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Variable-Rate Transmission for MIMO
Time-Correlated Channels
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Abstract—In this paper we consider variable-rate transmission
for time-correlated MIMO (multi-input multi-output) channels
with limited feedback. The number of bits loaded on each sub-
channel of the MIMO system is dynamically assigned according
to the current channel condition and fed back to the transmitter.
As the channel is time-correlated, bit loading is a vector signal
that is also time-correlated. We propose to feedback bit loading
using predictive coding, which is known to be a powerful quanti-
zation technique when the underlying signal is correlated in time.
Assuming the channel is a first-order Gauss-Markov random
process, we derive the predictor for the bit loading to be coded
and analyze the corresponding prediction error variance when
the channel is varying slowly. By exploiting the prediction error
variance, we adapt the quantizer of the prediction error to have
a smaller quantization error. Furthermore we show that the pre-
diction error variance is proportional to a term that depends only
on the time-correlation coefficient. This leads to the conclusion
that, a codebook that is designed for a particular time correlation
coefficient can be easily modified to a codebook for a different
correlation coefficient without redesign. Simulations are presented
to demonstrate that the proposed predictive coding can achieve a
very good approximation of the desired transmission rate with a
very low feedback rate.

Index Terms—MIMO, limited feedback, quantization of bit
loading, variable rate transmission.

I. INTRODUCTION

I T has been shown that with limited amount of feedback in-
formation the performance of a transmission system can be

enhanced greatly [1]. The transmission rate or error rate can be
significantly improved when there is feedback from the receiver
through a reverse channel. In general, the transmitter has no
knowledge of the forward link channel and only the receiver
has the channel state information. As the reverse channel can
support only a limited transmission rate, it is desirable to have
a low feedback rate.
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Various feedback schemes have been proposed for the case
when the transmission rate is fixed. The feedback of precoder
for spatial multiplexing MIMO systems with a fixed transmis-
sion rate has been extensively investigated [1]–[6]. The receiver
chooses the optimal precoder from a codebook and sends the
index back to the transmitter. Optimal codebook designs of uni-
tary precoders using Grassmannian subspace packing for dif-
ferent criteria are developed in [2]. The optimal unitary precoder
for minimizing BER (bit error rate) using infinite feedback rate
is given in [4] and generalized Lloyd algorithm is used for con-
structing codebooks. In multimode precoding [3], the number
of substreams can vary with the channel. The use of an iden-
tity precoder combined with the feedback of only bit loading is
proposed in [5]. Quantization of bit loading using vector quan-
tization is considered in [6] to reduce feedback rate for systems
that feedback only bit loading.
For fading channels, adapting the transmission rate according

to the channel state information can lead to considerable gain
over fixed-rate systems [7]. Rate adaptation is also important for
controlling frame error rate or packet error rate without using
deep interleaving because we can adjust the rate to satisfy a
given error rate constraint [8]. MIMO systems with variable
transmission rate have been considered in the literature, e.g.,
[9]–[15]. In [9], the system switches between two transmission
rates by using beamforming for low-rate transmission and spa-
tial multiplexing for a higher rate, depending on the current
channel condition. Switching between orthogonal space time
block code and spatial multiplexing is proposed in [10] to im-
prove the spectral efficiency. Spatial modulation forMIMO sys-
tems with adaptive constellation selection is considered in [11].
Feedback of quantized precoder, power allocation and/or bit al-
location is considered in [12], [13]. Successive quantization of
power and bit allocation is proposed in [14]. An efficient algo-
rithm for per antenna power and rate control is developed in
[15].
In practical transmission environments, a fading channel is

usually correlated in time. Temporal correlation is considered
in [16] to design the transmit beamforming vector by modeling
the quantized channel as a finite-state Markov chain. Differen-
tial feedback of the channel Gram matrix based on geodesic
curves is considered in [17]. When the channel is modeled as
a first-order Gauss-Markov random process, the time correla-
tion can be more directly exploited for analysis or for more ef-
ficient feedback [18]–[22]. For a given quantization error con-
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straint, the minimum rate for feeding back differential channel
information is derived in [18]. The design of polar-cap differ-
ential codebooks is addressed in [19] for beamforming systems.
A feedback scheme that uses a differential rotation of the pre-
coder is proposed in [20]. Based on random matrix quantiza-
tion analysis, a spherical cap codebook can be generated sys-
tematically. For a given average feedback rate, the problem of
choosing a feedback interval is addressed for beamforming sys-
tems in [21], [22]. The problem of optimal feedback interval
for minimizing capacity loss is formulated in [21]. Comparison
between frequent low resolution feedback and infrequent high
resolution feedback is done in [22] by analyzing SNR loss due
to quantization. Earlier results that exploit the time correlation
of the MIMO channel are all for fixed-rate transmission systems
to the best of our knowledge.
In this paper, we consider variable-rate transmission for

limited-feedback MIMO systems over time-correlated chan-
nels using predictive quantization of bit loading (PQB). The
transmission rate is adapted to the current channel condition
by dynamically assigning bits to the subchannels of the MIMO
systems. The bit loading, a vector signal, is fed back using pre-
dictive quantization, a coding scheme known to be very efficient
for signals that are correlated in time.1 Assuming the channel is
modeled by a first-order Gauss-Markov process, we derive the
predictor of the current bit loading given the previous channel
and then derive the prediction error variance. We show that the
predictor and prediction error variance can be approximated
based on the previous bit assignment. Thus, without using extra
feedback, we can quantize the prediction error based on its
statistics so that a smaller quantization error can be achieved.
It turns out that the prediction error variance is proportional to
a term that depends only on the time correlation coefficient.
Therefore, after we design a codebook for a particular time cor-
relation coefficient, we can easily convert it to a codebook for a
different correlation coefficient without redesign. Furthermore,
we show how the derivation of predictor and analysis of quan-
tization error can be modified for the case when the feedback
rate is as low as one bit and interleaving of prediction error is
needed for feedback. Simulations are presented to demonstrate
that the proposed predictive coding of bit loading can achieve
a very good performance for Gauss-Markov channels as well
as more realistic time-correlated channels.
The sections are organized as follows. In Section 2, we give

the system model of the time-correlated MIMO system. In
Section 3., we derive the predictor of the current bit loading
using past channel information. Predictive closed-loop quan-
tization of bit loading is presented in Section 4. Simulation
examples are given in Section 5 and a conclusion given in
Section 6.
Notation: Boldfaced lower case letters represent vectors and

boldfaced upper case letters are reserved for matrices. The no-
tation denotes transpose-conjugate of and denotes

1As the feedback information is bit loading, the antennas corresponding to
subchannels loaded with zero bits are not used. Hence it can be considered a gen-
eralized antenna selection scheme, in which the active antennas can be loaded
with different number of bits.

Fig. 1. A MIMO system with bit loading feedback.

the th entry of . The function denotes the expected
value of a random variable .

II. SYSTEM MODEL

Consider the wireless system with transmit antennas and
receive antennas in Fig. 1. At time , the channel is modeled

by an matrix with channel noise . The
input vector and output vector of the channel are related
by . A simple but useful model to describe
the time variation of a time-correlated MIMO channel is the
first-order Gauss-Markov process [23]

(1)

where is independent of and its entries are
i.i.d. complex Gaussian random variables with zero mean
and unit variance. The parameter is a coefficient that re-
flects the Doppler effect of the channel. With Jakes’ model,

, where is the zeroth-order
Bessel function of the first kind, is the maximum Doppler
frequency, denotes the time interval between consecutive
channel uses. The Doppler frequency can be computed using

, where is the mobile speed, is the carrier
frequency and is the speed of light. When
Doppler effect is not significant, the channel varies slowly,

and is a small number. The first-order
Gauss-Markov model in (1) does not fully capture a practical
time-correlated MIMO but it allows us to obtain a tractable
solution, which will be tested on a more realistic time-corre-
lated channel in simulations later. We assume the channel is
slow fading so that the channel does not change during each
channel use and it is known to the receiver. We also assume
a delay free feedback channel with limited transmission rate
is available. The noise vector is additive white Gaussian
with zero mean and variance . We assume and
the number of substreams transmitted (i.e., the number of
subchannels loaded with bits) is equal to . (We consider the
case when and in Section 4.2, then extend
it to the more general case when there is no constraint on

and , except that .)
The inputs of the channel as indicated in Fig. 1 are modu-

lation symbols , for , assumed to
be uncorrelated with zero mean. For the subchannels loaded
with bits, the variance of is equal to , where is
the total transmission power. The linear receiver
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is zero forcing and [24]. The receiver
output error is Gaussian distributed when the
channel is given. The error has autocorrelation matrix

given by [24]

(2)

The th subchannel error variance at time is .
When the error is Gaussian and QAMmodulation symbols are
used, the number of bits that can be loaded on the th subchannel
at time is [24]

(3)

where is the SNR gap that depends on the desired
symbol error rate (SER)2, , and

. The number of bits

transmitted at time is .

III. PREDICTION OF BIT LOADING

When the channel is time-correlated, we can expect the bit
loading to be time-correlated as well. In this section we show
how to predict the bit loading at time given the channel at
time . Based on the results we derive an approximation of
the predictor using the bit loading at time .
Using the Gauss-Markov channel model in (1), the output

noise autocorrelation matrix in (2) can
be written as

(4)

The following lemma gives an approximation of that allows
us to make a useful connection between and .
Lemma 1: Consider the output noise autocorrelation matrix
in (4). For a small has the following second-order

approximation:

(5)

A proof is given in Appendix A. Note that the two matrices
and depend on the channel and but not .

The differential error covariance matrix can be
approximated as , which is equal to zero when
. Using the expression of in Lemma 1, we can derive the
following approximation of bit loading at time .

2When a desired bit error rate (BER) is given, we can use
in (3) to approximate [7]. For a coded perfor-

mance, adaptive coded modulation can be applied to each subchannel
as in a single-input-single-output fading channel [25]. In this case,

, where is the channel coding gain [25].

Lemma 2: At time , the number of bits that can be loaded
on the th subchannel can be approximated in terms of the bit
loading at time as

(6)

when is small, where denotes the th entry of a
matrix .
A proof is given in Appendix B. For the predictive quantiza-

tion of , wewould like to have a predictor of so that
the prediction error is small. It is known that,
given the previous channel , the best predictor that mini-
mizes the mean squared prediction error is the conditional mean
[26] , where denotes the ex-
pectation of a random variable averaged over the random ma-
trix . The result in Lemma 2 leads to the following expres-
sion of predictor for

where we have used the fact that the entries of have zero
mean, and thus the conditional mean . It
turns out that the above expectation term can be expressed in a
closed form as described in Lemma 3.
Lemma 3: Consider the matrices and in (5). When

the entries of are independent Gaussian random variables
with zero mean and unit variance, and

are given, respectively, by

(7)

where is the trace of . In this case, the predictor
that minimizes the mean squared prediction error

is given by

(8)

A proof is given in Appendix C. With the above results, the
prediction error is given by

(9)

We see the first term in (9) is in the order of as both and
are independent of , while the rest of the expression is

in the order of . The error is dominated by the first term.
This means that we do not need to redesign the bit loading
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codebook as varies. We can design the codebook for a partic-
ular . When changes to a different value, known to both the
transmitter and receiver, we only need to scale the codewords
in the codebook accordingly. Therefore, the codebook can be
easily adapted as changes. This is similar to the result obtained
in [28] for quantizing beamforming vectors in a time-corre-
lated environment. As the optimal predictor is the conditional
mean of , the conditional mean of the prediction error

in this case is equal to zero, i.e., .
Given the previous channel, the variance of is the
mean squared prediction error .
Based on (9), has the second-order approximation

, which can be
expressed as

(10)

using (7). We see that the variance of is in the order of .
Prediction using previous bit loading
The predictor in (8) is derived assuming is known. It con-
tains the term that is not available to the transmitter as
only bit loading is fed back. Nonetheless we can use (8) to ob-
tain an estimate for . To do this, note that is given

by , where is the
th output subchannel error at time . It can be bounded as

(11)

The lower bound is achieved when the subchannel errors
are uncorrelated. The upper bound is obtained by using

, where equality holds
if is a scaled version of . The lower and upper
bounds in (11) depend only on for .
The subchannel error variances can be obtained from
the bit loading information that is fed back of the transmitter
using (3), i.e., . Equation (11)
leads to the following upper and lower bounds.

(12)

where

The above upper and lower bounds depend only on the bit
loading of the previous time instant and we can use them to
approximate the predictor in (8).
To examine the difference between the lower bound predictor

and the upper bound predictor, we conduct the following empir-
ical comparison. The mean squared prediction error is

Fig. 2. Mean squared prediction errors using different predictors.

plotted as a function of assuming in Fig. 2 for
. We have obtained the predictor using the lower

bound, the upper bound, and the mean of the two. We can see
in Fig. 2 that that the predictor based on the lower bound has
the smallest prediction error, the one based on the upper bound
has the largest prediction, while the one based on the mean of
the two bounds is in the middle. However the difference is a
small one. We will use the lower bound for the prediction of bit
loading in the next section.
On the other hand, it is also desirable to have the information

of the prediction error variance available to the transmitter.
The prediction error variance , if known to the transmitter,
is a useful reference for designing the quantizer so that a smaller
quantization error can be achieved [26]. The expression of
in (10) contains the term that is not known to the
transmitter. To have an estimate of based on the previous
bit loading, we can use (10) and the bounds in (11) as in the
above discussion to obtain

(13)

where we have replaced by as
before. The above lower and upper bounds depend only on the
previous bit loading and can be used to design the quantizer for
quantizing the prediction error in Section 4.

IV. PREDICTIVE QUANTIZATION OF BIT LOADING

For the predictive quantization of bit loading at time ,
the receiver computes a predicted value and apply quanti-
zation on the prediction error . The quantized
prediction error is then sent back to the transmitter. The
transmitter computes the predicted value just like the re-
ceiver and reproduces the quantized bit loading using
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The bounds derived in (12) can be used as a predictor for .
Using the lower bound of (12), we have the following predictor,

(14)

where we have replaced by the quantized bit loading
as only the quantized bit loading is available to the trans-

mitter. The above predicted value is computed at both the
transmitter and the receiver. The th subchannel at time is
loaded with bits, where denotes the largest integer
smaller or equal to . Note that the quantization error
is the same as the quantization error of prediction error, i.e.,

. With a proper design of the predictor,
the prediction error has a smaller variance than . Thus a
smaller quantization error can be achieved for the same quanti-
zation bit rate as the quantization error variance is proportional
to the variance of the random variable to be quantized [26].
Quantization of Prediction Error
For the quantization of , a smaller quantization error can
be achieved if the quantizer is designed according to the statis-
tics of [30]. Observe that the elements of are Gaussian
random variables when is given. Therefore in the ex-
pression of prediction error in (9), the first-order term of ,
i.e., the dominating term, is Gaussian. Thus is approxi-
mately Gaussian and it can be quantized using quantizers de-
signed for Gaussian random variables. For example, when we
use one bit to quantize a Gaussian random variable, the optimal

reproduction points are times its standard deviation [30].

That is , for and
for . For higher resolution quantization of Gaussian
random variables, the optimal reconstruction points can also be
expressed in terms of the variance [30]. Thus we can easily adapt
the reconstruction points according to the variance of the pre-
diction error . With such an adaptive quantization scheme
the transmitter needs to know the prediction error variance for
reconstructing . For this, we can use the bounds in (13) to
approximate the prediction error variance . An approxima-
tion of using the quantized bit loading and the upper bound
in (13) is

(15)

Such an expression depends only on the previous quantized bit
loading. When the receiver uses the approximated to quan-
tize the prediction errors in an adaptive manner, the transmitter
can compute using the quantized bit loading and recon-
struct just like the receiver. Using the upper bound in (13)
as an estimate of the prediction error variance, the prediction
error is somewhat overestimated and a larger quantization step
size is used. In this case we can keep better track of the unquan-
tized bit loading when there is a sudden change in the channel.

This leads to a better error rate performance as we will see in
simulations.

A. Low Feedback Rate

For a given feedback rate , the prediction errors are each
quantized using bits. When the feedback rate is small,
e.g., , each prediction error can only be quantized using
less than one bit. To quantize the prediction errors with a higher
resolution, we can interleave the feedback of the prediction er-
rors. For example, if we interleave the prediction errors and
feedback each prediction error every channel uses, each sub-
channel can be quantized using one bit when . More
generally, suppose each prediction error is quantized using
bits. Thus bits are needed for quantizing all the predic-
tion errors and the number of times of feedback required is

, where denotes the smallest integer
larger or equal to . Thus we need to predict the bit loading at
time using the bit loading at time , instead of using the
bit loading at time as discussed in Section 3. The deriva-
tion of predictor in this case is given below.
Let us examine the channel model in (1). Using

, we can write as
. Continue in the same

manner, we have

(16)

The first term is a matrix whose elements
are Gaussian with variance , where
denotes a term that is in the order of . The last terms of
(16) add to a random matrix whose elements are indepen-
dent and identically distributed Gaussian random variables
with variance . Thus, we can write as

where
is an matrix whose elements are independent

Gaussian random variables with zero mean and unit variance.
When is small, we have

(17)

We see that (17) is similar to the Gauss-Markov channel model
in (1) but the coefficient is replaced by . This means that
when we use the information at time to predict , we
can simply replace with in (14) to obtain . In
this case the variance of the prediction error
is roughly times that when there is no delay in prediction

. This is because the prediction error variance in (10)
is proportional to . When the prediction error variance is em-
ployed for adaptive quantization of the prediction error, we can
obtain an approximation of the variance by scaling the expres-
sion in (15) by .

B. Removing the Constraint and

First let us consider and the number of substreams
transmitted . Then we can extend it to the more general
case when there is no constraint on and , except that

. When and , some
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subchannels are not loaded with bits. The bit loading
vector has zero
entries. Removing the zero entries, we get an reduced
bit loading vector . For the predictive quantization of bit
loading, we only need to consider the quantization of the re-
duced bit loading . Let be the submatrix of
by keeping the columns that correspond to the nonzero entries
of . In a similar manner, we define . From (1), the ef-
fective channel can be written as

and the subchannel error autocorrelation matrix is
. Replacing and , respectively, by

and everywhere in earlier derivations, we can predict bit
loading and quantize prediction error as before. As is less
than , we can choose out of subchannels for trans-
mission, according to the channel state information. The trans-
mitter can be informed of the change of loaded subchannels
periodically, say, every channel uses. To avoid extra feed-
back, the first few feedback bits of each -period can be used
to inform the transmitter. More generally we can also change
according to the channel condition. This can be done by

choosing the optimal subset of subchannels that maximizes
the transmission rate at the beginning of each -period, where

. In this case, there is no constraint on
and .

V. SIMULATION EXAMPLES

In the following examples . We have used
Hz, and ms as suggested in [32]. In a mi-

crocellular transmission scenario, the terminal speed of interest
is 3 km/hr [32], which results in maximum Doppler frequency

Hz and . In Examples 1–2, dB
and , which corresponds to a symbol error rate of .
We have used channel realizations in Examples 2–4. The
channel is generated using the Gauss-Markov model in (1)
for Examples 1–3 and generated using the filtering method [33]
for Example 4.
Example 1. Quantized Transmission Rate: Fig. 3(a) and (b)

show the unquantized and quantized transmission rates of the
proposed PQB system for, respectively, and .
The feedback rate . The prediction error is quantized
using a one-bit codebook for Gaussian random variables. As the
feedback rate , the prediction errors are interleaved for
feedback as discussed in Section 4.1. The unquantized rate is
the sum of unquantized bit assignments ,
where is computed according to (3). For the quantized rate

, predictive quantization of bit loading is
applied assuming the transmitter knows only the quantized bit
loading is predicted using (14) and estimated
using (15). The curve “ ( known)” is the quantized
transmission rate assuming is known to the transmitter
so that the bit loading is predicted with the knowledge of
in (8) and the quantizer is adapted according to (10). Although
the predictor and prediction error variances are approximated
for , the curves of the two quantized rates are very close. We
can also see that the quantized rate is a good approximation
of even for .
Example 2. Quantization Error: We show the mean squared

quantization error (MSE)

Fig. 3. The unquantized and quantized transmission rates for (a) and
(b) .

as a function of in Fig. 4(a) for and as a func-
tion of the feedback rate in Fig. 4(b) for .
The number of substreams transmitted is 3 and a two-bit
Gaussian quantizer is used for quantizing the prediction errors.
Fig. 4(a) demonstrates that the MSE is roughly proportional to
for the same . For example, observe the curve of ;

when , MSE is around 0.0015 and when ,
MSE is around 0.006, roughly 4 times that of . From
Fig. 4(b) we see that the MSE decreases with the feedback rate
. For example, when , the MSE of and 6

is, respectively, around 0.1, 0.05 and 0.015. That is, the MSE
of is approximately 2 times that of and 6 times
that of . This is consistent with what we have derived in
Section 4.1. To see this, observe that for and 2, inter-
leaving of the prediction errors is applied because is not large
enough to feedback all the prediction errors in one feedback. As
the prediction errors are quantized using a 2-bit codebook and

, the feedback of all three prediction errors requires 6
bits, which needs, respectively, 6, 3 and 1 times of feedback for

and 6. Thus the prediction error variance of is
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Fig. 4. Mean squared quantization error as a function of (a) and (b) feedback
rate .

around 6 times that of and 2 times that of based
on the discussion in Section 4.1.
Example 3. BER Performance: Fig. 5 show for

the BER performance of the PQB system for a given transmis-
sion rate of 12 bits per channel use. As the transmission rate of
the PQB system varies with the channel, we adjust the target
error rate for each data point so that the average transmission
rate is equal to or slightly over 12. The feedback rate
and the number of substreams transmitted is updated periodi-
cally without using extra feedback as described in Section 4.2,
and a two-bit quantizer is used for quantizing the prediction er-
rors. The quantizer is adapted according to the upper bound of
prediction error variance in (13), labeled as ‘upper bound’, and
according to the lower bound (‘lower bound’). We have also
shown PQB for the case the quantizer is not adapted (‘fixed
quantizer’), and for the case the bit loading is the integer part
of the unquantized bit loading in (3), labeled as ‘unquantized’.

Fig. 5. BER performance of PQB using different quantizers.

For ‘fixed quantizer’, the quantizer is designed for a Gaussian
random variable with a fixed standard deviation, which is 0.01
in the simulations. Using the upper bound in (13) for quantizer
adaptation, a smaller BER can be obtained then the lower bound.
This is because, with the upper bound, a larger quantization step
size is used. This allows better tracking of the channel when
the channel changes suddenly. With the lower bound, such a
sudden change can lead to a larger quantization error and hence
a larger error rate, which usually dominates the overall BER per-
formance. For the performance of PQB using the upper
bound adaptation is close to that of the unquantized bit loading;
the difference is 0.5 dB when BER is .
Example 4. Performance Comparison: In this example, we

use the filtering method [33] to generate the time-correlated
MIMO channel. For the same maximum Doppler frequency

Hz and used in Example 3, the BER perfor-
mance is shown as a function of in Fig. 6(a). We use
feedback rate for all the curves shown and there is no
extra feedback overhead. The transmission rate is 12 bits per
channel in Fig. 6(a). For ‘PQB’, the quantizer is adapted on
the fly using the prediction error variance approximation in
(15). The curve “full bit loading” corresponds to the case that
the best integer bit loading is computed and fed back slowly
without quantization. Also shown in Fig. 6(a) is the BER of
the differential precoder systems in [17] and [20], and the bit
allocation (BA) system in [6] for the same transmission rate

. All of these three are fixed-rate systems. Time cor-
relation of the channel is exploited in [17] using quantization
of the Gram matrix based on geodesic curve and also
exploited in [20] using differential rotation of the previous
precoder. The BA system feedbacks the bit loading vector from
a codebook with a fixed transmission rate to minimize BER.
We can see that PQB requires a smaller power for the same
BER. As an example, for , it has a 1.7 dB gain
over other systems. In Fig. 6(b) we show the BER performance
as a function of transmission rate for the systems in (a) when

dB and . To obtain the performance for
PQB, we choose different target error rates and for each case
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Fig. 6. Performance comparison for , (a) BER versus SNR, and (b)
BER versus transmission rate.

compute the resulting average transmission rate and average
BER. For the fixed rate systems, different transmission rates
are chosen and the corresponding BER computed. With PQB, a
smaller BER can be achieved for the same average transmission
rate.
In the above comparisons, the “full bit loading” case is not

as good as PQB. To understand this better, we plot the BER
v.s. transmission curves for in Fig. 7. For the almost
time-invariant case , the ‘full bit loading’ case has very
good performance. But as the channel varies faster (
in Fig. 6(b)), the performance deteriorates rapidly. This is ex-
pectable because the feedback of full bit loading requires more
feedback time. When the channel changes faster, the feedback
information becomes out of date by the time the information is
used for transmission. The performance of the other schemes
degrades in a more graceful manner as increases.

Fig. 7. BER versus transmission rate for .

VI. CONCLUSION

In this paper we considered variable-rate transmission for
time-correlated MIMO channels with limited feedback using
predictive quantization of bit loading. The transmission rate
is adapted to the current channel condition by dynamically
assigning bits to the subchannels of the MIMO system. We as-
sumed the channel is described by a first-order Gauss-Markov
model. The predictor is derived and the corresponding pre-
diction errors shown to be approximately Gaussian when the
channel is slow fading. For the quantization of prediction
errors, we show the quantizer can be adapted according to
the prediction error variance to achieve a smaller quantiza-
tion error. Furthermore the predictor and the prediction error
quantizers can be easily modified when there is a change in the
time correlation coefficient. Simulation examples have been
presented to demonstrate that a very small mean squared error
can be obtained and a good performance achieved using a low
feedback rate.

APPENDIX

Proof of Lemma 1: The expression of in (4) can be
rearranged as

(18)

by pulling out the term , where
denotes the identity matrix. We can fur-

ther rewrite it as where

and we have used
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. It is known that (page 301, [29]) when
satisfies , where denotes a certain matrix norm of
, e.g., Frobenius norm, then can be written as a
power series . We see that has norm smaller
than unity when is sufficiently small. Using the approximation

, we obtain

(19)

With the second order Taylor approximation, we have
and . Using these ap-

proximations and ignoring the third and higher-order terms of
in (19), we have the second-order approximation of in (5).

APPENDIX

Proof of Lemma 2: With (5) we can approximate
the th subchannel error variance at time by

. Using this expression and (3)
we obtain

When is small, we can approximate the numerator
as . Then

we have

We recognize the first term is equal

to , the number of bits loaded on the th subchannel at
time in (3). The second term of the above equation is
of the form , where
and . Using the Taylor series of

at , we have the second-order approximation
, which leads to (6).

APPENDIX

Proof of Lemma 3: For brevity of notation, the th el-
ement of are denoted, respectively, as

and in this proof. Using (5), the th diagonal element of
is given by

The conditional mean square of is

(20)

As the entries of are independent circularly symmetric
Gaussian random variables with zero mean and unit variance,

when or
, and for all , and

. Using these properties we can verify that (20)
reduces to

We observe that is the

th diagonal element of the product .
The above equation can be further simplified as in (7) by using

and .
With the expression of in (5), we get

As the elements of are independent and of unit vari-
ance, . Observe that

for an deterministic matrix . This
is because the th element of is

, which is non zero only
when and , and the th diagonal element of

is equal to . In a similar manner, it
can be verified that for an
deterministic matrix and , for an
deterministic matrix . Using these identities, we can verify
that is as given in (7).
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