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Bit Allocation and Statistical Precoding for
Correlated MIMO Channels With Limited Feedback

Yuan-Pei Lin, Senior Member, IEEE, Hung-Chun Chen, and Panna Jeng

Abstract—In this paper, we jointly consider statistical pre-
coding and feedback of bit allocation (BA) for multiple-input–
multiple-ouput (MIMO) systems over correlated channels. The
proposed system will be termed a BA system. We assume that
the statistics of the channel is known to the transmitter and a
reverse link of very low rate is available so that the receiver
can send back the quantized BA. Based on the statistics of the
channel, we derive the statistical precoder so that bounds of
the error rate averaged over the random correlated channel are
minimized. Due to statistical precoding, the distribution of the BA
is highly nonuniform. Treating BA as a vector signal, we quantize it
using vector quantization (VQ), which is known to be particularly
useful for quantizing signals with nonuniform distributions. As
the distribution of BA is taken into consideration in the codebook
design, a good tradeoff between performance and feedback rate
can be achieved. Simulations show that the combination of statis-
tical precoding and VQ-based quantization for BA leads to good
performance with a small number of feedback bits.

Index Terms—Bit allocation, correlated channel, MIMO, pre-
coding, VQ.

I. INTRODUCTION

MULTIPLE-input–multiple-output (MIMO) systems with
limited feedback have recently received great interest.

System performance in terms of transmission rate or error
rate can be significantly improved with a limited amount of
feedback from the receiver through a reverse channel [1]. It is
generally assumed that the transmitter has no knowledge of the
forward link channel and that only the receiver has knowledge
of the channel state information. The feedback of the complete
channel information to the transmitter will require an infinite
number of bits. In practice, the reverse channel can support only
a limited transmission rate, and it is desirable to have a feedback
rate as low as possible.

Recently precoded spatial multiplexing systems with finite-
rate feedback have been extensively investigated. The receiver
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chooses the optimal precoder from a codebook and sends the
index back to the transmitter. Optimal codebook designs of
unitary precoders using Grassmannian subspace packing for
different criteria are developed in [2]. The optimal unitary
precoder for minimizing bit error rate (BER) using the infinite
feedback rate is given in [3], and the generalized Lloyd algo-
rithm is used for constructing codebooks. Capacity loss due to
quantized feedback is thoroughly analyzed in [4]. In multimode
precoding [5], the number of substreams M can vary with
the channel. In addition, a precoder codebook is designed for
each possible M . If, in addition to quantized precoder, power
allocation and/or bit allocation (BA) is also available to the
transmitter, the performance can be further improved [6]–[8]. In
these works, bit loading is not quantized, and a large feedback
rate may be needed.

A particular useful class of spatial multiplexing transceivers
is the VBLAST system, which employs successive interference
cancellation at the receiver [9]. The conventional VBLAST sys-
tem uses uniform bit and power allocation, and thus, no feed-
back is needed. It has been extended by incorporating power
allocation or BA when there is feedback [10]–[16]. In [10],
approximate minimum BER power allocation is derived, and
the feedback is the power allocation information. An efficient
algorithm for per-antenna power and rate control of VBLAST
system is developed in [11]. Successive quantization of power
and BA is proposed in [12]. In [13], the receiver feedbacks only
the ordering of detection to the transmitter, and a low feedback
rate is needed. Average error probability is analyzed in [14]
when power and BA are taken into consideration. The optimal
BA is obtained by exhausting all possible constellations subject
to a sum rate constraint. A joint design of optimal BA and
precoder for minimizing the p-norm of a performance-related
vector is proposed in [15]. A number of optimal designs of
MIMO transceivers with decision feedback and bit loading have
been developed in [16]. For the case of limited feedback, the
use of an identity precoder combined with feedback of only
BA, which is called QR-based system therein, is suggested as it
intuitively requires less feedback. In earlier works of VBLAST
systems with BA and a sum rate constraint, an exhaustive listing
of all possible constellation combinations is generally used
[11], [14], [16], and thus, a moderate feedback rate may be
needed.

When the channel statistics are available to the transmitter
but not the current state of the channel, the precoder can
be designed according to the statistics. For example, optimal
beamforming for maximizing the average capacity of correlated
channels has been designed in [17]. Precoders for minimizing
error probability are derived in [18] and [19]. The optimal
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precoder that minimizes the sum of the mean-squared error is
given in [20]. A unified framework for solving a number of
transceiver design problems for correlated channels is presented
in [21]. In these works, a uniform BA is assumed. Optimization
of precoders for a fixed BA vector has been considered in [22].

In this paper, we consider statistical precoding and feedback
of BA for correlated MIMO channels. The feedback of BA, as
suggested by [16], requires few feedback bits, by intuition. For
a given channel, a BA vector is chosen from a codebook whose
codewords satisfy the target transmission rate. Assuming that
the transmitter also knows the statistics of the channel, which
requires only infrequent feedback, we optimize the precoder to
minimize bounds of BER for both linear and decision feedback
receivers.1 With the aid of the statistical precoder, the distribu-
tion of the BA is highly skewed. We propose the use of vector
quantization (VQ) to exploit the nonuniform distribution. With
the proposed statistical precoding and VQ-based quantization
for BA, satisfactory performance can be achieved at a very low
feedback rate, as will be shown in simulation examples. The
main contributions of our paper are given as follows: 1) We
jointly consider statistical precoding and feedback of BA to
minimize bounds of average BER. Statistical precoders have
been designed in the past for uniform BA or for a given fixed
BA, but not for the case of channel-dependent BA. 2) We
propose a VQ approach to the design of codebooks for BA. BA
is treated as a vector signal and quantized. The codebook can be
tailored to the distribution of BA, which can then be quantized
using very few bits. Thus, good performance can be achieved at
a low feedback rate.

The sections are organized as follows: In Section II, we
give the MIMO system model of the proposed BA system.
In Section III, unconstrained BA is derived, and statistical
precoders for both linear and decision feedback receivers are
designed. The feedback of BA using a codebook is presented in
Section IV. Simulation examples are given in Section V, and a
conclusion is given in Section VI.

Notation: 1) Boldfaced lower case letters represent vectors,
and boldfaced upper case letters are reserved for matrices.
Notation A† denotes the transpose-conjugate of A. 2) Func-
tion E[y] denotes the expected value of a random variable y.
3) Notation Im is used to represent the m × m identity
matrix.

II. SYSTEM MODEL OF THE BIT ALLOCATION SYSTEM

Consider the wireless system with Mt transmit antennas and
Mr receive antennas in Fig. 1. The channel is modeled by an
Mr × Mt memoryless matrix H with Mr × 1 channel noise q.
We assume that the channel is slow fading so that the channel
does not change during each channel use. The noise vector q
is assumed to be additive white Gaussian with zero mean and
variance N0. The channel considered in this paper is of the form

H = HwR1/2
t (1)

1The receivers are of the zero-forcing type for convenience of analysis as
well as for the reason that zero forcing and minimum mean squared error
receivers have similar performance when there is bit allocation [23].

Fig. 1. MIMO system with Mt transmit antennas and Mr receive antennas.

Fig. 2. Block diagram of the decision feedback receiver based on QR
decomposition.

where Hw is an Mr × Mt matrix whose elements are inde-
pendent Gaussian random variables with unit variance. The
matrix Rt, of dimensions Mt × Mt, is called the transmit
correlation matrix. In this case, the rows of H are indepen-
dent, and each has an autocorrelation matrix equal to Rt.
This model is useful for downlink transmission [24] when
the receiving antennas are well separated. Suppose that the
transmitter and receiver can process M substreams of symbols,
where M ≤ min(Mt,Mr). Spatial multiplexing precoder F
is an Mt × M matrix. Input vector s is an M × 1 vector
consisting of modulation symbols sk, for k = 0, 1, . . . ,M − 1.
The symbols sk are assumed to be uncorrelated with zero
mean and unit variance. The total transmission power E[x†x]
can also be written as trace(E[xx†]) = trace(E[Fss†F†]) =
trace(FF†). Assuming that the total transmission power is
Pt, then trace(FF†) = Pt. The actual number of symbols
transmitted can be smaller than M if one or more subchannels
are loaded with zero bits.

We will consider two types of zero-forcing receivers, i.e.,
linear and decision feedback receivers. Define the error vector
at the output of the receiver as e = ŝ − s. When the receiver is
linear and zero forcing (see Fig. 1), the receiver output ŝ = Gr,
where M × Mr receive matrix G is (F†H†HF)−1F†H† [25].
In this case, e has autocorrelation matrix Re = E[ee†] given
by [25]

Re = N0(F†H†HF)−1. (2)

To consider a decision feedback receiver, we can use the
receiver structure in Fig. 2 based on the QR decomposition
of HF [16], [20]. This corresponds to the case of a reverse
detection ordering. Let the QR decomposition of HF be QR,
where Q is an Mr × M matrix with orthonormal columns and
R is an M × M upper triangular matrix, with [R]ii = rii.
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The feedforward matrix G and feedback matrix B are given
by [16]

G = diag
(
r−1
00 r−1

11 · · · r−1
M−1,M−1

)
Q†

B = diag
(
r−1
00 r−1

11 · · · r−1
M−1,M−1

)
R − IM

respectively. Assuming that there is no error propagation, the
kth subchannel error ek = ŝk − sk has variance σ2

ek
= N0r

−2
kk ,

for k = 0, 1, . . . ,M − 1. The error variance averaged over
the random channel is σ2

ek
= E[σ2

ek
] = N0E[r−2

kk ]. The value
E[r−2

kk ] has been shown to be related to the Cholesky decom-
position of F†RtF in [20] when Mr > M . Let the Cholesky
decomposition of F†RtF be LDL†, where L is a lower trian-
gular matrix with unity diagonal elements and D is diagonal.
Then

E
[
r−2
kk

]
= d−1

kk/(Mr − k − 1), k = 0, 1, . . . ,M − 1 (3)

where dkk is the kth diagonal element of D.
Assuming that inputs sk are bk-bit QAM symbols, the num-

ber of bits transmitted per channel use Rb is thus
∑M−1

k=0 bk.
The kth symbol error rate is well approximated by [26]

SERk = 4(1 − 2−bk/2)Q

(√
3

(2bk − 1)σ2
ek

)
(4)

where Q(y) = 1/
√

2π
∫ ∞

y e−t2/2dt, y ≥ 0. Note that, for the
decision feedback receiver, 1/σ2

ek
is the postdetection SNR and

(4) is the error rate, assuming that there is no error in detecting
previous symbols. When Gray code is used, the BER can be ap-
proximated by BERk ≈ SERk/bk. Using this approximation,
the BER can be computed using

BER ≈ 1
Rb

M−1∑
k=0

bkBERk ≈ 1
Rb

M−1∑
k=0

SERk. (5)

III. DESIGN OF UNCONSTRAINED BIT ALLOCATION

AND STATISTICAL PRECODER

In this section, we will consider the BA system when there
is no integer constraint on BA. For a given precoder, we will
derive a BA formula that minimizes the BER under a high-bit-
rate assumption. The resulting BER will then be used to design
statistical precoders.

A. Design of Unconstrained BA

Assume that the transmission rate is high and the number of
bits loaded on the kth subchannel, bk, is large enough, so that
1 − 2−bk/2 ≈ 1 and 1 − 2−bk ≈ 1; then, the symbol error rate
expression in (4) can be approximated by

SERk ≈ 4Q
(√

3 · 2−bkσ−2
ek

)
. (6)

For convenience of derivation, we define the function

f(y) = Q(1/
√

y), y > 0. (7)

The function f(y) is monotone increasing, and it can be verified
that it is convex for y ≤ 1/3 and concave for y > 1/3. Using
f(·), we have SERk ≈ 4f(2bkσ2

ek
/3). Therefore, the BER in

(5) can be written as

BER ≈ 4
Rb

M−1∑
k=0

f
(
2bkσ2

ek
/3

)
. (8)

Let us consider the high-SNR case in which the convexity of
f(·) holds and the low SNR case in which the concavity of f(·)
holds.

Assume that the SNR is large enough, so that the convexity
of f(·) holds; then, we have

BER � 4
(Rb/M)

f

(
1

3M

M−1∑
k=0

2bkσ2
ek

)

≥ 4
(Rb/M)

f

(
2Rb/M

3

M−1∏
k=0

σ2/M
ek

)
Δ= BER0. (9)

The second inequality is obtained by using
∑M−1

k=0 bk = Rb and
the arithmetic-mean–geometric-mean (AM-GM) inequality and
also using the monotone increasing property of f(·). Notice
that the lower bound BER0 in (9) is independent of the BA.
The best BA is such that the two inequalities in (9) become
equalities. Due to the convexity of f(·), the first inequality in
(9) holds if and only if 2bkσ2

ek
are of the same value for all k’s.

The same set of conditions is also necessary and sufficient for
equality to hold in the second inequality as f(·) is monotone
increasing. The BA that achieves BER0 is thus

bk =
1
M

M−1∑
�=0

log2

(
σ2

e�

)
− log2

(
σ2

ek

)
+ Rb/M. (10)

We can see that the symbols with smaller error variances are
allocated with more bits. When bits are allocated as in (10),
2bkσ2

ek
are equalized, and so are the subchannel symbol error

rates. The aforementioned BA formula, which was derived
using the criterion of minimum BER, has the same form as that
designed for minimum transmission power in [16].

On the other hand, when the SNR is low enough so that the
concavity of f(·) holds, we have

BER � 4
(Rb/M)

f

(
1

3M

M−1∑
k=0

2bkσ2
ek

)
. (11)

The inequality follows from the concavity of f(·). Similar
to the high-SNR case, the quantity on the right-hand side is
minimized if the BA is chosen according to (10). In this case,
the upper bound on the right-hand side is equal to BER0, and
at the same time, the inequality in (11) becomes an equality,
i.e., BER ≈ BER0. Therefore, for both high- and low-SNR
regions, the BER with BA in (10) is approximately BER0.
The results can be used for both linear and decision feedback
receivers.
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B. Design of Statistical Precoders

To consider the average BER performance, we average
BER0 computed in (9) over the random channel H

BER0 = E[BER0] = E

[
4

(Rb/M)
f

(
c

M−1∏
k=0

σ2/M
ek

)]

where we have used c = (1/3)2Rb/M . To further simplify the
expression, we define the geometric mean function

h(y) =

(
M−1∏
i=0

yi

)1/M

(12)

where y = [ y0 y1 · · · yM−1 ]T , and yi > 0. Let yi =
cσ2

ei
; then, BER0 = (4/(Rb/M))f(h(y)). To analyze BER0,

we first observe the Hessian matrix of f(h(y)), which is an
M × M matrix with the (i, j)th entry given by [Hess]ij =
∂2f(h(y))/∂yi∂yj , for 0 ≤ i, j < M . We can verify that

[Hess]ij =
{

0.5/M2f ′(h(y)) y−1
i y−1

j (1−h(y)) , i �=j

0.5/M2f ′(h(y)) y−2
i (1−(1+2M)h(y)) , i=j

(13)

where f ′(x) denotes the first derivative of f(x). It is known that
a function is convex (concave) if and only if the Hessian matrix
is positive (negative) semi-definite [31]. In the following, we
discuss the behavior of BER0 for the high- and low-SNR cases.

High-SNR Case: Consider Pt/N0 	 1 such that h(y) 
 1.
We can approximate the diagonal elements of the Hessian
matrix in (13) as 0.5/M2f ′(h(y))y−2

i . Defining the M × 1
vector u with ith element ui = 1/yi, we have Hess ≈
0.5/M2f ′(h(y))uuT , which is a positive semidefinite matrix.
Applying Jensen’s inequality E[f(h(y))] � f(h(E[y])), we
have

E[BER0] � 4
(Rb/M)

f

(
c

M−1∏
k=0

σ2/M
ek

)
Δ= BERbd (14)

where σ2
ek

= E[σ2
ek

] is the kth error variance averaged over
channel H. The right-hand side BERbd is a lower bound of
BER0.

Low-SNR Case: A property of f(h(y)) that is useful for
studying E[BER0] in the low-SNR region is presented in the
following lemma:

Lemma 1: Let f(x) and h(y) be as defined in (7) and (12),
respectively. Then, the composite function f(h(y)) for yi > 0
is concave when h(y) ≥ 1/3.
A proof is given in Appendix A. The aforementioned
lemma means that BER0 is concave in σ2

ek
when h(y) =

(1/3)2Rb/M ∏M−1
k=0 σ

2/M
ek ≥ 1/3, which holds in the low-SNR

case, i.e., small Pt/N0. When f(h(y)) is concave, we can apply
Jensen’s inequality E[f(h(y))] ≤ f(h(E[y])) to obtain

BER0 ≤ 4
(Rb/M)

f

(
c

M−1∏
k=0

σ2/M
ek

)
= BERbd. (15)

Now, BERbd becomes an upper bound of BER0. In the low-
SNR region, we would like to have the upper bound BERbd

minimized. In the high-SNR region, we would also like to have
the lower bound BERbd minimized because, if the lower bound
is large, then BER0 will be large as well. We have found
it difficult to directly minimize BER0, whereas minimizing
the bound leads to one tractable solution, as we will see next.
This is separately discussed for linear receivers and decision
feedback receivers.

Linear Receiver: The bound BERbd in (14) can be min-
imized if the geometric mean

∏M−1
k=0 σ

2/M
ek is minimized.

We can obtain σ2
ek

by averaging the error correlation matrix
Re = N0(F†H†HF)−1 over the channel. Let the ith column
of H† be gi; then, the autocorrelation matrix of gi is equal
to Rt. It is known that H†H =

∑Mr−1
i=0 gig

†
i has a com-

plex Wishart distribution with Mr degrees of freedom, which
are denoted as WMt

(Rt,Mr) [29]. Furthermore, F†H†HF
is WM (F†RtF,Mr), and so, R−1

e = (1/N0)F†H†HF has a
Wishart distribution WM (N−1

0 F†RtF,Mr). Then, Re has an
inverse Wishart distribution. It has been shown in [30] that,
when a matrix B is of Wishart distribution Wp(A, r) with
r > p, then E[B−1] = 1/(r − p)A−1. Using this result, Re =
E[Re] is given by

Re =
N0

Mr − M
(F†RtF)−1 (16)

assuming that Mr > M . Let the eigendecomposition of Rt

be UtΛtU
†
t, where Λt is a diagonal matrix and the diagonal

elements λt,i are the eigenvalues of Rt. Let λt,i be ordered such
that λt,0 ≥ λt,1 ≥ · · ·λt,Mt−1, and assume that λt,M−1 > 0.

Theorem 1: For the linear receiver with Mr > M , the BER
bound BERbd in (14) satisfies BERbd ≥ BERbd,lin, where

BERbd,lin =
4M

Rb
Q

⎛⎝
√√√√ 3Pt/M

2Rb/MN0
(Mr − M)

M−1∏
k=0

λ
1/M
t,k

⎞⎠ .

(17)

The inequality becomes an equality when F =
√

Pt/MUt,M ,
where Ut,M is the submatrix of Ut that consists of the first M
columns of Ut.
A proof is given in Appendix B. We can conclude that, to
minimize the BER bound BERbd, the optimal precoder is
F =

√
Pt/MUt,M . Such a precoder has also been shown to

be optimal for beamforming in [17].
Decision Feedback Receiver::
Theorem 2: For the decision feedback receiver with Mr >

M , the BER bound BERbd in (14) satisfies BERbd ≥
BERbd,df , where

BERbd,df=
4M

Rb
Q

⎛⎝
√√√√ 3Pt/M

2Rb/MN0

M−1∏
k=0

(Mr−k−1)1/Mλ
1/M
t,k

⎞⎠ .

(18)

The inequality becomes an equality when F=
√

Pt/MUt,M .
Proof: Using (3), we can readily obtain σ2

ek
= N0d

−1
kk/

(Mr − k − 1). It follows that
∏M−1

k=0 σ2
ek

=
∏M−1

k=0 N0d
−1
kk/
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(Mr − k − 1). Note that
∏M−1

k=0 dkk = det(F†RtF). From
the proof of Theorem 1, we know that det(F†RtF) ≤ (Pt/

M)M
∏M−1

k=0 λt,k. Equality holds when F =
√

Pt/MUt,M .
Using this inequality and the monotone increasing property of
f(·), we arrive at (18).

As in the case of linear receiver, to minimize the BER bound
BERbd, the optimal precoder is F =

√
Pt/MUt,M . Compar-

ing BERbd,df to BERbd,lin in (17), we see that BERbd,bd ≤
BERbd,lin, and the two are equal only when M = 1. In the
special case where the channel is uncorrelated, Rt = IMt

, and
we have F =

√
Pt/M [ IM 0 ]T . In this case, the BA system

with a decision feedback receiver becomes the QR-based sys-
tem with BA proposed in [16]. However, the performances of
these two systems will be different when the feedback rate is
limited because the BA codebooks are different, as we will see
in the simulations. Note that the results in Theorems 1 and 2
hold for Mr > M , as the average error variances in (3) and (16)
are valid for Mr > M . For Mr = M , closed-form expressions
of the average error variances are not known, and the optimal
precoder cannot be obtained this way. For the implementation
of the BA system for Mr = M , we will use the precoder
derived for Mr > M . Implementation issues will be discussed
in the next section.

Connection With Optimal Precoder Systems: It turns out that
BER0 for a linear receiver is related to the BER of the optimal
precoder system in a very nice manner. In particular, when the
receiver is linear and zero forcing, and M = Mt (Mt ≤ Mr),
we will show that BER0 in (9) is always smaller than the
BER of the BER-minimizing system [3] that has an optimized
precoder F but has no BA. Suppose that Rb bits are transmitted
using total power Pt for each channel use, and each sk is
an Rb/M -bit QAM symbol with unit variance. The optimal
unitary precoder is such that the subchannel variances are
equalized [3], i.e., σ2

ek
= Err, for k = 0, 1, . . . ,M − 1, where

Err = (N0/Pt)trace(H†H)−1. Note that Err is also the av-
erage subchannel error variance for the BA system when the
precoder is F =

√
Pt/MV, where V is an arbitrary M × M

unitary matrix. That is, Err = (1/M)
∑M−1

�=0 σ2
e�,BA

, where
σ2

e�,BA
denotes the �th subchannel error variance of the BA

system. Using the approximation in (6), the minimized BER
of the precoder system can be expressed as

BER≈ 4
(Rb/M)

Q

(√
3 · 2−Rb/ME−1

rr

)

≥ 4
(Rb/M)

Q

⎛⎝
√√√√3 · 2−Rb/M

M−1∏
�=0

σ
−2/M
e�,BA

⎞⎠=BER0.

The inequality is obtained by applying the AM-GM inequality
(1/M)

∑M−1
�=0 σ2

e�,BA
≥

∏M−1
�=0 σ

2/M
e�,BA . This implies that the

BA system with unconstrained BA and an arbitrary fixed
unitary precoder has a smaller BER than that of the opti-
mal precoder system that uses the optimal precoder but no
BA. Therefore, when we have the choice of feeding back
either the precoder or BA, the feedback of the BA leads to a
smaller BER.

IV. FEEDBACK OF BIT ALLOCATION

In the proposed BA system, BA is adapted according to the
varying random channel. In this section, we consider the design
of codebooks and codeword selection. We will also propose
the augmentation the precoding matrix when M < Mt. We
will show that the use of augmented precoding allows the BA
system to achieve full diversity order MrMt.

Based on the results in the previous section, we uniformly
distribute the transmission power among the subchannels
loaded with nonzero bits. The precoder is thus chosen as
F = Ut,MΛf , where Λf is a diagonal matrix with [Λf ]kk =√

Pt/M0 if bk > 0, where M0 is the number of subchan-
nels loaded with nonzero bits. For subchannels not loaded
with bits, [Λf ]kk = 0. Such a precoder depends only on the
channel statistics and BA. The channel statistics need not be
frequently fed back to the transmitter. When we consider BA
in practical applications, the bits assigned to the symbols are
typically integer-valued. The components of the BA vector
b satisfy the sum rate constraint b0 + b1 + · · · + bM−1 = Rb,
where bi ∈ Z+ and Z+ denotes the set of nonnegative integers.
The number of such nonnegative integer BA vectors is [28]
C(Rb + M − 1, Rb), where C(·, ·) denotes the choose func-
tion. This requires a large feedback rate when Rb is large. In
the following, we will treat the BA as a vector and use a VQ
approach to design codebooks and select codewords from the
codebook:

Codeword Selection: Suppose that we are given B feedback
bits and a codebook Cb of 2B BA vectors. The vectors in
Cb satisfy the sum rate constraint so that the number of bits
transmitted for each channel use is Rb. The BER in (5) is a
function of the BA vector. For a given channel H, we can
choose the best BA vector b̂ ∈ Cb that minimizes the BER,
b̂ = arg minb∈Cb

BER(b,H), where BER(b,H) denotes the
BER when the channel is H and the BA vector is b. To make
codeword selection more efficient, we can choose (suboptimal)
codewords based on the BA given in (10). The criterion of
minimizing the largest subchannel error rate will be considered.
Suppose that the unconstrained BA vector computed from (10)
is b∗. Given a BA vector b ∈ Cb, the kth subchannel symbol
error rate associated with b is

SERk≈4Q
(√

3σ−2
ek

2−bk

)
=4Q

(√
3σ−2

ek
2−b∗

k2(b∗
k
−bk).

)
.

As shown in Section III, the BA b∗ equalizes the quantity
3σ−2

ek
2−b∗

k . Let us call this subchannel independent quantity

A. Then, we have SERk ≈ 4Q(
√

A2(b∗
k
−bk)). Therefore, the

largest subchannel error rate can be minimized by choosing the
BA vector b ∈ Cb that has the largest mink(b∗k − bk). The BA
in (10) is derived under the assumption that all M subchannels
are loaded with nonzero bits. To remove the assumption, we can
compute BER0 in (9) for each M0, with 0 < M0 ≤ M , where
M0 is the number of subchannels used, and choose the M0

that has the smallest BER0. We can then apply quantization
on the corresponding unconstrained BA using the aforemen-
tioned maximin criterion. Such a suboptimal selection criterion
does not require the computation of BER for each BA in the
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codebook. Simulations in Section V will demonstrate that the
use of the suboptimal maximin criterion leads to only minor
degradation, compared with the optimal BER criterion.

Design of Cb: The BA codebook Cb can be designed using
the generalized Lloyd algorithm for VQ codebooks [33]. Sup-
pose that we are given J training channels H0,H1, . . . ,HJ−1.
First, we initialize the codebook Cb = {bi, i = 0, 1, . . . , 2B −
1}. The generalized Lloyd algorithm repeats the following two
steps: 1) Partition the training set into clusters Ri using

Ri = {k : BER(bi,Hk) ≤ BER(bj ,Hk), for all j �= i} .

2) Find the BA vector ak for Hk using (10), and compute
bi = 1/|Ri|

∑
k∈Ri

ak, where |Ri| is the number of elements
in Ri. The iterations can be ended when there is little improve-
ment in the average BER. The resulting BA vectors bi can
be quantized to have integer entries subject to the sum rate
constraint using the method in [34]. Note that the derivation
of BER bounds in the previous section needs the assumption
Mr > M . When we use the BA system in practice, M need not
be smaller than Mr; it can be equal to Mr.

Augmented Precoding: In the aforementioned discussion,
we have used a fixed Mt × M matrix F as the precoder. When
M < Mt and the channel matrix is such that the column space
of F is contained in the null space of H, there is zero signal
power at the receiver. This can be avoided by starting off with
an Mt × Mt augmented precoder F′ = UtΛ′

f , where Λ′
f is an

Mt × Mt diagonal matrix with at most M nonzero diagonal
entries and the nonzero entries of Λ′

f are of the same value.
Equivalently, we are choosing M columns out of F′ to form
the actual Mt × M precoder F, i.e., (Mt − M) columns of
F′ are removed. The corresponding augmented input vector s′

and BA vector b′ are of size Mt × 1. The entries of s′ and
b′ corresponding to the removed columns of F′ are all equal
to zero so that the transmitter output F′s′ is equal to Fs. As
we choose M columns from F′, there are C(Mt,M) possible
choices for precoders. The augmented b′ satisfies

∑Mt−1
k=0 b′k =

Rb, b′i ∈ Z+, with the additional constraint that b′ has at most
M nonzero components as it is assumed that the transmitter
and receiver can process at most M substreams. It can be
verified that the total number of possible integer BA vectors sat-
isfying the sum rate constraint is

∑Mt−1
k=Mt−M C(Mt, k)C(Rb −

1,Mt − 1 − k). As in the nonaugmented case, we can design
a smaller codebook C′

b to have a smaller feedback rate. There
is no need to feedback the information of the actual precoder
F used. The information is embedded in the augmented b′. For
i = 0, 1, . . . ,Mt − 1, the transmitter removes the ith column
from F′ if b′i = 0. The transmitter can then use the resulting
Mt × M0 submatrix as the precoder, where M0 is the number
of nonzero entries in b′. The simulations given in Section V will
demonstrate that, when M < Mt, the system with augmented
precoding outperforms that with a fixed precoder for the same
number of feedback bits. Furthermore, the use of augmented
precoding leads to full diversity order, as shown next.

Diversity Gain: In the following, we show that, with aug-
mented precoding, the BA system can achieve diversity order
MrMt for a system with Mr receive antennas and Mt transmit
antennas if the codebook is properly chosen and has at least

Mt codewords. Assume that the BA codebook C′
b contains

the subset of codewords A = {Rbe0, Rbe1, . . . , RbeMt−1},
where ei are standard vectors of size Mt × 1, i.e., [ei]i =
1 and [ei]j = 0 for j �= i. As A is a subset of C′

b,
we have minb′∈C′

b
BER(b′,H) ≤ minb′∈A BER(b′,H). The

BER averaged over the channel is thus bounded above by
E[minb′∈A BER(b′,H)]. When the BA is chosen from A, all
the Rb bits are allocated to the same symbol, and this becomes
a beamforming system, in which the best beamforming vector
is chosen among the columns of F′ to maximize the received
SNR. In other words, the equivalent codebook of beamforming
vectors is Cf = {f ′0, f ′1, . . . , f ′Mt−1}, where f ′i is the ith column
of F′. From [27], we know that such a beamforming system has
diversity order equal to MrMt if F′ has a rank equal to Mt.
Therefore, the BA system has diversity order MrMt as well
when the codebook contains subset A.

Note on Low SNR Case: In some applications, it is desirable
to maintain the quality of service, even in the low-SNR case.
One possible way to do this in the BA system is to design
the codebook to contain two subcodebooks, one with a higher
transmission rate than the other. When the BER goes above
a certain threshold using the high-rate subcodebook, we can
switch to the low-rate subcodebook. The size of the low-rate
subcodebook can be smaller as the transmission rate is lower. In
this case, quality of service can be incorporated at the expense
of a somewhat higher feedback rate.

V. SIMULATION EXAMPLES

In the following examples, the channel is of the form H =
HwR1/2

t as in (1). The exponential correlation model [35] is
used to generate the random channel. The elements of Her-
mitian matrix Rt are given by [Rt]mn = γn−m, for n ≥ m,
where γ is the correlation coefficient between neighboring
antennas. When γ = 0, the channel becomes uncorrelated, and
the entries of the channel matrix are independent and identically
distributed (i.i.d) Gaussian random variables. The error rates
are computed using (5) for both linear and decision feedback
receivers. We have used 105 channel realizations in the training
of the BA codebook and 106 channel realizations in the Monte
Carlo simulations of BER performance.

Example 1—Distribution of BA Vectors: In this example, we
compute the empirical distribution of BA vectors for Mr = 5
and Mt = 4. The number of bits transmitted per channel use
is Rb = 12, and the number of substreams that the transmitter
and receiver can process is M = 4. The channel is i.i.d, and the
corresponding optimal precoder is Λf . The receiver is linear.
The number of possible integer BA vectors is 455. We include
in the codebook all 455 vectors. For a given channel realization,
the best BA in the codebook is chosen using the BER criterion.
Fig. 3 shows the cumulative distribution function of the BA
vectors, where the indexes of the vectors are ordered so that the
probabilities are in decreasing order. We can see that some BA
vectors are far more probable than others. The probability of
the 52 most probable BA vectors is more than 99%. The distri-
bution of the BA vectors is highly skewed rather than uniform.
A properly designed codebook will allow more efficient use of
the available feedback bits, which will be demonstrated later.
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Fig. 3. Cumulative distribution function of the BA vectors, where the indexes
of the vectors are ordered, so that the probabilities are in nonincreasing order
for Mr = 5, Mt = 4, M = 4, and Rb = 12.

Example 2—BER of the BA System: In this example, Mr =
5, Mt = 4, M = 4, and Rb = 12, as in the previous example. In
this case, the number of all possible integer BAs is 455, which
requires 9 bits of feedback. We can design the BA codebook
with fewer bits using the generalized Lloyd algorithm described
in Section IV. Fig. 4(a) shows the BER of the BA system
over an uncorrelated channel for different numbers of feedback
bits. The codewords are selected to minimize the BER. The
performance is shown for both linear and decision feedback
receivers for different numbers of feedback bits. We can see
that, with B = 4, the performance comes close to that of B =
9, in which case all the integer BA codewords are used. The
gain of the decision feedback receiver over the linear receiver is
around 3 dB. Fig. 4(b) shows the BER of the BA system when
the channel is correlated with correlation coefficient γ = 0.5.
The gain of the decision feedback receiver over the linear
receiver is similar to that in Fig. 4(a).

Example 3—BER for Different Precoders: In this example,
Mr = 3, Mt = 4, M = 3, Rb = 12, the number of feedback
bits B = 3, and a decision feedback receiver is used. The BER
plots are given for two types of Mt × Mt augmented precoders:
1) F′

1 = UtΛ′
f ; and 2) F′

2 = Λf . Fig. 5(a) shows the BER
for the case when the channel is correlated with γ = 0.2. The
plots for γ = 0.7 are given in Fig. 5(b). We can see that F′

1

enjoys smaller transmission power for the same error rate. We
have also shown the BER when augmented precoding is not
applied. In each of the two nonaugmented cases, the fixed
Mt × M precoder is obtained by keeping the first M columns
of the augmented precoder, i.e., F1 = Ut,MΛf and F1 =
[ IM 0 ]T Λf , respectively. The use of augmented precoding
reduces the transmission power by around 3 dB at BER =
10−4. Note that, for B = 3, both Fig. 5(a) and (b) demonstrate
that F1 is better than F2, although the later was shown in
[16] to be a transmission power minimizing precoder. This is
because the result in [16] is obtained under the assumption of
optimal BA. When the feedback rate is small and there are
only a few BA codewords in the codebook, F1 usually gives
better performance for a correlated channel. The reason is that
the equivalent channel seen by the inputs of the transmitter is

Fig. 4. BER performance of the BA system for Mr = 5, Mt = 4, M = 4,
and Rb = 12 over (a) an uncorrelated channel and (b) a correlated channel with
correlation coefficient γ = 0.5.

HF1 = HwUtΛ
1/2
t [ IM 0 ]T Λf . As Ut is unitary, HwUt

has the same distribution as Hw [36]. Thus, HF1 has the
same distribution as HwΛ1/2

t [ IM 0 ]T Λf . That is, the inputs
of the transmitter are first scaled and then passed through an
uncorrelated channel Hw. Therefore, the distribution of BA
vectors (like the one shown in Example 1) for F1 is more
skewed. As a result, when BA is quantized, the precoder F1

will give better performance.
Example 4—Codeword Selection Criterion: In this example,

we use Mr = 5, Mt = 4, M = 4, Rb = 12, and the receiver
is linear. We compare the results using the BER criterion and
the maximin criterion. In the first case, the codeword that has
the minimum BER is chosen. In the second case, a suboptimal
codeword is chosen by quantizing the optimal BA vector using
the maximin criterion described in Section IV. The results for
B = 9 are shown in Fig. 6(a) for an uncorrelated channel and in
Fig. 6(b) for a correlated channel with γ = 0.6. In both cases,
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Fig. 5. BER performance with different precoders for Mr = 3, Mt = 4,
M = 3, and Rb = 12 over correlated channels. (a) γ = 0.2. (b) γ = 0.7.

Fig. 6. BERs of the BA system for Mr = 5, Mt = 4, M = 4, and Rb = 12
using the optimal BER criterion and suboptimal maximin criterion.

Fig. 7. Comparisons of BER for (a) an uncorrelated channel and (b) a
correlated channel with a correlation coefficient of 0.5.

the BER using the suboptimal maximin criterion is close to that
using the minimum BER criterion.

Example 5—Comparison for Mr = 5, Mt = 4, M = 4, and
Rb = 12: In this example, we will compare the BA system
with the precoding system [3], in which the feedback is the
index of the optimal precoder in the codebook and bits are
uniformly loaded on all M symbols transmitted. In addi-
tion, we will compare with the QR-based system with BA
(VBLASTba) [16] and the VBLAST system with feedback of
ordering (VBLASTordering) [13]. The VBLASTordering system
in [13] feedbacks detection ordering for a fixed BA, and this
is equivalent to having a codebook of all permutations of a
single BA vector. With Mt = M = 4, the required number of
feedback bits is log2(4!) ≈ 5 [13]. The number of feedback
bits is made as close to 5 as possible for other systems.
For VBLASTba, the original codebook containing all integer
vectors satisfying the sum rate constraint is trimmed by setting
bi ≥ 2 as in [16], which results in a codebook of 35 codewords.
For the precoder and BA systems, the codebook size is 32.
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The results are shown in Fig. 7(a) for an uncorrelated channel
and in Fig. 7(b) for a correlated channel with γ = 0.5. The
performance of the BA system with a linear receiver is much
better than that of the precoder system [3] and is comparable
to that of VBLASTordering with a decision feedback receiver.
The VBLASTba system has BER similar to the BA system with
a decision feedback receiver in low SNR. For higher SNR, the
BER of VBLASTba is dominated by the worst subchannels. We
can see that the BA system achieves a good performance due to
the flexibility in codebook design.

VI. CONCLUSION

In this paper, we have considered the combination of sta-
tistical precoding and feedback of BA for correlated MIMO
channels. We have derived the optimal statistical precoder that
minimizes bounds of average BER for a correlated MIMO
channel with feedback of BA. Due to statistical precoding, the
distribution of BA is highly skewed, which allows the BA to be
efficiently quantized using VQ. Furthermore, when the number
of transmit antenna is larger than the number of symbols trans-
mitted, augmented precoding has been shown to achieve full
diversity and significantly improve the performance. The use
of augmented precoding does not require additional feedback.
Simulations have demonstrated that the proposed BA system
achieves a good tradeoff between performance and feedback
rate.

APPENDIX A
PROOF OF LEMMA 1

The Hessian matrix in (13) can be rewritten as

Hess = 1/M2f ′ (h(y)) h(y)
[
0.5 (1/h(y) − 1)uuT − MD

]
where u is M × 1 with the ith element ui = 1/yi, and D is a
diagonal matrix with [D]ii = 1/y2

i . We examine the quadratic
form vT Hv for an arbitrary M × 1 vector v. It can be re-
arranged as

vT Hv =
1

M2
f ′ (h(y)) h(y)

×
[
(vT uuT v − MvT Dv) + 0.5 (1/h(y) − 3)vT uuT v

]
.

The first term in the bracket vT uuT v − MvT Dv is equal to
(
∑M−1

k=0 vkuk)2 − M
∑M−1

k=0 v2
ku2

k, which is always nonposi-
tive due to Cauchy-Schwartz inequality. The second term in
the bracket 0.5(1/h(y) − 3)vT uuT v, is nonpositive if h(y) ≥
1/3. Therefore, we can conclude that, when h(y) ≥ 1/3, the
Hessian matrix is negative semidefinite, and thus, f(h(y)) is
concave.

APPENDIX B
PROOF OF LEMMA 2

Majorization theorem [32] will be used to prove the theorem.
For completeness, some related definitions are given here. 1)
Given a sequence a0, a1, . . . , aM−1, notation a[k] refers to
the permuted sequence such that a[0] ≥ a[1] ≥ · · · ≥ a[M−1].

2) Given two real vectors a = [a0 a1 · · · aM−1]T and
b = [b0 b1 · · · bM−1]T , we say that a majorizes b if the
following two conditions are satisfied:

∑M−1
k=0 ak =

∑M−1
k=0 bk

and
∑n

k=0 a[k] ≥
∑n

k=0 b[k], 0 ≤ n ≤ M − 2. 3) Let g(y) be
a real-valued function of a real vector y. We say that g(y) is
Schur-concave if g(a) ≤ g(b) whenever a majorizes b.

The function g(x) =
∏M−1

i=0 xi, for xi > 0, is known to
be Schur concave [32]. As σ2

ei
are the diagonal elements of

Re, the sequence {σ2
ei
}M−1

i=0 is majorized by {λi(Re)}M−1
i=0 ,

where we have used λi(A) to denote the ith largest eigenvalue

of A. Thus,
∏M−1

i=0 σ2
ei

≥
∏M−1

i=0 λi(Re) = 1/det(R
−1
e ), and

the equality holds when Re is a diagonal matrix. Note that
R

−1
e = ((Mr − M)/N0)F†RtF. Let the singular value de-

composition of F be UfΣfV
†
f , where Uf is Mt × M with

U†
fUf = IM , Vf is M × M unitary, and Σf is a diago-

nal matrix. Then, det(F†RtF) = det(Σ2
f ) det(U†

fRtUf ). As
Uf has orthonormal columns, we can apply the Poincare
separation theorem [31] to bound det(U†

fRtUf ) using
the eigenvalues of Rt. Poincare separation theorem says
λi(B) ≥ λi(C†BC), i = 0, 1, . . . , r − 1, for any n × n Her-
mitian matrix B and any n × r matrix C with orthonor-
mal columns. Using this theorem, we have det(U†

fRtUf ) ≤∏M−1
i=0 λi(Rt). On the other hand det(Σ2

f ) =
∏M−1

i=0 [Σ2
f ]ii ≤

(trace(Σ2
f/M))M = (trace(F†F/M))M = (Pt/M)M . Thus,

det(F†RtF) ≤ (Pt/M)M
∏M−1

i=0 λi(Rt). Equality holds if
Uf = Ut,M and the diagonal elements of Σf are identical. It
follows that

M−1∏
i=0

σ2
ei

≥
M−1∏
i=0

λi(Re) ≥
M−1∏
i=0

N0

Mr − M

1
Pt/M

1
λi(Rt)

.

The first inequality can be satisfied by choosing Vf = IM .
Therefore, the lower bound of the above equation can be
achieved by choosing F =

√
Pt/MUt,M . Using the aforemen-

tioned inequality and the monotone increasing property of f(·),
we arrive at the result of the theorem.
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