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On the Duality of MIMO Transceiver Designs
With Bit Allocation

Chien-Chang Li and Yuan-Pei Lin, Senior Member, IEEE

Abstract—Bit rate and power are two commonly used optimality
criteria for MIMO transceiver design. In the literature, bit rate
maximization and powerminimization problems are viewed as dif-
ferent problems and solved independently. In this paper, we derive
the duality between these two problems for both the cases with and
without integer constraint on bit allocation. We will show that if a
transceiver is optimal for the power-minimizing problem, it is also
optimal for the rate maximizing problem, and the converse is true.
Such a duality has not been stated and proved in the literature to
the best of our knowledge. The derivation does not involve any ex-
isting optimal solution and we can establish duality result even for
the rate maximization problem with integer bit constraint, which
the optimal solution is not known. The duality also allows us to
develop an algorithm for finding the rate-maximizing transceiver
with integer bit allocation using the solution of power-minimizing
system. We will also consider some possible generalizations of the
problem, for example, when there is a constraint on the maximal
constellation size and when the subchannel bit error rates (BERs)
are constrained. For each of these cases, we will see that the duality
between the two problems continued to hold. In the simulations,
we will compute the optimal solutions for these two problems and
demonstrate the duality between these two.

Index Terms—Communication systems, MIMO systems, re-
ceivers, transceivers, transmitters.

I. INTRODUCTION

M ULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO)
channels arise in applications such as wireless commu-

nication systems that use multiple antennas and also telephone
cables that consist of many twisted wire pairs. The informa-
tion capacity for MIMO transmissions was analyzed in [1]
and [2]. In the literature, many criteria have been considered
for designing MIMO transceivers, e.g., [3]–[25]. Transceiver
design that minimizes mean-squared error (MMSE) is con-
sidered in [3]. Optimal transceiver that maximizes mutual
information is proposed in [4] and [5]. Optimal transceivers
for two design criteria: maximum signal-to-noise ratio (SNR)
under zero-forcing (ZF) constraint and MMSE, are developed
in [6]. The optimal ZF transceiver that minimizes the bit error
rate (BER) is derived in [7]. A minimum-BER design with a
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channel independent transmitter is considered in [8]. MMSE
criterion and minimum error rate criterion for a given power
constraint are proposed in [9]. To incorporate quality of service
criterion in the design, a weighted MMSE criterion subject to a
transmit power constraint is proposed in [10].
In the context of transceiver design, there have been many

studies on power minimization [11]–[18] and rate maximiza-
tion [19]–[25]. ZF solutions with the aim of minimizing the total
transmit power for a given BER are developed in [11]. Bit allo-
cation is incorporated in the design of ZF transceiver for mini-
mizing transmit power with quality of service constraint in [12]
and [13]. Optimal ZF transceiver with bit allocation for min-
imizing transmit power for a target bit rate was considered in
[14] and [15]. In [16], the transmit power is minimized with
different quality of service requirements using the MMSE cri-
terion. Optimal transceiver that minimizes transmit power with
a global quality of service constraint is proposed in [17]. A two
step transmitter design for minimizing the total transmit power
for a target bit rate and BER constraint is proposed in [18]. ZF
transceiver design with bit allocation for maximizing bit rate
is proposed in [19] and [20]. An unified framework for de-
signing MMSE MIMO systems with a power constraint is pro-
posed in [21]. A number of useful objective functions can be
considered in this framework, for example, the optimal MMSE
transceivers that maximize the bit rate and mutual information.
Based on the results in [21], the transceiver design with bit al-
location for maximizing bit rate is proposed in [22]. Designs of
discrete multitone transceivers for maximizing bit rates or mini-
mizing transmit power are proposed in [23]. Transceiver designs
for a number of design criteria are proposed in [24] and [25].
For example, power-minimizing transceiver, rate-maximizing
transceiver, and BER-minimizing transceiver for a given con-
stellation can be obtained. In the earlier works that considered
bit allocation [3]–[25], the transceiver are either designed for a
given bit allocation or designed with real-valued bit allocation.
For the power minimization problem with integer bit allocation,
an exhaustive search has been proposed in [22] to find the op-
timal solution. The problem of jointly designing transceiver and
integer bit allocation for maximizing bit rate is still open.
Designs of integer bit allocation have been considered in

[26]–[33] for a given ZF transceiver. It is shown in [26] that
a greedy algorithm can be used to find the optimal integer bit
allocation for maximizing a concave function. The greedy al-
gorithm is used in [27] to solve the power-minimizing problem
and rate-maximizing problem when a ZF multicarrier trans-
ceiver is given. Algorithms for allocating integer bits in discrete
multitone systems to minimize transmit power is proposed in
[28] and [29]. In [30], an optimal integer bit loading algorithm
is presented for minimizing BER in multicarrier system. A bit
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loading algorithm for satisfying the quality of service constraint
is proposed in [31]. In [32], an efficient bit loading algorithm is
proposed to minimize an arbitrary convex objective function.
An integer bit allocation is proposed in [33] to maximize the
transmission bit rate in the presence of intercarrier interference.
The algorithms in [26]–[33] can be used to find integer bit
allocation if the transceiver is given and only bit allocation is
to be determined. They cannot be applied if the transceiver is
to be designed together with integer bit allocation.
In this paper, we consider the duality between the problem

of maximizing bit rate with bit allocation and the problem of
minimizing power with bit allocation. These two problems have
been treated as different problems in the literature and they have
been addressed independently, power minimization problem in
[11]–[17] and rate maximization in [19]–[22]. We will show
that these two are actually dual problems. In particular, the op-
timal solution obtained in either one problem is also optimal for
the other. We will consider both cases when there is no integer
constraint on bit allocation and when there is an integer con-
straint. The latter turns out to be a nontrivial generalization of
the former and separate proofs are needed. The duality will be
derived without using any existing optimal solution of power
minimizing or rate maximizing transceiver. As a result, the du-
ality can be obtained even for the rate maximizing problem with
integer bit allocation, which the optimal solution has not been
solved yet in the literature. Furthermore, the duality result can
be applied to develop an algorithm to find the optimal solution
of the rate maximization problem with integer bit constraint
using the solution of the power-minimizing problem. We will
also consider four possible generalizations: 1) the case symbol
error rate constraints are different for all the subchannels; 2) the
case with an additional constraint on the maximal constellation
size; 3) the case when the subchannel BER are constrained, and
4) the case when the averaged BER is constrained. For each
of these generalizations, we can also establish the duality be-
tween the power minimization and rate maximization problems.
The duality between the two problems will also be demonstrated
through simulation examples.
The rest of the paper is organized as follows. In Section II,

we will introduce the MIMO system model with bit allocation.
In Section III, we will formulate the power-minimizing and rate
maximizing problems and derive the duality for these two prob-
lems when there is no integer constraint on bit allocation. In
Section IV, wewill consider the duality between these two prob-
lems when integer bit constraint is imposed. Duality for gen-
eralizations of these two problems are discussed in Section V.
In Section VI, we will present algorithms for finding the so-
lutions of the two transceiver design problems with integer bit
allocation. In Section VII, we will demonstrate the results by
simulations.

II. SYSTEM MODEL

A generic MIMO communication system is shown in Fig. 1.
The MIMO channel is modeled by a memoryless matrix
. The channel noise is additive white Gaussian noise

with variance . The transmitter matrix is of size
with . The receiver matrix is of size .
The input of the transmitter is , an vector of modulation

Fig. 1. MIMO communication system.

symbols. The symbols are assumed to be zero mean and unit
variance, i.e., and for .
The autocorrelation matrix of is assumed to be ,
where denotes the transpose conjugate and the notation is
used to represent the identity matrix. Hence the total
transmit power is

(1)

where is the transmitter output indicated in Fig. 1 and the
notation denotes the th element of matrix . The
output of the receiver is given by

(2)

The error vector is defined as

(3)

The MMSE and ZF receiver are given, respectively, by [25]

.
(4)

The mean-squared error (MSE) matrix is given by
[24], [25]

.
(5)

The th subchannel error variance .
For QAM modulation, the symbol error rate of the th

subchannel is well approximated by [37]

(6)

where is the number of bits loaded on the th subchannel,
and is the signal to interference-plus-noise ratio (SINR) [24],
[34]. For the MMSE receiver and for the ZF
receiver . The function is the area under a
Gaussian tail, i.e., . The total
number of bits that can be transmitted in one block is

. In this paper, the derivation is given for the MMSE
case. The results for the ZF case can be obtained in a similar
way.

III. POWER-MINIMIZING AND RATE-MAXIMIZING PROBLEMS
WITH NON-INTEGER BIT ALLOCATION

In this section, we consider the power-minimizing and rate-
maximizing problems when bit allocation is not integer con-
strained. The optimal solutions of both problems are available
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in the literature [11]–[25], and the solutions look similar. How-
ever, it is not obvious that they are the identical. We will estab-
lish the connection between these two and show that they are ac-
tually dual problems. The results are derived without using the
existing optimal solutions. For a given symbol error rate con-
straint and target bit rate , the power-minimizing problem
A with real bit allocation can be formulated as [11]–[17]

A
minimize

subject to
(7)

where is the symbol error rate of the th subchannel and
is the set of nonnegative real numbers. Given a symbol error
rate constraint and power constraint , the rate-maximizing
problemA with real bit allocation is [19]–[22]

A
maximize

subject to
(8)

In either problem, we need to design the transmit matrix and
bit allocation jointly to maximize bit rate or minimize
power. The following lemmas will be useful for subsequent dis-
cussion.
Lemma 1: Given a channel matrix , consider a system with

a fixed target error rate, i.e., for all . Suppose the trans-
mitter of the system is equal to , where is some
matrix such that and is a positive real number. Then
the transmit power and the achievable bit rate of the system are
continuous and strictly increasing functions of .

Proof: See Appendix A.
Lemma 1 implies that if we increase the transmit power by

choosing , the bit rate will always be increased. Next we
will show that if we decrease the transmit power for some th
subchannel and keep the others unchanged, the error variance of
the th subchannel will be increased while the error variances
of the other subchannels will be decreased.
Lemma 2: For the MIMO transceiver in Fig. 1, suppose the

channel matrix is given and the transmitter of the system
is replaced by , where is an matrix and is a
diagonal matrix. The diagonal elements of are given by

(9)

for some , where is a positive real number. Then for ,
the error variances are increasing and continuous functions
of . For the error variances is a decreasing and
continuous function of .

Proof: See Appendix B.
In the following lemma, we will show that inequalities in

the power-minimizing problem (7) and the rate-maximizing
problem (8) become equalities when optimal designs are used.
Lemma 3: If is optimal for the power-minimizing

problem A in (7), the transmission bit rate is equal to
the target bit rate and all the error rate are equal to .
Similarly, for the rate-maximizing problem A in (8), the

transmit power of the optimal solution is equal to and all
the error rates are equal to .

Proof: See Appendix C.
Combining Lemma 1 and Lemma 3, we can show that, for

the problemA the maximal bit rate is a strictly increasing
function of the power constraint. That is,
whenever , where denotes the maximal bit rate
forA when the power constraint is . To see this, let
. It follows that . So we only need to show

that . Suppose for
. By Lemma 3, the transmit power of the optimal solution

that achieves is equal to . Using Lemma 1, we can
always find a new system that achieves bit rate
using power , which contracts the definition of .
This completes the proof.
Remarks:
1) Based on (6), given the symbol error rate and , the
number of bits that can be loaded on the th subchannel is
well approximated by [38]

(10)

where is the so-called SNR gap. If the symbol
error rate is approximated in (6), then the resulting gap is

. Another possible approximation of
symbol error rate is [37] ,
where denotes the exponential function of . In
this case, . In general, the bit
allocation obtained in (10) is not integer.

2) Lemma 3 shows that all the inequalities in constraints of
A and A become equalities when the solutions
are optimal. This means that when the optimal transmitter
is given forA or A , the bit allocation can be

obtained directly by substituting in (10). Therefore,
we only need to design directly but not bit allocation in
these two problems.

3) When the error rate is constrained to be equal to for all
subchannels, it has been shown that equality in the power
and bit rate constraints will hold [17], [22], [25] using
majorization theorem [41] and optimization theorem [42].
Lemma 3 is more general in that we have considered in-
equality constraint on the error rate in addition to power
and bit rate constraints.

The results in Lemma 1 and Lemma 3 allow us to establish the
duality betweenA andA in Theorem 1 and Theorem
2.
Theorem 1: Given a target transmission rate and symbol

error rate constraint , suppose the transmitter is an optimal
solution forA , and the minimized power is . Now, given
transmit power constraint and symbol error rate con-
straint , the same alsomaximizes the bit rate for the problem
inA . Furthermore, the maximized rate in this case is equal
to .

Proof: As is optimal forA , the minimized transmit
power is . By Lemma 3, the total bit
rate is equal to the target rate and all the symbol error rates
are equal to . Now, let us consider the problem inA with

power constraint and error rate constraint . Suppose
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is optimal forA . By Lemma 3, the transmit power used
in this case is equal to and symbol error rates are equal to .
Since we already know can achieve bit rate with transmit
power , the maximal bit rate achieved in A must be
larger than or equal to , i.e., . If , we get
the desired result that is also optimal for A . Suppose

, i.e., more than bits can be transmitted when
is given. Consider a new transceiver with transmitter ,
where . By Lemma 1 we know the bit rate of such a
system is a strictly increasing function of and is continuous on
. So we can always find such that . Since
, the required power is smaller than . This is a contradiction
to the assumption that is the minimal transmit power when

is given in the power-minimizing problem. Therefore, the
maximal bit rate is . Since can achieve bit rate with
power , it is an optimal solution forA .
Theorem 2: Given a transmit power constraint and symbol

error rate constraint , suppose the transmitter is an optimal
solution for the rate-maximizing problemA , and the maxi-
mized rate is . Then the same also minimizes the transmit
power for the problemA when the target bit rate is equal
to and symbol error rate constraint is . Furthermore, the
minimized power in this case is equal to .

Proof: As is optimal for the problemA , by Lemma
3, the transmit power used in this case is equal to the constraint
and the error rate is for . Consider

the problemA with target bit rate and error rate
constraint . Suppose is an optimal solution for A and
the minimized power is . By Lemma 3, the transmitted bit rate
is equal to the target and all the error rates are . Also the
minimal power inA must be smaller than or equal to
since we already know can achieve bit rate with transmit
power , i.e., . If the minimized transmit power is
equal to , we get the desired result that is also optimal
forA . Suppose , i.e., transmit power smaller than
can be achieved when target rate is . Consider a new

system with transmitter , where
. Then the transmit power of the new system is .
Using Lemma 1 we know the bit rate of the new system will
be larger than for the same error rate constraint . This is a
contradiction to the assumption that is the maximal bit rate
for A when is the constraint. Therefore, the minimal
power is equal to and is an optimal solution forA .

Theorems 1 and 2 together show that if a transceiver is op-
timal in the power-minimizing problem, it is also optimal in the
rate-maximizing problem, and vice versa. In the above discus-
sion, the bits assigned to the subchannels are not constrained to
be integers. Such a duality also exists for the case when bit al-
location is constrained to be integer. However, there are some
subtle differences as we will see in the next section.

IV. TRANSCEIVER DESIGN WITH INTEGER BIT ALLOCATION

In this section, we consider the power-minimizing problem
and rate-maximizing problem with integer bit allocation. With

the constraint of integer bit allocation, the power-minimizing
problem becomes

A
minimize

subject to
(11)

where denotes the set of nonnegative integers. The rate-
maximizing problem with integer bit allocation is formulated
as

A
maximize

subject to
(12)

The following lemma shows that for the power-minimizing
problem with integer bit constraint, the inequalities in the
bit rate constraint and error rate constraint become equalities
when the solution is optimal. This is similar to the case of
power minimization problem without integer constraint. Such a
property does not hold for the rate maximization problem with
integer constraint as we will see later.
Lemma 4: For the power-minimizing problem A in

(11), the bit rate of the optimal solution is equal to and the
symbol error rates for all .

Proof: See Appendix D.
Lemma 4 leads to the following result that states that if a

solution is optimal forA , it is also optimal forA .
Theorem 3: Consider the power-minimizing problem
A with a target transmission rate and symbol error
rate constraint . Suppose is optimal for A ,
and in this case the minimized power is . Now for the
problem A with transmit power constraint
and error rate constraint , the same also maximizes
the transmission rate and the maximized rate is equal to .

Proof: As is optimal for the problemA ,
by Lemma 4 the bit rate is and all
the symbol error rates satisfy . Now, let us consider the
problem A with power constraint and error
rate constraint . Suppose is optimal for the problem
A and the maximal bit rate is . All the
corresponding error rates satisfy and the transmit
power satisfies the power constraint, i.e., . Since we
already know the solution ofA can achieve bit rate
with power , the maximal bit rate in A must be
larger than or equal to , i.e., . We will prove the
theorem by showing: (i) the transmit power is equal exactly
to ; and (ii) the maximized rate is in fact equal to .
(i) : Suppose . This means and

can achieve a smaller transmit power and still satisfy all the
constraints in A . This contradicts the assumption that
and are optimal forA . So we have .
(ii) : If , we get the desired result that

is optimal for A . Suppose . Using
a procedure similar to that in Lemma 4, we can find another
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system that achieves bit rate , with transmit
power , and error rate . This contradicts the
assumption that is optimal for A . There-
fore, we conclude that the maximized bit rate for the problem
A is and the power used is . Therefore, the
solution ofA is also optimal for the problem
A .
When the symbol error rate constraint is fixed, the maximal

rate forA is a function of the power constraint . Simi-
larly, for a fixed , the minimal power ofA is a function
of target rate . For convenience, we use to denote
the minimal transmit power for A when the target bit
rate is given and to denote as the maximal bit rate for
A when the power constraint is .
The Functions and : Using theorem 3, we

will see that is not continuous. It is a staircase-like func-
tion as shown in Fig. 2(a). This means a nonzero increase in
the power constraint does not necessarily implies a nonzero in-
crease in the maximized bit rate. This is different from the case
without integer constraint in Section III. To explain this, con-
sider the problem A with two target bit rates and

. Let and . We can
plot the minimal transmit power as a function of target bit rate
as in Fig. 2(b). By Theorem 3, we know and

. Now suppose the power constraint for
A is such that . Then the maximal bit
rate for A is equal to as we will see next.
Since we already know that the maximal bit rate is when
the power constraint is , we have . Suppose

. This contradicts the fact that is the minimal
power for A when the target bit rate is . Hence
we have . This implies that for any power con-
straint that satisfies , the maximal bit rate is

. When the power constraint , the max-
imal bit rate is increased to . Therefore, is the
staircase-like function in Fig. 2(a).
From the plot of in Fig. 2(a) we can see that for
A there can be many solutions that achieve the same
maximal bit rate, but with transmit power smaller than .
Hence for the problem A , the result in Lemma 3 is not
true any more and the results of the real bit allocation case do
not carry over to the integer bit allocation case. To establish the
duality with A , we will consider the solution with the
smallest transmit power among all possible solutions. Using
the technique in the proof of Lemma 3, we can show that when
the solution of A with the smallest transmit power is
used, the actual symbol error rate is equal exactly to .
Theorem 4: Consider the problem A with power

constraint and symbol error rate constraint . Suppose
is the solution that has the smallest transmit power

among all possible solutions. Let the maximized rate be
. Given target rate and error rate constraint for

the problem A , the same solution also minimizes the
transmit power and the minimal power is .

Proof: As is optimal for A , the maxi-
mized rate is . The transmit power is

Fig. 2. (a)Maximal bit rate as a function of power constraint forA .

(b) Minimal transmit power as a function of target bit rate forA .

and all the error rates satisfy . Consider the power min-
imizing problem A with target bit rate and
the same error rate constraint . Suppose is optimal
forA and the minimized power is . By Lemma 4, the
bit rate is equal to the target bit rate . Since we
already know can achieve bit rate with transmit
power , the minimal power must be smaller than or equal
to , i.e., . If is equal to , we get the desired result
that is an optimal solution forA . Assume
is smaller, i.e., . This means can achieve bit
rate with a smaller power . It contradicts the assumption
that is the optimal solution for the problemA
that has the smallest transmit power. Hence we have
and the solution is optimal forA .
Theorem 3 shows that the optimal solution obtained in the

power-minimizing problem is also an optimal solution in the
rate-maximizing problem. Theorem 4 shows that the solu-
tion with the smallest transmit power in the rate-maximizing
problem is also optimal in the power-minimizing problem.
Remark on ZF Receiver: The derivations in Sections III and

IV are given for the MMSE receiver. It can be shown that the
duality between the power minimization and rate maximization
problems also hold for the ZF case. For the MMSE case, we
have used the results in Lemmas 1, 3, and 4 to prove the main re-
sults in Theorems 1–4. Lemma 2 is used in the proof of Lemmas
3 and 4. For the ZF case, if we decrease the transmit power for
some subchannel, the error variance of the subchannel
will be increased and the error variances of the other subchan-
nels will be unchanged. Thus for the ZF case, Lemma 2 is no
needed. Using the methods of MMSE case, we can prove the
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results in Lemmas 1, 3, 4, and also Theorems 1–4 for the ZF
case.

V. GENERALIZATIONS

The power minimization and rate maximization can be gen-
eralized in a number of ways. In this section we will discuss
four possible generalizations: (1) the case when the error rate
constraints of the subchannels are different; (2) the case when
there is a constraint on the maximal constellation size for each
subchannel; (3) the case when the subchannel BER constraint
is used; and (4) the case when the averaged BER is constrained.
For each case, we will see that the duality between the power
minimization and rate maximization problems can be estab-
lished with and without integer bit constraint.
Different Symbol Error Rate Constraints: In Sections 3 and

4, the error constraints of all the subchannels are the same. Sup-
pose the error rate constraints of the subchannels are different,
i.e., , where is the actual symbol error rate and is
the error rate constraint of the th subchannel. Using the tech-
niques in the proof of Lemma 3–4, we can show that the symbol
error rate of the optimal solution is equal to . Then it fol-
lows that the results in Theorem 1–4 continue to hold.
Constraint on the Constellation Size: Suppose there is a con-

straint on the maximal constellation size of each subchannel
(cap constraint), i.e., . is the maximal number
of bits that can be loaded. First, let us consider the power min-
imization problem A and the rate maximization problem
A (with real-valued bit allocation). Using the steps in the
proof of Lemma 3, it can be verified that the results in Lemma
3 still hold for A , but not for A . Because of the con-
straint , themaximal bit rate ofA must be smaller
than or equal to . Suppose the maximal bit rate is
when the power constraint is . Then the maximal bit rate
cannot be increased further even if we increase the power con-
straint. This means there could be many solutions that achieve
the same maximal bit rate, but with different transmit power.
For this reason, we will consider the solution forA with the
smallest transmit power. This is similar to the rate maximization
problem with integer bit allocation discussed in Section IV. Fol-
lowing the technique used in Section IV, we can show that the
solution of A is equivalent to the solution of A with
the smallest transmit power.
For the two problems with integer bit allocation, A

and A , we can also impose a cap constraint. Using the
steps in the proof of Lemma 4, we can show that the results in
Lemma 4 still hold for A . For A , we also con-
sider the solution with the smallest transmit power and hence
we can obtain the duality described in Theorem 3-4 when the
constellation size is constrained.
Subchannel Bit Error Rate Constraints: In Sections III and

4, the dualities are derived with symbol error rate constraint for
QAM symbols. More generally, it can be shown that Lemmas
1, 3, and 4, are still valid if the error rate is a decreasing and
continuous function of the so-called rate-normalized SNR

[35]. Let us consider the case when BERs of the
QAM symbols are constrained, i.e., for

. When and the BER is smaller than , it is
demonstrated in [36] that the BER is well approximated by

(13)

Since the BER function in (13) is a decreasing and continuous
function of the rate-normalized SNR, the results in Lemmas 1,
3, and 4 continue to hold. Then following the same techniques
in the proof of Theorem 1–4, we can reach the duality results
given in Theorem 1–4 when the BER constraint is used.
Averaged BER Constraint: In Sections III–IV and the above

discussions, error rate constraints are imposed on individual
subchannels. Now, let us consider the design with a constraint
on the maximal value of the averaged BER. The averaged bit
error constraint is given by

(14)

where is the maximal value of the averaged BER. Using
(13), we know is a decreasing and continuous function of
the rate-normalized SNR and hence the results in Lemma 1 are
valid. The results in Lemma 3–4 are valid if: (i) given bit allo-
cation is a decreasing and continuous function of

; and (ii) given , a nonzero decrease in for some
th subchannel implies a nonzero decrease in . Using

(13), we can see that satisfies these two conditions and
hence the results in Lemmas 3 and 4 continue to hold and the
same duality results in Theorem 1–4 can be obtained.

VI. OPTIMAL SOLUTION FOR TRANSCEIVER DESIGN
WITH BIT ALLOCATION

There have been many papers on the topics of power min-
imization [11]–[17] and bit rate maximization [19]–[25]. For
the power minimization problem with integer bit allocation, the
solution has been found in [22]. There is no solution yet for
the rate maximization problem with integer bit allocation. In
Section VI-A, we will review the solution ofA andA
(no integer constraint on bit allocation). In Section VI-B, we
will review the solution ofA and show how to find the
solution ofA by the solution ofA using the du-
ality derived in Section IV.

A. Review of the Optimal Solution forA andA [17],
[22], [24]

Let the singular value decomposition of the channel
matrix be

(15)

where is diagonal that contains the nonzero singular values
of . The elements of are in nonincreasing order. The
matrix and the matrix are unitary. For the power-
minimizing problemA with target bit rate and error rate
constraint , the solution is given by [17], [24]

(16)
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where contains the first columns of and is a diag-
onal matrix with diagonal element ,
where . The constant is chosen such that

.
The solution of rate-maximizing problemA with power

constraint and error rate constraint is given by [22], [24]

(17)

where is a diagonal matrix with diagonal element
. The constant is chosen

such that .
Note that the overall transfer function of the

optimal MMSE solutions of A and A is a diagonal
matrix that can be singular. Let be a diagonal matrix, where

for and for . Then
we have the ZF system if the receiver is given by .
It can be verified that the SNR of this ZF receiver is the same as
that of the optimal MMSE solution. Thus the bit rate achieved
by the ZF receiver is the same as that achieved by the
optimal MMSE receiver. Therefore, for eitherA orA
the optimal solution of the MMSE transceiver is the same as the
ZF transceiver.

B. Optimal Solution ofA andA

First, we will review the optimal solution forA .
Review of Optimal Solution for A [22]: Let us con-

sider the case whenMMSE receiver is used. The optimal power-
minimizing transceiver can be found using [16] if the optimal in-
teger bit allocation is given to us. However, we do not know op-
timal bit allocation beforehand. Nonetheless, for a given target
bit rate , there are only a finite number of possible integer bit
allocation. In particular, is such that and

(18)

Let be the number of such integer bit alloca-
tions . We can compute using [43], i.e.,

. For each integer
bit allocation that satisfies the condition in (18), the result
in [16] can be used to find the transceiver that minimizes the
transmit power. The optimal solution of A can be
obtained by choosing the integer bit allocation and transceiver
that have the minimal transmit power among all the possible
solutions. The optimal solution for A can be obtained
in no more than iterations [16]. The optimal
transmitter is of the form , where is an
unitary matrix. Note that the optimal solution ofA does
not have the diagonal structure as the case of real-valued bit
allocation in Section VI-A. Thus the solution for the MMSE
receiver is different from that for the ZF case.
Given any integer bit allocation, from [24] we know

that the optimal ZF transceiver for A has the
same form as in (16). In this case, the error variance is

. Substituting the expression

of into (10), we have , and
hence the transmit power becomes

(19)

To minimize the transmit power in (19), it is shown in [26] that
greedy algorithm can be used to find the optimal integer bit al-
location.
Optimal Solution for A : For the rate-maximizing

problem A with power constraint , if the maximal
rate is known, we can solve it using the solution of
A based on Theorem 3. We can find using
an iterative search. For example, starting from we
compute . If , we increase by
one and compute again until . Then

. To reduce the number of iterations we note
that , where is the maximal bit
rate of the rate maximization problem A without integer
bit constraint. As a result, , where the
notation denotes the largest integer that is less than or equal
to . Using this property and Theorem 3 we have the following
algorithm.
Algorithm for Finding the Solution ofA :
1) Initially, given the power constraint , compute the max-
imal bit rate forA . Then set .

2) Given the target bit rate , find the optimal bit alloca-
tion and transceiver for minimizing transmit power in
A . Compute the minimal power .

3) If , set and go to step 2. If
, then the maximal bit rate .

In this algorithm, the number of iterations is equal to
. This number is in fact less than as

we explain below. Suppose . Let
be the optimal real-valued bit allocation of A , i.e.,

. Then is also a valid integer bit al-
location that satisfies the error rate constraint. Since is real,
we have
. This implies , which con-

tradicts the definition of . Therefore we have
. Note the number is an

upper bound of the number of iterations. As the optimal solu-
tion for A is obtained using the solution of A ,
the optimal solution of the MMSE receiver is different from
that of the ZF receiver.

VII. SIMULATION

In the simulations, we will demonstrate the duality between
the power-minimizing problem and rate-maximizing problem.
In the following examples, the number of subchannels is 4.
The noise vector is assumed to be complex white Gaussian
with . The symbol error rate constraint is assumed
to be . In examples 1, we use a fixed 4 4 MIMO channel.
In examples 2–3, the results are averaged over random channels.
For the problems A and A , we use the solutions in
Section VI-A. ForA andA , we use the solutions
in Section VI-B.
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TABLE I
(A) MINIMAL POWER FORA WHEN

BITS. (B) MAXIMAL BIT RATE FOR A WHEN THE

POWER CONSTRAINT

Example 1. Duality Between A and A : In this ex-
ample, we will demonstrate the results in Theorem 1 and The-
orem 2. Consider a 4 4 channel that is given by

(20)
As we have discussed in Section VI-A, for both A and
A , the solution for the MMSE receiver is the same as that
for the ZF receiver. Given target bit rate , we use (16) to find
the optimal transceiver, and (1) to compute the corresponding
transmit power for the problem A . Table I(a)
shows the minimal transmit power when the target
bit rates are bits. Using the minimized
power in Table I(a) as power constraint, Table I(b) shows the
maximal bit rate for the rate maximizing problem A . The
rates are computed using II for the optimal transceiver in (17).
We can see that and the solution of the
power-minimizing problem is also optimal for the rate-maxi-
mizing problem as we have shown in Theorem 1.
Table II(a) shows the maximal bit rate for A

when the power constraints are dB.
Table II(b) shows the minimal power for the problem
A when the target bit rates are equal to the maximized
rate in Table II(a). We can see that and the
solution of rate-maximizing problem is also a solution of the
power-minimizing problem as we have shown in Theorem 2.
Example 2. Duality Between A and A : In this ex-

ample, we use random channels to demonstrate the connections
between power minimization and rate maximization problems.
The channel is of size 4 4 and the elements are complex
Gaussian random variables whose real and imaginary parts are
independent with zero mean and variance 1/2. The following
numerical results are generated by averaging the maximal bit
rate and minimal transmit power over channel realizations.
For each channel realization, we compute the optimal solutions
of A and A using (16) and (17) in Section VI-A.
Fig. 3 shows the averaged maximal transmission rates
of A as a function of power constraint. Fig. 4 shows

TABLE II
(A) MAXIMAL BIT RATE FORA WHEN DB.

(B) MINIMAL POWER FORA WHEN

Fig. 3. Averaged maximal bit rate forA as a function of power
constraint without integer constraint.

the averaged minimal transmit power of A as a
function of target bit rate. We can observe the duality between
that the power-minimizing and rate-maximizing problems from
Figs. 3 and 4. For example, the minimal power of A is 9
dB when the target bit rate is 5 bits. When we set the power
constraint in A to be 9 dB, the maximal bit rate is 5 bits.
On the other hand, the maximal bit rate ofA is 9 bits when
the power constraint is 15 dB. When we set the target bit rate
inA to be 9 bits, the minimal power is 15 dB.
Example 3. Minimal Power for A and Maximal Bit

Rate for A : We use the same random channel as in
example 2. In Table III, we compute the minimal transmit
power of A with MMSE and ZF receivers. When
the target bit rate is , the minimal transmit powers of the
MMSE case and the ZF case are denoted by and

, respectively. For comparison, we also show the

transmit power of A (without integer constraint).
The notation does not have a subscript (MMSE or ZF)
because the solutions forA using the MMSE receiver and
ZF receiver are the same. We can see that the gap between

and is small. Also, the difference
between and is smaller than 0.21 dB. In

Table IV, we compute the maximal bit rate ofA for the
MMSE and ZF receivers. The maximal bit rate for the MMSE
and ZF cases are denoted, respectively, by and
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TABLE III
TRANSMIT POWER OF A (WITHOUT INTEGER BIT ALLOCATION), A (ZF), AND

A (MMSE) WHEN THE TARGET BIT RATE IS BITS

TABLE IV
BIT RATE OF A (WITHOUT INTEGER BIT ALLOCATION), A (ZF), AND A (MMSE)

WHEN THE POWER CONSTRAINT IS DB

Fig. 4. Averaged minimal transmit power forA as a function of
target bit rate without integer constraint.

. Also shown in Table IV is the maximal bit rate

of A (without integer constraint). The notation
does not have a subscript because the solutions for

A using the MMSE receiver and ZF receiver are the same.
We can see that is close to . The
difference between and is smaller than
0.6 bits. This gap is less than 0.15 bits per symbol.
Example 4: In this example, we use the same random channel

as in example 2. Fig. 5 shows the symbol error rates versus
the transmit power. The results are averaged over channel
realizations. The transmission rate is equal to 8 bits. There
are two curves shown in Fig. 5. One is the case with real bit
allocation (Section VI-A) and another is the case when integer
bit constraint is considered (Section VI-B). For the case with
integer bit allocation, we have used the MMSE receiver. We can
see that the gap between these two curves is very small, which
means the use of integer bit allocation only leads to a minor
performance degradation.

Fig. 5. Symbol error rate versus the transmit power.

VIII. CONCLUSION

In this paper, we considered two commonly used transceiver
design criteria: power minimization criterion and rate maxi-
mization criterion. The duality between these two problems
was derived without using any existing solutions. As a result,
we can also establish the duality for the rate maximization
problem with integer bit allocation, which the optimal solution
has not been found yet. Using the duality, the optimal solution
of the rate maximization problem with integer bit constraint
can be found. We have also considered four possible general-
izations: 1) the symbol error rate constraints are different for
all the subchannels; 2) there is a constraint on the maximal
constellation size; 3) subchannel BER constraints are used; and
4) averaged BER constraint is used. For all the generalizations,
we have established the duality between these two problems.
In the simulations, the duality between these two problems has
been demonstrated.
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APPENDIX A
PROOF OF LEMMA 1

Consider the system with the transmitter , where
is some matrix such that . Suppose the error
rate is fixed to be for all the subchannels. The transmit power
is given by

(21)

So the transmit power is a continuous and strictly increasing
function of . Next we will show the achievable bit rate is also
a continuous and strictly increasing function in terms of . The
MSE matrix of the system is .
It follows that is a continuous function of and

so is . Using the expression of the symbol error

rate in (6), we can see is also a continuous function of .
Suppose . Let be the MSE matrix when is used
and be the MSE matrix when is used. Since and
are positive definite matrices and , then we have

[40]. As a result, the total bit rate achieved by is
larger than that achieved by . Hence the bit rate of the system
is a continuous and strictly increasing function of .

APPENDIX B
PROOF OF LEMMA 2

Given the channel matrix and the transmitter , theMSE
matrix becomes . The noise
variance is given by

(22)

The derivative of with respect to is

(23)

Define . For , we have

(24)

The derivative of with respect to is [39]

(25)

Using the definition of , we have

. . .
...

...
. . .

(26)

So we can obtain

(27)

where is the th column of . Using (24) and (27), for
we have

(28)

Thus we conclude that is an increasing function of for
. For , we have

(29)

Using chain rule and , we can obtain

(30)

(31)

Since , from [40] we know . Then

we have and thus . As a result, we can
conclude that is a decreasing function of .

APPENDIX C
PROOF OF LEMMA 3

Equalities Hold in the Power-Minimizing Problem: Suppose
is optimal forA and theminimized power is .

Let and be the symbol error rates and bit rate achieved
by the optimal solution. Then we have and .
First we show that for all . Suppose the error rate of
the th subchannel is . Consider a new system with the
same bit allocation , but transmitter is changed to

(32)

where is a diagonal matrix as defined in Lemma 2. is some
subchannel index and , to be chosen later. Using (1),
the new transmit power is

(33)

The bit rate of the new system is still as bit allocation is not
changed. Next we will show that there always exists
such that all the error rate constraints will be satisfied, i.e.

(34)
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where is the error variance for the th subchannel of the
new system. Using Lemma 2, when we have

(35)

which implies for . For , we
rearrange the inequality in (34), and the error rate constraint for
the th subchannel can be rewritten as

(36)

where

Choose , where is the error variance for the

th subchannel of the optimal solution. Since , we have
, which implies that . The noise variance is

given by

(37)

where . Since
, from [40] we have and hence .
Therefore, we have , which implies . With this

choice of , the new system can achieve a smaller
transmit power and still satisfy all the constraints in
A . This contradicts the assumption that is the minimal
power when is given. Hence we have that for all
. Next we prove that the bit rate is equal to . Suppose

. Consider a new system with transmitter ,
where is a scalar. For the target error rate , we know
from Lemma 1 that the bit rate of the new system is a strictly
increasing and continuous function of . So we can properly
choose such that the new bit rate . In this case,
the required power is smaller than . This contradicts the as-
sumption that is the minimal power when is given, so

.
Equalities Hold in the Rate-Maximizing Problem: Suppose

is optimal for A and the maximized bit rate is
. Let and be the transmit power and error rates of

the optimal solution. Then we have and . First
we show that for all . Suppose for the th subchannel,

. From (6), we know that the error rate is a continuous
and increasing function of the number of bits allocated when
is fixed. For the same , we can increase the number of bits
allocated to the th subchannel such that the new error rate
satisfies

(38)

The error rates of other subchannels are not affected while a
higher bit rate be achieved. This contradicts the assumption that

is the maximal bit rate when the power constraint is
given. Hence we have that for all . Now let us show

. Suppose . Consider the new system with

transmitter , where . The power
of the new system is . From Lemma 1, the bit rate of
the new system is a strictly increasing function of , and we
have . This contradicts the assumption that is the
maximal bit rate when the power constraint is given, so we
obtain the conclusion that .

APPENDIX D
PROOF OF LEMMA 4

Suppose is optimal for A . Let be the
error rate on the th subchannel of the optimal system. Then
is given by

(39)

where as the receiver is MMSE. The minimized
power is given by . The bit rate
is . Using the technique in the proof of Lemma
3, we can show that for all . But the technique does
not work for property and a different proof is needed.
Suppose

(40)

Suppose for some th subchannel. Consider a new
system with the bit allocation changed to

(41)

and the transmitter changed to , where is a diagonal
matrix. for and for .

is a positive real number to be chosen later. The
bit rate of the new system is . The transmit
power of the new system is smaller than because

(42)

Next, we will show that with appropriate choice of , the error
rate of the new system still satisfies the error rate constraint
inA . Using (6), can be expressed as

(43)

(44)

where . Observe that the symbol error rate of
the new system will be smaller than if the quantity in the Q
function of (44) is larger than or equal to that in the Q function
of (39), i.e.

(45)
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When , using Lemma 2 we have

(46)

Using (41) and (46), we have

(47)

which implies for . For , we can
always find such that (45) is satisfied. For example, we
can choose

(48)

It can be verified that , and

thus . In this case, we have

(49)

(50)

where . The last inequality
comes from the fact that . Rearranging (50), we
can see that (45) is satisfied for . Therefore, we have

for all . This means can achieve a
smaller transmit power and still satisfies all the constraints in
A . This contradicts the assumption that is
optimal forA . Hence the total bit rate of the optimal
solution must be equal to .
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