures, we find that as the value of B
decreases, the importance of B⋆

QA becomes more pronounced.
That is, when B is moderate, one should allocate most of the
bits to quantize the vector in AN directions instead of the
beamforming vector; for instance, when B = 10, B⋆

QA = 8
and thus B⋆

QB = 2. Because in practical systems, the number
of quantization bits (feedback bits) is moderate to avoid long
latency, these observations show valuable contributions of the
proposed scheme in practical designs. Further, when B ≤ 8,
Fig. 6 shows that we should allocate all feedback bits for B⋆

QA

to improve the average secrecy rate.
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Fig. 5. Average secrecy rates as functions of BQA for B = 10 and 15 with
P = 25 dB, Mt = 4 and α = 0.5.

Experiment 4. Average secrecy rates for various values
of total transmit power P . Let B = 10, Fig. 7 shows



1536-1276 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TWC.2015.2440352, IEEE Transactions on Wireless Communications

9

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

B

B
⋆ Q

A

Fig. 6. B⋆
QA as functions of B with P = 25 dB, Mt = 4 and α = 0.5.

the average secrecy rates as functions of P for the proposed
scheme and the conventional scheme QMB. For each scheme,
the value of α is obtained by observing Fig. 4, where α = 0.6
for the proposed scheme and α = 0.9 for QMB. Observe
that the derived result in (42) and the simulation result have
similar trend. Also, the average the secrecy rate of QMB
tends to saturate as P increases; that is, increasing SNR does
not improve the average secrecy rate because it increases
the interference at the legitimate receiver as well. On the
other hand, the proposed scheme can still improve the average
secrecy rate as P increases thanks to the reduced interference
at the legitimate receiver.
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Fig. 7. Average secrecy rates as functions of P for various schemes with
Mt = 4.

Experiment 5. Secrecy outage probability for various out-
age transmission rates. In this example, the secrecy outage
probability Prob [Rs ≤ Routage] is evaluated, where Prob[·]
represents the probability function and Routage is a outage
transmission rate. Let Mt = 4, P = 25 dB and B = 10.
For each scheme, the suitable value of α and the proposed bit
allocation can be obtained by observing Fig. 4 and 6, where
α = 0.6 and bit allocation (2, 8) for the proposed scheme,
and α = 0.9 for QMB. The outage performance is shown in
Fig. 8. Observe that although the performance of the proposed
scheme and QMB is comparable for 0 ≤ Routgae ≤ 1, the
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MQB: (BQB ,BQA) = (10, 0) and α = 0.9

The proposed scheme: (BQB ,BQA) = (2, 8) and α = 0.6

Fig. 8. Secrecy outage rates as functions of Routage for various schemes
with Mt = 4, B = 10 and P = 25 dB.

proposed scheme outperforms QMB when Routage > 1. This
is reasonable because the interference at the legitimate receiver
is reduced significantly.

VI. CONCLUSION

In this paper, we have investigated how to quantize masked
beamforming systems with only partial CSI at the legitimate
receiver, so as to maximize the secrecy rate. Analytical results
have shown that the interference at the legitimate receiver can
be significantly reduced by separately quantizing the beam-
forming vector and the AN vector. Hence, the proposed quanti-
zation scheme has two codebooks; one is for the beamforming
vector and the other is for the AN vector. Moreover, we have
analyzed the secrecy rate of the proposed quantization scheme.
Form this analytical result, we have further derived the best bit
allocation for the two codebooks of the proposed quantization
scheme. The proposed bit allocation has indicated that more
bits should be allocated to quantize the AN vector when the
total bit budget is not large. That is, when the bit budget is
moderate, the leaked interference at the legitimate receiver
dominates the performance. In this case, allocating more bits
to quantize the AN vector for better preventing the leakage
can significantly improve the performance. On the other hand,
when the bit budget is sufficiently high, allocating all bits to
quantize the beamforming vector and then determining the
null space based on the quantized beamforming vector is
good enough to control the leakage; hence the conventional
quantization scheme in [17] and [18] may work well in this
case. Finally, simulation results have been provided to show
the correctness of the analytical results, and demonstrate that
the proposed quantization together with the bit allocation
schemes can significantly improve the secrecy rate compared
to the conventional quantization scheme.

APPENDIX

A. Proof of Lemma 3

Using the definitions of (12) and (25), the quantized
beamforming vector and the null space can be represented,
respectively, by p =

√
cos2 θwo +

√
1− cos2 θew and n =
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√
cos2 ϕno +

√
1− cos2 ϕen [24], where n is a unit norm

random vector that belongs to the null space of hl, ew is the
quantization error of the beamforming vector, and en is the
quantization error of the null space. Both ew and en are unit
norm random vectors because ∥p∥2 = 1 and ∥n∥2 = 1. Since
RVQ is used to generate the two independent codebooks W
and N , ew and en are independent and zero mean. Also, ew
and en are independent of p and n; that is, the quantization
error is independent of the value to be quantized due to the
use of RVQ. Therefore, ew and

√
1− cos2 θ are independent,

and en and
√
1− cos2 ϕ are independent.

Because he ∼ CN (0, IMt) and the linear combination of
independent Gaussian random variables is still a Gaussian
random variable, both hewo and heno have Gaussian distribu-
tion. Also, two Gaussian random variables are independent if
they are uncorrelated. Therefore, the dependence of hewo and
heno is characterized by the correlation. Then the correlation
is given by

E
{
wH

o hH
e heno

}
= E

{
wH

o no

}
=E

{(√
1

cos2 θ
pH −

√
1− cos2 θ

cos2 θ
eHw

)
·(√

1

cos2 ϕ
n−

√
1− cos2 ϕ

cos2 ϕ
en

)}
= 0,

where the second equality holds due to that he ∼ CN (0, IMt
).

In addition, p is orthogonal to n, i.e., |pHn| = 0 and
E
{
pHen

}
= E

{
pH
}
E {en} = 0 since p is independent of

en and E {en} = 0. Similarly, one can show that E
{
eHwn

}
=

0. The correlation is equal to zero; hence, hewo is independent
of heno.

B. Proof of Lemma 4
From [33, chapter 5], we know that if he ∈ C1×Mt ∼

CN (0, IMt) and U ∈ CMt×d is a semi-unitary matrix, then
∥heU∥2 ∼ χ2

2d/2 where χ2
2d defines chi-square distribution

withe degrees of freedom 2d. Thus |hewo|2 = w/2 ∼ χ2
2/2

and |heno|2 = v/2 ∼ χ2
2/2, and w and v both have

exponential distribution with parameter 1/2, according to the
definition of chi-square distribution. Hence the mean value of
R⋆

e in (37) can be expressed as

E {R⋆
e}

=E
{
log

(
αw + (1− α)v + 2

P

(1− α)v + 2
P

)}
=E

{
log

(
z +

2

P

)}
− E

{
log

(
(1− α)v +

2

P

)}
, (45)

where z = αw + (1 − α)v, z ∈ [0,∞). From Lemma 3, w
and v are statistically independent. Let z = αw + (1 − α)v,
the PDF of z that is given by

fz(z) =

{
ze−z, α = 0.5,

1
2(1−2α)

(
e−

z
2(1−α) − e−

z
2α

)
, otherwise.

(46)
By applying the integration formulation in (47), shown at the
top of the next page [34], the equation (45) can be further
manipulated to obtain (38). �

C. Proof of Lemma 5

For presentation convenience, let |hlwo|2 = ζ, |hlno|2 = δ,
and the covariance between ζ and δ be Cζ,δ . The following
inequality holds for random variables with the finite variance:

|Cζ,δ| ≤
√
σ2
ζ · σ2

δ , (48)

where σ2
ζ and σ2

δ is the variance of ζ and δ respectively;
thus, Cζ,δ is upper bounded by (48). From (12), σ2

ζ can be
formulated as

σ2
ζ = E

{
∥hl∥4 cos4 θ

}
−
(
E
{
∥hl∥2 cos2 θ

})2
.

The author in [30, Section 7] showed that ∥hl∥2 is independent
of cos2 θ and cos2 ϕ; hence, σ2

ζ can be rewritten below:

σ2
ζ = E

{
∥hl∥4

}
E
{
cos4 θ

}
−
(
E
{
∥hl∥2

}
E
{
cos2 θ

})2
.

(49)

To obtain σ2
ζ , we discuss each term in (49) as follows: Using

the following integral representation for the beta function [31,
p. 5]:

β
(
c,
a

b

)
= b

∫ 1

0

xa−1
(
1− xb

)c−1
dx, for a, b and c > 0,

and the CDF of 1−cos2 θ in [24, p. 11], we have the following
formula:

E
{
(1− cos2 θ)2

}
= NQBβ

(
NQB ,

Mt + 1

Mt − 1

)
.

Because E
{
cos4 θ

}
= E

{
(1− cos2 θ)2

}
+ 2E

{
cos2 θ

}
− 1,

and from [26, Lemma 1 and Eq. (13)] E
{
cos2 θ

}
has the

following representation:

E
{
cos2 θ

}
≡ µcos2 θ = 1−NQBβ

(
NQB ,

Mt

Mt − 1

)
, (50)

E
{
cos4 θ

}
can be written as

E
{
cos4 θ

}
= NQBβ

(
NQB ,

Mt + 1

Mt − 1

)
+ 2µcos2 θ − 1. (51)

In addition, since the random variable ∥hl∥2 has the chi-square
distribution with 2Mt degrees of freedom, the moments of
∥hl∥2 can be expressed as E{∥hl∥2m} = Γ(m+Mt)/Γ(Mt)
[32]. Hence we have

E{∥hl∥4} =Mt(Mt + 1). (52)

By substituting (50), (51) and (52) into (49), a closed-form
of σ2

ζ can be expressed as (53), shown at the top of the next
page.

Similarly, σ2
δ can be written as

σ2
δ = E

{
∥hl∥4

}
E
{
cos4 ϕ

}
−
(
E
{
∥hl∥2

}
E
{
cos2 ϕ

})2
.

(54)

Using (32) and E
{
cos4 ϕ

}
=
∫ 1

0
x2dF (xmin), E

{
cos4 ϕ

}
can

be expressed as

E
{
cos4 ϕ

}
=

2

(NQA(Mt − 1) + 1)(NQA(Mt − 1) + 2)
.

(55)
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∫ ∞

0

ln (1 + ax)xbe−xdx =

b∑
i=0

b!

(b− i)!

b−i∑
j=1

(j − 1)!

(
−1

a

)b−i−j

− (−1)b−i−1

ab−i
e1/aE1

(
1

a

) , (47)

σ2
ζ =Mt (Mt + 1)

[
NQBβ

(
NQB ,

Mt + 1

Mt − 1

)
+ 2µcos2 θ − 1

]
− (Mtµcos2 θ)

2
. (53)

σ2
δ =

[
Mt

NQA(Mt − 1) + 1

]2 [
2(Mt + 1)(NQA(Mt − 1) + 1)

Mt(NQA(Mt − 1) + 2)
− 1

]
. (56)

Substituting (33), (52) and (55) into (54), a closed-form of σ2
δ

can be expressed as (56), shown at the top of this page. From
(56), σ2

δ tends to be zero when NQA approaches ∞. Since
Cζ,δ is upper bounded by the square root of the product of σ2

ζ

and σ2
δ , Cζ,δ tends to be zero as the value of NQA approaches

∞, and this completes the proof. �

D. Proof of Lemma 6

Let us define x = αP∥hl∥2 cos2 θ, y = (1 −
α)P∥hl∥2 cos2 ϕ + 1 and g(x, y) = x/y. The mean value of
a function g(x, y) of two random variables can be expressed
approximately to (57) [32, p. 215], given at the top of the
next page. where the mean values of x and y are µx and µy

respectively, and σ2
y is the variance of y. Also, Cxy is the

covariance between x and y. From Lemma 5, the covariance
Cxy is approximately zero when NQA is sufficiently large.
Therefore we have

E
{

αP∥hl∥2 cos2 θ
(1− α)P∥hl∥2 cos2 ϕ+ 1

}
≈ µx

µy

(
1 +

1

µ2
y

σ2
y

)
. (58)

A closed-form expression for µx in (58) is equal to
αPMtµcos2 θ, where µcos2 θ is given by (50), which is ex-
pressed as

µx =αPMtµcos2 θ

=αPMt

(
1−NQB · β

(
NQB ,

Mt

Mt − 1

))
. (59)

From (34), µy in (58) can be expressed as

µy =E
{
(1− α)P∥hl∥2 cos2 ϕ+ 1

}
=

(1− α)PMt

NQA(Mt − 1) + 1
+ 1, (60)

and σ2
y is equal to (1 − α)2P 2σ2

δ ; hence, the variance of y
can be expressed as (61), shown at the top of the next page.
Using (58), (59), (60) and (61), the lemma is proved. �

E. Proof of Proposition 3

We take the derivatives of X,Y and Z in (42) respectively
to obtain the proposed bit allocation BQA. Since Z in (42)
is irrelevant to BQA, this term can be ignored. We assume
that NQA = 2BQA is sufficiently large, so σ2

y in (61) is
approximately zero. That is, Y in (42) can be approximated

by Y ≈ 1. In this case, the problem is simplified to taking the
derivative of X in (42) and setting it to zero, i.e.,

∂X

∂NQA
=

∂

∂NQA

(
µx

µy

)
= 0, (62)

where µx and µy are both functions of NQB = N/NQA

defined in (59) and (60). From (59) and (60), we know that
µx ≥ 0 and µy ≥ 1 for arbitrary NQA; hence, (62) can be
rewritten as

∂µx

∂NQA
µy − µx

∂µy

∂NQA
= 0. (63)

The bit allocation can be obtained by taking the derivatives of
µx and µy with respect to NQB . Once a suggested value of
NQB is obtained, denoted by N⋆

QA, the value of NQA can be
determined from N⋆

QB = N/N⋆
QA, as defined in (19).

The derivative of µx can be expressed as

∂µx

∂NQA
=

2B

NQA
β

(
2B

NQA
,

Mt

Mt − 1

)
h =

(
1− µx

αPMt

)
h,

(64)

where h is defined at the top of the next page and ψ(·) is the
digamma function.

The derivative of µy is given by

∂µy

∂NQA
=− (1− α)PMt(Mt − 1)

[NQA(Mt − 1) + 1]
2

=− Mt − 1

(1− α)PMt
(µy − 1)2. (65)

By using (64) and (65), one can rewrite (62) as(
1− µx

αPMt

)
hµy +

Mt − 1

(1− α)PMt
µx(µy − 1)2 = 0. (66)

From (66), an obvious solution can be obtained by satisfying
the following conditions:{ µx

αPMt
= 1,

µy = 1.

Using these conditions, one can obtain the following result:

2B

N⋆
QA

β

(
2B

N⋆
QA

,
Mt

Mt − 1

)
=

(1− α)PMt

N⋆
QA(Mt − 1) + 1

. (67)
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E {g(x, y)} ≈ g(µx, µy) +
1

2

(
∂2g(µx, µy)

∂x2
σ2
x + 2

∂2g(µx, µy)

∂x∂y
Cxy +

∂2g(µx, µy)

∂y2
σ2
y

)
, (57)

σ2
y =

[
(1− α)PMt

NQA(Mt − 1) + 1

]2 [
2(Mt + 1)(NQA(Mt − 1) + 1)

Mt(NQA(Mt − 1) + 2)
− 1

]
. (61)

h = αPMt

{
1

NQA
+

2B

N2
QA

[
ψ

(
2B

NQA

)
− ψ

(
2B

NQA
+

Mt

Mt − 1

)]}
,

Because N⋆
QA in the RHS of (67) is larger than one, (67) can

be approximated by

2B

N⋆
QA

β

(
2B

N⋆
QA

,
Mt

Mt − 1

)
≈ (1− α)PMt

N⋆
QA(Mt − 1)

. (68)

In addition, we know that for beta function β(a, b) if b is
fixed and a is larger than b, then we have the following
approximation:

β(a, b) ≈ Γ(b)a−b.

Using this approximation, (68) can be approximated by

2B

Γ( Mt

Mt − 1

)(
N⋆

QA

2B

) Mt
Mt−1

 ≈ (1− α)PMt

(Mt − 1)
. (69)

From (69), the suggested value of NQA should be

N⋆
QA ≈ 2B

2−B (1− α)PMt

(Mt − 1)Γ
(

Mt

Mt−1

)


Mt−1
Mt

. (70)

It is worth pointing out that letting α = 1 in (70) and thus
NQA = 0 can be regarded as a special case of the derived
solution in (70); letting α = 1 implies that the bit budget B
is all assigned to quantize the beamforming vector.

In deriving NQA, we use the approximated upper bound
of the average secrecy rate in (42) and the assumption of
large value of NQA = 2BQA . Thus, the value BQA may
exceed the total bit budget B, when B is small or P is
large. To avoid exceeding total bit budget, we take the log
and round functions to (70), and this new term becomes
Bround

QA = round
[
log(N⋆

QA)
]

as that in (44) �
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