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Predictive Coding of Bit Loading for Time-Correlated
MIMO Channels With a Decision Feedback Receiver

Chien-Chang Li and Yuan-Pei Lin, Senior Member, IEEE

Abstract—In this paper, we consider variable-rate transmission
over a slowly varying multiple-input multiple-output (MIMO)
channel with a decision feedback receiver. The transmission rate
is adapted to the channel by dynamically assigning bits to the
subchannels of the MIMO system. Predictive quantization is used
for the feedback of bit loading to take advantage of the time
correlation inherited from the temporally correlated channel.
Due to the use of decision feedback at the receiver, the bit loading
is related to the Cholesky decomposition of the channel Gram
matrix. Assuming the channel is modeled by a slowly varying
Gauss–Markov process, we show that the nested submatrices
generated during the process of Cholesky decomposition can be
updated as time evolves. Based on the update, we derive the op-
timal predictor of the next bit loading for predictive quantization.
Furthermore, we derive the statistics of the prediction error, which
are then exploited to design the quantizer to achieve a smaller
quantization error. Simulations are given to demonstrate that the
proposed predictive quantization gives a good approximation of
the desired transmission rate with a low feedback rate.
Index Terms—MIMO, limited feedback, differential feedback,

predictive quantization, bit loading, variable rate transmission.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) systems
have attracted great attention in recent years. Optimal

precoders of different design criteria for MIMO channels have
been considered in [1]–[4] for a fixed transmission rate. To in-
crease the transmission rate over a fading channel, variable-rate
transmission systems are proposed in [5]–[9]. Adapting the
transmission rate according to the channel also has the advan-
tage that the error rate can be easily controlled without deep
interleaving. In [1]–[9], the channel state information (CSI) are
assumed to be available to both the transmitter and receiver.
In general, the transmitter has no complete CSI and there is
only limited amount of feedback [10]. Depending on the trans-
mission scheme, the receiver feeds back the information of the
precoder, power loading, bit loading, or channel Gram matrix
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to the transmitter [11]–[18]. Precoder codebooks for a fixed
bit loading are designed in [11]–[15]. The feedback of power
loading and antenna rate control is proposed in [16], [17]. Bit
loading codebooks for a given precoder are designed in [18]. In
these works, the channel is assumed to be independent of time.
In practical transmission, the channel is usually correlated

in time. Time-correlated channels have been considered in
[19]–[25]. In [19], the precoder is fed back to the transmitter
using Givens rotations for correlated MIMO channels. In
[20], the channel Gram matrix is differentially coded using
geodesic curves and a differential codebook is designed for
maximizing the signal to noise ratio or mutual information. In
[21], a beamforming system with limited feedback is designed
by modeling the quantized CSI as a finite state Markov chain.
In [22]–[25], a temporally correlated channel is modeled as a
first-order Gauss-Markov process. The channel capacity for
such a channel is analyzed in [22]. A rotation based differential
codebook for the precoding matrix is proposed in [23]. In [24],
the minimum feedback rate for a differential feedback system
is derived in a closed-form. A polar-cap differential codebook
is proposed in [25] for a beamforming system with limited
feedback. In [26], predictive quantization was applied on the
feedback of bit loading for a linear receiver, and the quantizer
was designed using the bounds of the prediction error variance.
In this paper, we consider variable-rate transmission for a

slowly time-varying MIMO channel when decision feedback is
used at the receiver. The full channel information is assumed
to be available at the receiver. The transmitter does not know
the channel information . The information that is available
to the transmitter is the feedback from the receiver. For a given
error rate constraint, bits are dynamically assigned to each sub-
channel according to the channel information as in per-antenna
rate control (PARC) [16] so that the transmission rate can be
adapted to the current channel. Due to the temporal correlation
of the channel, the bit loading is also time correlated. We feed-
back the bit loading vector using predictive quantization as in
[26] assuming a delay free feedback loop is available. When
decision feedback is employed at the receiver with reverse de-
tection order, it is known that the Cholesky decomposition of
the channel Gram matrix can be used to determine the sub-
channel signal-to-noise ratios and hence also the bit loading.
Assuming the time correlated channel is modeled by a slowly
varying Gauss-Markov process, we show that the submatrices
generated during the process of Cholesky decomposition can be
updated with time. The update allows us to obtain the optimal
predictor of the next bit loading for predictive quantization in a
closed form. Furthermore, we analyze the statistics of the sub-
channel prediction errors and derive their means and variances.
The statistics are then exploited in the design of quantizers for
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quantizing the prediction errors. By adapting the quantizers ac-
cording to the statistics of the prediction errors, a smaller quan-
tization error than direct quantization can be achieved. Simula-
tions are given to demonstrate that for slowly varying channels,
the proposed predictive quantization of bit loading can achieve
a rate very close to the unquantized case with a low feedback
rate.
The rest of the paper is organized as follows. In Section II, we

introduce the system model of the time-varying MIMO system
and give an overview of the proposed predictive quantization
of bit loading. In Section III, we derive the update of the sub-
matrices associated with the Cholesky decomposition of the
channel Gram matrix. Using the results in the update of the
Cholesky decomposition, we derive the predictor of bit loading
in Section IV. The statistics of the predictive errors are analyzed
and exploited to adapt the quantizers in Section V. In Section VI,
we demonstrate the performance of the proposed system by sim-
ulations.

II. SYSTEM MODEL

A MIMO communication system with a decision feedback
receiver is shown in Fig. 1. At time , the MIMO channel is
modeled by an matrix . The elements of are
i.i.d. circularly symmetric complex Gaussian random variables
with unit variance.We assume the channel is a first-order Gauss-
Markov process [22],

(1)

where is a coefficient that depends on the doppler frequency.
When the Jake’s model [27] is used, ,
where is the zeroth order Bessel function of the first kind,

is the maximum Doppler frequency, is the time interval
between consecutive channel uses. The matrix
is independent of and its elements are identical and inde-
pendent circularly symmetric complex Gaussian random vari-
ables with unit variance. We assume and the number
of substreams transmitted is . The case

is addressed in Section V. The input of the transmitter
is an vector of uncorrelated modulation symbols

. We assume the symbols are of zero mean
and variance , where is the total transmit power. The

channel noise is additive white complex Gaussian
noise with zero mean and variance . is the feedforward
matrix of size and is the feedback matrix of
size . The input of the receiver is given by

. Let be the input to the detector. can be ex-
pressed as When reverse detection or-
dering is used, the feedforward matrix and the feedback
matrix can be given in terms of the QR decomposition of
the channel [28]. Let the decomposition of be ,
where is an matrix with orthonormal columns and

is an upper triangular matrix with the th ele-
ment denoted as . Then and are given, respectively,
by [28]

(2)

where denotes the transpose conjugate and the notation
is used to represent the identity matrix. Define the

Fig. 1. MIMO system with decision feedback receiver.

th subchannel error as . Assuming there
is no error propagation, using (2) the subchannel error has
variance given by

(3)

for . Suppose the target symbol error rate of
the th subchannel is . The number of bits that can be loaded
on the -th subchannel at time is well approximated by [29]

(4)

where . is the so-called SNR
gap, given by [30]. The func-
tion is the area under a Gaussian tail, i.e.,

. Define the bit loading vector at
time as . In this paper,
we consider the feedback of bit loading vector in a slowly
time-varying MIMO channel using predictive quantization,
assuming a delay-free feedback loop is available. Note that

, a positive real number as given in (4), is a function
of . Thus feedback of the
non-integer is equivalent to feedback of . The
channel information is assumed to be available at the receiver,
i.e., the channel is known at the receiver at time . The
transmitter does not know the channel . The information
that is available at the transmitter is the feedback from the
receiver in addition to the transmit power , noise variance

, and SNR gap . An overview of predictive coding of bit
loading is given below.

A. Predictive Quantization of Bit Loading (PQB)
At time , both the transmitter and receiver compute a pre-

dictor of the bit loading at time , using the quantized
bit loading of time that is available to both the transmitter
and receiver. Then the receiver computes the prediction error

, quantizes it to , and sends
back to the transmitter. The transmitter reconstructs the quan-
tized bit loading using

(5)

In this case, the quantization error of bit loading
is exactly the same as , the quantization error of
the prediction error. With proper design of the predictor ,
the prediction error has a smaller variance than .
As quantization error is in general proportional to the variance
of the signal to be quantized [31], predictive quantization can
achieve a smaller quantization error than direct quantization.
Note that the bit loading in (4) is not an integer in gen-
eral, and neither is the quantized bit loading . To obtain in-
teger bit loading, we can truncate to the nearest integer. The
number of bits that is actually loaded on the th subchannel at
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time is , where the notation denotes the largest in-
teger that is less than or equal to . As a result, each symbol

is drawn from a -ary constellation. In [26], predic-
tive coding was also used for quantizing bit loading, but there
are some important differences. The receiver in [26] is linear
rather than a decision feedback receiver. In this paper, the op-
timal predictor is obtained using the Cholesky decomposition
of the channel Gram matrix, and the prediction error is approxi-
mated in a closed form. In [26], only the upper and lower bounds
of the optimal predictor and prediction error are given, but ex-
plicit formulations are not available.
In the proposed predictive quantization of bit loading, there

are two issues to be addressed. One is how to design the pre-
dictor so that the prediction error is minimized, and the
other is how to quantize the prediction error . From (4), we
know that the bit loading is determined by . It is
known that is closely related to the Cholesky decompo-
sition of the channel Gram matrix . In the next section,
we develop an update of the Cholesky decomposition, based on
which the optimal predictor is derived in Section IV. The second
issue, i.e., quantization of the prediction error, is addressed in
Section V.

III. UPDATE OF CHOLESKY DECOMPOSITION

In this section, we look into the Cholesky decomposition of
when the channel is modeled by the first-order Gauss-

Markov process in (1). We show that the nested submatrices
generated in the process of the Cholesky decomposition can be
updated in a closed form. The results are used in later sections
to derive the prediction of bit loading.
Let the Cholesky decomposition of be ,

where is an diagonal matrix with diagonal ele-
ment and is an unit lower triangular matrix
[32]. Then we have . To obtain the Cholesky
decomposition, let us introduce the outer product Cholesky
procedure [32]. Define and decompose as

(6)

(7)

where is an 1 vector, is an
submatrix, and . Thus,

, where the notation denotes the th
element of a matrix . Repeating the same procedure, we have

(8)

where is an 1 vector and is the
submatrix of obtained

by removing the first column and the first row. Then can
be obtained by

(9)

and the lower triangular matrix is given by

. . .
...

where . In Lemma 1, we show that is
actually the Gram matrix of an appropriately defined reduced
channel matrix.
Lemma 1: The matrix defined in (8) in the outer product

Cholesky procedure can be decomposed as

(10)

where , and for , the
matrix is given by

(11)

Furthermore, each column of is orthogonal to the first
column of for .

Proof: See Appendix A.
Observe from (11) that ( ) can be obtained from

as follows. Compute the orthogonal projection of the
first column vector of on each of the remaining columns,
subtract the orthogonal projection vectors from the respective
columns, and remove the first column. Then the resulting ma-
trix is . Therefore, is actually the Gram matrix of the
reduced channel matrix . In Lemma 2, we show that
can be approximated in terms of .
Lemma 2: Consider the Gauss-Markov channel model in (1)

with a small . Then in the outer product Cholesky pro-
cedure can be approximated in terms of as

(12)
where the matrix is given by

(13)

the matrix is given by

for and .

The matrix is given by

(14)

where the vectors and are, respectively, the first
columns of and .
Furthermore, can be approximated in terms of

as

(15)
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Proof: See Appendix B.
In the next section, we use the results in Lemma 1 and Lemma

2 to derive the optimal predictor of the next bit loading based
on the current bit loading.

IV. OPTIMAL PREDICTOR OF BIT LOADING VECTOR

In this section, we derive the optimal predictor of the bit
loading vector at time given the bit loading vector
at time . Using and substituting (15) into
(4), we have

(16)

Using the second order Taylor approximation at , i.e.,
, we can verify

that

(17)

From (17), we can see that is a function of and
, which depend on and . Using (13) and (14),
and are given, respectively, by

(18)

(19)

It turns out that is a linear combination of the columns of
that can be expressed in a closed-form as shown in Lemma

3, which helps us to derive the statistics of and
in Lemma 4.
Lemma 3: The 1 vector can be expressed as

(20)

where is the th column of and the linear combination
coefficients can be computed iteratively using

(21)

Proof: See Appendix C.
Given the current bit loading we know from [33] that

the optimal predictor that minimizes the mean squared pre-
diction error is the conditional mean

. When the elements of are i.i.d
complex Gaussian variables with zero mean and unit variance,
the two matrices and in the QR decomposition of

are independent [34]. Moreover, the elements of ,
, are independent. are complex

Gaussian random variables with zero mean and unit variance
and is a Chi-squared random variable with degree of

freedom [34]. Using these properties, we can
obtain from by averaging over
and ; that is

(22)

where the notations denotes expectation taken with
respect to a set of random variables . To derive the optimal

, let us begin with the expectation first.
When is given, using the expression of in (17) we
have

(23)

where we have used , a property coming
from the fact that are i.i.d. circularly symmetric
complex Gaussian random vectors. From (23), We can see that

depends on the expectations of
and , to be given in Lemma 4.
Lemma 4: When the channel is given, has zero

mean and its variance is given by

(24)

The mean of given is

(25)

Proof: See Appendix D.
Using Lemma 4 and (23), we can see that de-

pends on only, but not on . As a result, the optimal
predictor in (22) can be rewritten as

(26)

Combining the results in (23)–(26), we obtain the optimal pre-
dictor of bit loading in Theorem 1.
Theorem 1: When is given, the optimal predictor of bit

loading is given by

(27)

where

(28)

(29)
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Proof: See Appendix E.
From Theorem 1, we can see that can be obtained from
, and . Both and can be computed once

is known, which can be obtained from bit loading
using as .
Since , the optimal predictor can be
computed using the bit loading at time and no extra side in-
formation is needed. In next section, we will derive the statistics
of prediction error using the results in Theorem 1.

V. QUANTIZATION OF PREDICTION ERROR

In the proposed predictive quantization system, the predic-
tion error is quantized and sent back to
the transmitter. It is known that, if the quantizer is designed ac-
cording to the statistics of , a smaller quantization error can
be achieved. Combining (17) and (27), we have

(30)

When the optimal predictor in (27) is used, we have
as is the mean of conditioned

on . Let be the variance of given the bit
loading , i.e., . Using
the approximation of in (30) and the results in Theorem
1, we can verify that has the following second order
approximation,

(31)
We can see that the conditional variance depends
only on . Therefore, can also be com-
puted using the bit loading at time like the optimal predictor.
Now we can design the quantizer according to .

A. Quantizer Design

For the quantization of prediction error , a smaller quan-
tization error can be achieved if the quantizer can be designed
according to the distribution of [31]. From the expression
in (30), we can see that the first term on the right-hand side, i.e.,
the dominating term, is a complex Gaussian random variable
when is given. We can see this by observing that the ele-
ments of are Gaussian. Using (13) we can see that
is a linear combination of Gaussian random variables when
is given. Thus is a complex Gaussian random variable
when is given. We will demonstrate through simulations
that given , the distribution of is well approximated
by a complex Gaussian random variable and the approximation
of variance given in (31) is a very good one. The optimal quan-
tizer for a Gaussian source can be found in, e.g., [31]. Given
a zero mean complex Gaussian random variable with variance

, the optimal reproduction points can be obtained in
terms of the variance [31]. Since is a function of bit

loading vector , the reproduction points can be adapted with
time. In the following, we summarize the algorithm of predic-
tive feedback of bit loading with adaptive quantization.
Algorithm of the Proposed PQB: The predictor given in The-

orem 1 and the above quantizer design are derived based on the
unquantized bit loading. However, at time the transmitter
knows only the quantized , but not . When the predic-
tion error is small, , the predictor in Theorem 1 can
be approximated by replacing the unquantized bit loading with
the quantized . Initially, set the bit loading at time to
be for , which is
the upper bound of the averaged bit loading1. Let the quantized
bit loading at time be . At time , the following steps
are performed.
1) Both the transmitter and receiver compute the optimal pre-

dictor in (27) and the variance in (31)
using the quantized bit loading 2.

2) At the receiver, quantize to using a quantizer
that is adapted according to . The quantized pre-
diction error is fed back to the transmitter.

3) At the transmitter, the quantized bit loading at time
is obtained by .

In the above derivations of bit loading, we assume reverse de-
tection ordering is used for the decision feedback receiver. After
bit loading is quantized, the receiver can still choose a detection
ordering that is optimal in certain sense, e.g., the optimal or-
dering for minimizing the worst subchannel symbol error rate.
For uniform bit loading, the optimal ordering that minimizing
the worst subchannel error rate is given by the VBLAST re-
ceiver [36]. When the bit loading is not uniform, the optimal
solution is the ordering based on the rate-normalized-SNR [37],
which is the subchannel SNR normalized by a rate-related term,
i.e., [38]. In a VBLAST receiver,
detection is done iteratively and in each iteration the subchannel
that has the largest SNR is decoded. When the detection or-
dering is based on rate-normalized SNR, the detection is also
done in an iterative manner like VBLAST, but the subchannel
with the largest rate-normalized SNR is decoded, instead of the
subchannel with the largest SNR.
1) Feedback Rate : For the proposed PQB method, feed-

back rate means that the number of total bits used for quanti-
zation for each feedback is . For example, suppose and
2 bits or 4 bits quantizer is used to quantize the prediction error

. If the number of used subchannels is 1, 4 bits quantizer
is used to quantize . If the number of used subchannels is
great than 1, 2 bits quantizer is used to quantize and for
each feedback time only the bit loadings of two subchannels are
fed back to the transmitter.

1At the initial time , the transmitter does not have any information
of the transmission rate for the variable rate system. One way to determine the
initial bit loading is to use the statistics of . Using Jensen’s inequality, it can
be shown that , where . The
expectation can be obtained in a closed form as

2The optimal predictor in (27) and the variance in (31) are
derived when the loading at time is given. However, the transmitter only has
the quantized version of bit loading at time . When the quantization error is
small, we have . Thus in the proposed PQB algorithm we assume the
quantization error is small and use to compute the predictor of bit loading
at time .
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TABLE I
SIMULATION ENVIRONMENT PARAMETERS

2) The Case and Variable Number of Subchan-
nels: In the above derivation, we have assumed that
and the number of subchannels used for transmission is .
Each subchannel is assigned power even if the number
of bits loaded is less than one. Now we consider the more gen-
eral case that the condition is removed. To achieve
a higher transmission rate, we allow the number of subchannels
used for transmission to vary between 1 and
and each subchannel is given power similar to [26]. In
this case, there are subchannels that are not assigned
any bits. Let be the reduced bit loading vector that is obtained
by removing the zero entries of . Let be the re-
duced channel matrix that is obtained by removing the
columns of that correspond to the zero entries of . Then
we can apply the proposed PQB algorithm on . All the re-
sults in Lemma 1–4 and Theorem 1 continue to hold when we
replace and respectively by and . The optimal
value of and the corresponding subset of used subchannels
can be chosen to maximize the transmission rate. To inform the
transmitter of the change of used subchannels, we can feed back
the information of the optimal subset, say, every channel uses,
which is called refresh period in simulations.
Remarks: In [26], predictive coding was also used for quan-

tizing bit loading, but there are some important differences. The
receiver in [26] is linear rather than a decision feedback receiver.
The optimal predictor in (27) is obtained using the Cholesky
decomposition of the channel Gram matrix, and the prediction
error is approximated in a closed form. In [26], only the upper
and lower bounds of the optimal predictor and prediction error
are given, but explicit formulations are not available.

VI. SIMULATIONS

In this section, we use Monte Carlo simulations to demon-
strate the performance of the proposed PQB feedback system.
In the proposed PQB algorithm, is sent back to the trans-
mitter using a feedback channel with feedback rate , which
is the number of bits sent back to the transmitter per channel
use. Three transmission scenarios, indoor, micor-cellular and
urban [35], are considered as listed in Table I. In examples
1–2, the time varying MIMO channel is generated using
the Gauss-Markov model in (1). The values of corresponding
to these three scenarios are respectively 0.06 and 0.47. We con-
sider the case and . The total transmit power
to noise ratio is 12 dB. The number of subchannels used
for transmission is 2, and . In examples 3–4, the
channel is generated using the filtering method [39] for the same
Doppler frequency in the micro-cellular and urban scenarios.

and , and the number of subchannels used is
updated periodically with period 100. To avoid extra feedback,
the first few feedback bits of each refresh period is used to in-
form the transmitter of the used subchannels. The transmission
rate at the end of a period is used to initialize the bit loading of

Fig. 2. The histograms of subchannel prediction error and Gaussian
pdf with zero mean and variance computed from (31); (a) and (b) .

the next period by uniformly distributing the transmission bits
to the used subchannels.
1) Example 1. Histogram of Prediction Error: Fig. 2 show

the histogram of for and 0.1 when the previous
bit loading is given. The case corresponds to the
indoor scenario with terminal speed 4 km/h. Given a bit loading
vector, or equivalently , the histogram is generated
using random realizations of , , and . For
each , we also show the pdf of a zero mean Gaussian random
variable with variance computed using (31). We can see that
the prediction errors are well approximated by Gaussian random
variables and the approximation in (31) is a good one.
2) Example 2. Quantization Error Versus Feedback Rate:

Fig. 3 shows the mean squared quantization error (MSE), i.e.,
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Fig. 3. Mean squared quantization error as a function of feedback rate .

, as a function of the feedback rate
for different . In Fig. 3, four values of are considered. The
case are taken from Table I, corresponds to
the indoor scenario with terminal speed 4 km/h, while
and 0.3 correspond to the Urban scenario when the terminal
speeds are 12.5 km/h and 18.5 km/h, respectively. The MSEs
in Fig. 3 are obtained by averaging over channel realiza-
tions. From Fig. 3, we can see that the MSE is proportional to

for a given feedback rate. For example, when , MSE
is respectively 0.001 and 0.0041 for and 0.2. When
increases from 0.1 to 0.2, MSE increases by approximately

4 times. The reason is as follows. We know the quantization
error is exactly the same as the quantization error

. Also the variance of quantization error is propor-
tional to the variance of the signal to be quantized [31]. As the
variance of the prediction error is proportional to in (31), we
see that MSE is proportional to for a given feedback rate.
3) Example 3. Bit Error Rate Performance:

Fig. 4(a) and (b) show the bit error rate performance of PQB
respectively for (a) micro-cellular and (b) urban scenarios. To
have an integer bit loading, we truncate to the nearest
integer and the transmission rate is . For compar-
ison, we also show the performance of per-antenna-rate-control
(PARC) system in [16] and precoder systems in [20] and
[23], in which the precoder is updated based on the feedback
information. For PARC, the power is equally divided among
the subchannels that are used for transmission and the
quantized integer bit loading is directly fed back to the
transmitter. For example, suppose two subchannels are used
for transmission. Then each of the two subchannels used are
allocated with power . The subset of subchannels used for
transmission is chosen using the capacity maximizing criterion.
The receiver chooses the subset that would result in the largest
capacity. It is shown in [16] that with this suboptimal power
allocation, the capacity loss (compared to the case of optimal
power allocation) is almost negligible, but the complexity is
lower. In [20], the channel Gram matrix is fed back based on
geodesic curves (labeled as “geodesic curves”), and in [23]

Fig. 4. Average bit error rate performance as a function of for ;
(a) micro-cellular scenario and (b) urban scenario.

the precoder is fed back using the rotation based differential
precoder codebook (labeled as “rotational codebook”). For
each data point in the plots, the average transmission rate of
PQB and PARC is 12 bits or slightly over 12 bits per channel
use. This is done by choosing an appropriate SNR gap for
a given . For both [20] and [23], three substreams are
transmitted and we use uniform bit loading (each subchannel
loaded with 4 bits). The bit error rate is obtained by averaging
over channel realizations. For all the feedback schemes,
feedback rate is used. For the micro-cellular scenario
in Fig. 4(a), the performance of PQB is very close to that of
the ”unquantized”, for which the unquantized bit loading is
assumed to be available to the transmitter. From Fig. 4(b), we
can see that PQB system is around 2 dB better than the others
when the bit error rate is . Although the proposed PQB
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Fig. 5. Bit error rate as a function of terminal speed.

system is designed for a slowly time-varying channel, it can
still achieve a very good performance in the urban scenario.
4) Example 4. Performance as a Function of Terminal Speed:

Fig. 5 shows the bit error rate performance as a function of ter-
minal speed for the 4 feedback schemes in Example 3. The car-
rier frequency is 2 GHz. and . For each
data point in the plots, the average transmission rate of PQB
and PARC is 12 bits or slightly over 12 bits per channel use.
The bit error rate is obtained by averaging over channel
realizations. PARC and PQB are similar when terminal speed
is low and the channel is almost time invariant. As speeds in-
creases, the gap between the two widens. Fig. 5 shows that PQB
is better when the terminal speed is less than 90 Km/hr. When
the terminal speed increases further, the there is little correla-
tion between channels of consecutive time. In this case, the pro-
posed PQB cannot take advantage from the temporal correlation
of channel and it is better to switch to non differential feedback
schemes.

VII. CONCLUSION
In this paper, we consider a variable-rate MIMO system with

a decision feedback receiver. The bit loading is dynamically as-
signed to the subchannels as per antenna rate control so that the
transmission rate is adapted according to the current channel
condition. Predictive quantization, which is known to be very
useful for coding correlated signals, is used to quantize the bit
loading for feedback. When reverse detection ordering is used
at the receiver, the bit loading is related to the Cholesky decom-
position of the channel Gram matrix. By modeling the channel
as a first-order Gauss-Markov process, we show that the nested
submatrices in the Cholesky decomposition can be updated as
time evolves. Using the update, we derive the optimal predictor
of the next bit loading in a closed-form. The statistics of the
prediction error have also been derived and exploited in the de-
sign of the quantizer to achieve a smaller quantization error. Al-
though the derivations are carried out for a small , simulations
demonstrate that PQB gives a good tracking performance even
when the channel does not change slowly.

APPENDIX A
PROOF OF LEMMA 1

We will prove (10) by the mathematical induction. For ,
. Suppose (10) holds for .

Decompose as

(32)

Let . Then

. Let be the first column of . Using

and multiplying the left-hand side
and right-hand side of (32) by and ,
respectively, we have

(33)

(34)

(35)

where is the first column of . Comparing (34) and
(35), we have . So (10) holds for

as well and the proof of (10) is complete. Since (10)
is true, the (34) and (35) hold for . Thus we
can conclude that for ,
which means that the first column of is orthogonal to each
column of .

APPENDIX B
PROOF OF LEMMA 2

We prove Lemma 2 by induction. We know
. Using the Gauss-Markov model in (1) and the approxi-

mation , we have

(36)

where , . Suppose
Lemma 2 holds for . Then we have

(37)

where the matrix is given
by

(38)

and the matrix is given by

(39)
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Now consider the case when . Let us partition
and as

(40)

where and are 1 vectors. and are
matrices. Using (37)–(40) and partitioning

as in (7), we obtain , , and , respec-
tively, as

(41)

(42)

(43)

Substituting (41)–(43) into (8) and approximating
using the second-order Taylor approxima-

tion, can be expressed as

(44)

where the matrix is given by

(45)

In the second equality we have used

and

. Similarly, the

matrix is given by

(46)

Hence (12) holds for . As is the top left
element of , using (12) we can obtain the approximation
in (15) and the proof is complete.

APPENDIX C
PROOF OF LEMMA 3

Let be an 1 standard vector, i.e.,
and for . Using the results in Lemma 2,

the th column of is given by

(47)

Since , we have
for . Using (47), can be

expressed as

(48)

where is the th column of . Let
. The vector in (48) can be rewritten as

(49)

(50)

(51)

Similarly, let

Then we can obtain the result in (20) by repeating the steps from
(49) – (51).
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APPENDIX D
PROOF OF LEMMA 4

When is given, the statistics of and
depends only on . Since are i.i.d. cir-
cularly symmetric complex Gaussian random vectors,
using (20) we know that is also a circularly
symmetric complex Gaussian random vector with co-

variance matrix . Because

is circularly symmetric complex Gaussian, we have
and . As a result, we

have and

(52)

where in the second equality we have used
obtained from (10). Using (19) we

can obtain

(53)

As are circularly symmetric complex Gaussian vec-
tors, using Lemma 3 it can be shown that
. Thus the expectation in the second term of (53) can be written

as

(54)

Substituting (54) into (53), we obtain the conditional the mean
of in (25).

APPENDIX E
PROOF OF THEOREM 1

Observing (24) and (25), we can see that de-
pends only on for . Note that in the QR de-
composition of , are independent [34]. As

are independent and is given, we
have .
By taking the expectations of (23) over for , we have

(55)

where and

. Using (24) and (25), we ob-

serve that and both depend on

for , which turns out to have a
closed form, to be proved next.
Using Lemma 3, is given by

(56)

Let be the set and
. From Lemma 3, we know in (56)

depends on for . As a result, the set
depends on for . Since

for are independent random variables,
we know that the set is statistically independent of
the set . Thus, is given by

(57)

where we have used the fact that are complex
Gaussian random variables with zero mean and unit variance
[34]. Applying (57) for the case , we have

In a similar manner, we apply (57) for the case
, then we get

(58)

Using the above result, we can obtain
and

, and the theorem
follows.
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