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A New Iterative Algorithm for Finding the Minimum
Sampling Frequency of MultiBand Signals

Yuan-Pei Lin, Yi-De Liu, and See-May Phoong

Abstract—In this correspondence, we propose a new iterative algorithm
for finding the minimum sampling frequency of a signal that consists of
multiple bandpass signals. This finds important application in software
radio where it is desirable to downconvert multiple bandpass signals simul-
taneously. We will derive a new set of conditions for alias-free sampling.
The minimum sampling frequency can be found by iteratively increasing
the sampling frequency to meet the alias-free conditions. We will show how
the algorithm can be generalized to find alias-free sampling frequency in-
tervals. Simulations will be given to demonstrate the usefulness of the pro-
posed method.

Index Terms—Bandpass sampling, minimum sampling frequency, multi-
band signal.

I. INTRODUCTION

Bandpass sampling has important applications in downcoverting
radio frequency (RF) signals. In the application of software defined
radio systems, it is desirable to downconvert multiple RF signals
simultaneously to save cost [1], [2]. The signal to be sampled may
consist of more than one bandpass signal. An example of spectrum
that contains two bandpass signals (four passbands) is shown in
Fig. 1. Sampling theorem for a bandpass signal (two passbands) is
well known [3]. The minimum frequency for alias-free sampling can
be found in a closed form [4]. The minimum sampling frequency is
usually significantly lower than the carrier frequency of the bandpass
signal.

For signals with more than two passbands, the minimum sampling
frequency can not be found in a closed from due to the nonlinear na-
ture of spectrum folding in the process of sampling. Conditions for
alias-free sampling can be stated in different ways in terms of the band
edges and bandwidths of the bandpass signals. The conditions that
are used for finding the minimum sampling frequency affect the com-
plexity of the algorithms. Sampling for multiband signals is extended
in [2] and conditions for alias-free sampling of multiband signals are
derived [2]. A systematic algorithm for finding valid sampling frequen-
cies is developed in [5]. In [6]–[8], the complexity for finding valid
sampling frequency is reduced by imposing constraints on the ordering
of the bands in the folded spectrum. Simulation results in [8] have
shown that the minimum alias-free sampling frequency with the or-
dering constraint can be found very efficiently. In [9], an efficient al-
gorithm for finding valid sampling frequency range for multiband sig-
nals is proposed. By exhausting all possible orderings of the bands in
the folded spectrum and categorizing all possible cases, the computa-
tional complexity can be reduced. An algorithm for finding the min-
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Fig. 1. Example of spectrum that consists of two bandpass signals.

imum sampling frequency is developed in [10] by finding the inter-
section of valid sampling frequencies for every two signal bands. A
downconversion function is proposed in [11] to simplify the downcon-
version of multiband signals when the member bandpass signals are
separated by a frequency larger than the sampling frequency. In [12],
the authors considered the sampling of an RF signal located among
a group of RF signals that have contiguous spectrum. The minimum
sampling frequency range is derived for the desired RF signal.

On the other hands, sampling of multiband signals has also been
studied extensively using nonuniform sampling, particularly periodic
nonuniform sampling [13]–[17]. With nonuniform sampling, there is
more freedom in sampling and continuous-time signals can be recon-
structed from samples using a lower sampling frequency than that is
possible with uniform sampling [13]. In the application of sampling for
multiband signals, the discrete-time sequence obtained from sampling
is usually filtered so that individual bandpass signals can be extracted
and further processed. With nonuniform sampling the samples are ob-
tained in a nonuniform manner. As filtering is typically performed on
uniform samples, restoration of uniform samples [17] may be needed
before filtering can be applied.

In this correspondence, we propose a new algorithm for finding the
minimum sampling frequency for a signal consisting of two or more
bandpass signals using uniform sampling. We will first derive a set of
conditions for alias-free sampling of signals that consist of two band-
pass signals (four bands). These conditions can be checked with few
computations. When one of these conditions is not satisfied, the sam-
pling frequency can be adjusted with minimum increment so that the
condition becomes satisfied. By iteratively increasing the sampling fre-
quency to meet the conditions for alias-free sampling, an algorithm for
finding the minimum sampling frequency can be developed. There is
no need to consider ordering of the signal bands in the folded spec-
trum. The algorithm can be generalized to find the minimum sampling
frequency for multiband signals. We can also extend the result to find
alias-free sampling frequency intervals. Simulation examples will be
given to demonstrate usefulness of the proposed algorithm.

The rest of the correspondence is organized as follows. We derive
conditions for alias-free sampling of signals that contain two bandpass
signals (four bands) in Section II and an algorithm for finding the min-
imum sampling frequency is given in Section III. In Section IV, we will
extend the results to the case of multiband signals. Simulation exam-
ples are presented in Section V and a conclusion is given in Section VI.
Some preliminary results on sampling two-bandpass signals have been
published in [18].

II. CONDITIONS FOR ALIAS-FREE SAMPLING OF

TWO-BANDPASS SIGNALS

Conditions for alias-free sampling can be stated in various ways in
terms of the band edges and bandwidths of the member bandpass sig-
nals. The conditions that are employed affect the complexity of en-
suing algorithms. In this section, we derive a new set of conditions for
alias-free sampling of two bandpass-signals.

1053-587X/$26.00 © 2010 IEEE
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Fig. 2. (a) The spectrum of a hypothetical two-band signal � ���. (b) � �� �
� �, where � � �� � � ���. (c) An example of the folded spectrum for
the interval ��� � � when ���	
� � � ������	
� �. (d) An example of the
folded spectrum for the interval ��� � � when ���	
� � � ������	
� �.

Suppose we are to sample a signal ���� that consists of two band-
pass signals ����� and ����� as shown in Fig. 1. Assume �����
is nonzero only in the passbands, i.e., ����� � �, for �� � � �� ,
and �� � � �� � � � �� �� where �� and �� are band edges, and
�� � �� � �� are the one-sided bandwidths (Fig. 1). Let ��

� ���,
and ��� ��� denote respectively the positive frequency part and neg-
ative frequency part of �����. There are four signal bands, ��

� ����
��� ���� �

�

� ���, and ��� ���. Since the replicas of any two bands may
overlap and result in aliasing after sampling, there are a total of��

� � �
cases. Note that ��

� ��� and ��� ��� are symmetric with respect to 0,
and so are ��

� ��� and ��� ���. If ��

� ��� and ��

� ��� are not aliasing
after sampling, then ��� ��� and ��� ��� will not be aliasing by sym-
metry. Similarly, if��� ��� and��

� ��� are not aliasing after sampling,
then��

� ��� and��� ���will not be aliasing. Thus, we need to consider
only four cases:

��� ���

� �����
�

� ����

�	� ���

� �����
�

� ����

�
� ���

� �����
�

� ����

��� ���� �����
�

� ����� (1)

To discuss the above different cases in a more general setting, we
first consider the sampling of a hypothetical two-band signal � ��� as
shown in Fig. 2(a). � ��� consists of	 ��� and
���, where	 ��� �� �,
only for �� � � � �� and 
��� �� �, only for �� � � � �� . The
bandedges �� � �� � �� , and �� can be positive or negative, �� �
�� � �� , and �� � �� � �� .

Lemma 1: For the two-band signal � ��� in Fig. 2(a), there is no
aliasing for a given sampling frequency �� if and only if

��� � �� ������� � �� or

��� � �� ������� ��� ���� (2)

Proof: We observe that there is no aliasing in sampling � ��� if
and only if there is no aliasing when we sample a shifted version � ���
���, where �� is the shift. For convenience we will consider the con-
dition for alias-free sampling of � �� � ���. Suppose we choose �� as
�� � ��� ��� ���, then the shifted pair is as shown in Fig. 2(b), where
 � ��� ��� ���� � � �� ���� ��� ���� � � �� ���� ��� ���.
If we consider the folded spectrum in the ��� ��� interval, the band edges
������ and ��������� are equal-distanced from ����. We now
discuss two possible scenarios: i) ������ � ��������� and
ii) ������ � ���������. Examples of these two possible cases
are shown respectively in Fig. 2(c) and (d).

i) When ������ � ��������� there will be no aliasing
if and only if ��������� � ������ or if the interval
����������� ������� is large enough to accommodate
the two replicas. That is, � � �� or � � �� � ��� where
� � ������ � �����������. The equivalent conditions
are

������� � �� or ������� ��� ���� (3)

ii) When ������ � ��������� as shown in Fig. 2(d),
there is some space between the two replicas and the space
is of length ���������� � �������. There will be
no aliasing if and only if the remaining part of the ��� ���
interval is large enough to take in the two replicas. That is,
�� � ����������� ������� � �� ���� Or equiva-
lently ������� � �� ��� . This is the same as the second
condition in (3).

Substituting  � ��� � �� ��� to (3), we obtain the necessary and
sufficient condition for alias-free sampling of � ��� in (2).

The result in Lemma 1 is for the sampling of a two-band signal with
arbitrary band locations. We can apply it to each of the cases in (1).
Then we can obtain sufficient and necessary conditions for alias-free
sampling of two-bandpass signals. For a given sampling frequency ��,
there will not be aliasing if and only if the following are true:

��� ������ � �� or ��� ������ � ���� (4)

��� ������ � �� or ��� ������ � ���� (5)

��� � �� ������� � �� or

��� � �� ������� ��� ���� (6)

��� � �� ������� � �� or

��� � �� ������� ��� ���� (7)

III. FINDING MINIMUM SAMPLING FREQUENCY:
TWO-BANDPASS CASE

For a given sampling frequency ��, there will be no aliasing if all
four conditions in (4)–(7) are met. If any one of the conditions is not
satisfied, we can make minimum increment to the sampling frequency
so that the condition becomes satisfied for each case. Let us first go
back to the hypothetical two-band signal � ��� that is useful in previous
section.

Lemma 2: Consider the sampling of the signal � ��� in Fig. 2. Sup-
pose there is aliasing for a given sampling frequency ��. Then the
smallest ������ � �� that yields alias-free sampling of � ��� is

������ �
�� � ��

���� � �� ����	
� (8)

Proof: Consider the folded spectrum in the interval ��� ��� as
shown in Fig. 2(c) and (d). We discuss the two cases: i) ������ �
���� and ii) ���� � ������ � ��, separately. i) � � ������ �
����: When we gradually increase the sampling frequency the band
edge ������ of replica 
��� moves towards 0 while the band edge
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����������� of replica � ��� moves towards ��. When the sampling
frequency is increased such that �������� decreases to 0, then the
condition in (2) becomes satisfied. ii) ���� � �������� � ��: Simi-
larly the condition in (2) becomes satisfied when �������� decreases
to ����. Therefore, we can conclude that the alias-free condition in
(2) can be satisfied by increasing the sampling frequency such that
� becomes an integer multiple of ����. The smallest new sampling
������ for this to happen can be computed as follows. Let us write � as
� � ������ � ��� where �� � ���������� and �� � ����������.
Then we have � � ����������, or ������ � �����. Using the fact
that �� � �������, we obtain the expression of ������ in (8).

We can apply Lemma 2 to the cases in (1). Then for each case in (1),
we can obtain a formula for adjusting the sampling frequency so that
the corresponding alias-free conditions in (4)–(7) is satisfied:

������ � ��� ����� ���� (9)

������ � ��� ����� ���� (10)

������ � ��� � �� ������ � �� ����� (11)

������ � ��� � �� ������ � �� �����	 (12)

Proposed Iterative Algorithm for Two-Bandpass Signals: Using
the conditions for alias-free sampling in Section II and the methods
for computing new sampling frequency for each case, we have the
following iterative algorithm for finding the minimum sampling
frequency. To start off, let �� � ��
� � 
��, which is the lowest
possible sampling frequency for no aliasing.

1. Examine the conditions for alias-free sampling in (4)–(7) one by
one. If any one of the condition is not satisfied, go to the next step.
If all the conditions are satisfied, then we have found the minimum
sampling frequency.

2. For the condition that is violated in Step 1, compute the corre-
sponding new sampling frequency using (9)–(12). Go to Step 1.

There is no need considering the ordering of signal bands in the folded
spectrum. The conditions in (4)–(7) can be easily examined and fre-
quency adjusted in (9)–(12). Usefulness of the algorithm will be veri-
fied numerically in Section V.

Intervals for Alias-Free Sampling: In practice it is of interest to ob-
tain an interval for alias-free sampling instead of just the minimum
sampling frequency. To do this, let us go back to the hypothetical two-
band signal � ��� in Fig. 2(a). Suppose there is no aliasing for a given
sampling frequency ��� . When we gradually increase the sampling fre-
quency, the bandedges of the replicas will touch. Let the corresponding
frequency be ������ . There will be aliasing if we increase the sampling
frequency further. Following a procedure similar to that in Lemma 2,
we can express ������ as

������ � ��� � �� ������ � �� �����	

Applying this result to each of the four cases using ��� � ������, we
can obtain four sampling frequencies, say �� � �� � �� � �� . When
we choose sampling frequency from the interval

������ � �� � �����	

where �����	 � �	
��� � �� � �� � �� �, there will not be aliasing.
We can see that once ������ is known, an alias-free sampling interval
can be easily obtained by computing �����	, which requires only the
computation of �� for � � �� �� ��  and the minimum of these four fre-
quencies. We can also use �����	 to find the next interval for alias-free
sampling. In particular using �����	 plus a small  as the starting fre-
quency in the proposed iterative algorithm, we can find the next alias-
free sampling frequency and alias-free sampling interval.

Sampling With Guard Bands: In practice it is desirable to have guard
bands between different bandpass signals after sampling. Suppose the
minimum guard band is��. Then every 2 replicas from different band-
pass signals should be spaced apart by at least �� after sampling. Let
us make the following adjustment of band edges for ����� and �����

� �� � �� ������

� �� � �� ������ for � � �� �	 (13)

Then ����� and ����� have expanded one-sided bandwidths 
 �

� �

����, and
 �

� �
����, respectively. The iterative algorithm
in Section III can be modified accordingly. The original band edges
and bandwidths are used to check (4)–(5) and to increase the sampling
frequency in (9)–(10) when the conditions are not satisfied. The new
band edges in (13) and the expanded bandwidths 
 �

	 are used to check
(6)–(7) and to increase the sampling frequency in (11)–(12) when the
conditions are not satisfied. As a result there will be a spacing of at least
�� between replicas of different bandpass signals.

IV. MULTIBAND SIGNALS

We can extend the proposed algorithm to find the minimum sampling
frequency for signals that contain multiple bandpass signals. Suppose
we are to sample a signal consisting of� bandpass signals (�� bands).
Since every two of the passbands may cause aliasing, we need to con-
sider��


� cases. However, we will see that due to symmetry these��

�

cases result in only �� conditions. First consider the pair �

	 ��� and

��

	 ���. There is no aliasing if

��� ������� � �� or ��� ������� � �
	� (14)

for � � �� �� � � � � � . Thus, we have � alias-free conditions. Consider
the other ��


� � � cases. If replica of �

	 ��� and �


� ��� are not
aliasing after sampling, then replicas of ��

	 ��� and ��

� ��� will not
be aliasing due to symmetry. The corresponding condition is

��� � �� �������� � �� or

��� � �� �������� �
	 �
� �

for � � � � � � �	 (15)

Similarly, if �

	 ��� and ��

� ��� are not aliasing after sampling, then
��

	 ��� and �

� ��� will not be aliasing. This requires

��� � �� �������� � �� or

��� � �� �������� �
	 �
� �

for � � � � � � �	 (16)

There are � conditions in (14), ��� � ���� conditions in (15)
and ��� � ���� conditions in (16). Combining (14)–(16), we have
a total of �� conditions. We can examine each of the �� conditions.
If one condition is not satisfied, we can always increase the sampling
frequency so that the condition becomes satisfied. By iteratively ex-
amining the conditions and increasing the sampling frequency, we can
find the minimum frequency for alias-free sampling. Similar to the
two-bandpass case, we can find alia-sfree sampling intervals for multi-
band signals by considering every pair of bandpass signals. Moreover,
we can leave guard bands between different bandpass signals after sam-
pling as in the two-bandpass case. We can make the adjustment of band
edges and bandwidths and use the conditions in (15)–(16).

Ordering Constraint: We can also extend our algorithm to the case
when the replicas are constrained to have a certain ordering [6]–[8]
in the folded spectrum. For example, suppose it is desirable that the
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TABLE I
COMPLEXITY FOR FINDING THE MINIMUM SAMPLING FREQUENCY WITHOUT AN ORDERING

CONSTRAINT FOR DIFFERENT COMBINATIONS OF BANDPASS SIGNALS

TABLE II
COMPLEXITY FOR FINDING THE MINIMUM SAMPLING FREQUENCY WHEN THE SIGNALS BANDS IN THE FOLDED

SPECTRUM ARE CONSTRAINED TO HAVE THE SAME ORDERING AS THE ORIGINAL BANDPASS SIGNALS

replicas follow the same ordering of the original bandpass signals.
There is no aliasing if the sampling frequency �� satisfies

��� ��������� ��� �������� ����

� � �� �� � � � � �� and �� ������� � ���� (17)

where we have used �� � 	 for convenience. This implies
�� ������� � ���� �

�

�����
�� � � � �� �� 
 
 
 � � . Combining

this condition with that in (17), we have the following necessary and
sufficient condition for alias-free sampling with ordering constraint:

�� ������� ��� � �� � �������

� �����

�

�����

�� � � � �� �� 
 
 
 � ��

(18)
Using a procedure similar to the case without ordering constraint, we
can examine the conditions in (18) one by one and increase �� until
all the conditions are satisfied. For instance, for a given �� suppose the
first ��� �� equations are satisfied but the �th equation is not. Further
suppose the first inequality of the �th equation does not hold and we
are to increase the sampling frequency. Notice that the first inequality
involves both �� ������� and �� ������� and it is much easier to
make minimum increment in �� to satisfy the second inequality. Such
a new sampling frequency ������ can be computed using a procedure
similar to that in Lemma 2 and we have

������ � �� �

�

�����

�� ����� ���� � ����� (19)

Now consider the case that the first inequality of the �th condition in
(18) holds, but the second inequality does not. We can increase the
sampling frequency such that the second inequality in (18) becomes an
equality. The new sampling frequency can be computed using

������ � �� �

�

�����

�� ����� ����� ����� (20)

The above discussion leads to the following iterative algorithm for
finding the minimum sampling frequency with a constrained ordering.
Let �� � � �

���
�� .

1. Examine the conditions in (18) one by one. If any one of the con-
dition is not satisfied, go to the next step. If all the conditions are
satisfied, then we have found the solution.

2. For the condition that is violated in Step 1, compute the corre-
sponding new sampling frequency using (19) or (20). Go to Step
1.

By modifying above algorithm slightly, we can find the minimum
sampling frequency for an arbitrary ordering. This can be done by
re-naming the bandpass signals. We can rename the replicas from left
to right as replicas of � �

����� �
�

����� 
 
 
 � �
�

� ���, the algorithm can
then be applied on � �

����.

V. SIMULATIONS

In this section, we apply the proposed algorithm to wireless ap-
plications. The bandpass signals considered in the simulations are
GSM 900 (935–960 MHz, one-sided bandwidth 25 MHz), GSM
1800 (1805–1880 MHz, one-sided bandwidth 75 MHz) [19], DAB
Eureka-147 	-Band (1472.286–1473.822 MHz, one-sided bandwidth
1536 KHz) [20], IEEE 802.11g (2412–2432 MHz, one-sided band-
width 20 MHz) [21], and WCDMA (2119–2124 MHz, one-sided
bandwidth 5 MHz).

Table I lists the complexity of finding ����	� for different combi-
nations of two-bandpass signals and three-bandpass signals. The com-
plexity is given in terms of numbers of multiplications (MUL), addi-
tions (ADD) and iterations (iter) counted in actual implementation of
the algorithms. The simulation result demonstrates that the proposed
method can reduce the number of additions, multiplications, and itera-
tions considerably. Table II lists the minimum sampling frequency and
complexity when there is an ordering constraint among the replicas.
The constraint is such that in the �	� ��� frequency range the replica of
��

� ��� is at the left of ��
������. Although our method can also com-

pute the minimum sampling frequency with constraint, the method in
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Fig. 3. An example of the replica in ��� � � for (a) � � ���MHz without
an ordering constraint, and (b) � � ������	 MHz with an ordering con-
straint.

[8] is more efficient. (The method in [8] is not compared in Table I
as it does not compute minimum sampling frequency without ordering
restriction.) Comparing Tables I and II, we can see that the minimum
sampling frequency without a constraint can be much smaller than that
with a constraint. Fig. 3 shows the replica in ��� ��� with a constraint
(������ � ������ MHz) and without a constraint (������ � 	�� MHz)
when the bandpass signals are GSM 900 and GSM1800 as in the first
case of Table II.

VI. CONCLUSION

We have proposed a new algorithm for finding the minimum sam-
pling frequency for multiband signals. We have derived a new set of
conditions for alias-free sampling. These conditions lead to an itera-
tive algorithm for finding the minimum sampling frequency. There is
no need to consider ordering of the signal bands in the folded spectrum
in the implementation of algorithm. The method can be generalized to
find alias-free sampling frequency intervals and to find the minimum
sampling frequency when the ordering of replicas is constrained.
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Cooperative Interference Management With
MISO Beamforming

Rui Zhang and Shuguang Cui

Abstract—In this correspondence, we study the downlink transmission
in a multi-cell system, where multiple base stations (BSs) each with mul-
tiple antennas cooperatively design their respective transmit beamforming
vectors to optimize the overall system performance. For simplicity, it is as-
sumed that all mobile stations (MSs) are equipped with a single antenna
each, and there is one active MS in each cell at one time. Accordingly,
the system of interests can be modeled by a multiple-input single-output
(MISO) Gaussian interference channel (IC), termed as MISO-IC, with in-
terference treated as noise. We propose a new method to characterize dif-
ferent rate-tuples for active MSs on the Pareto boundary of the achievable
rate region for the MISO-IC, by exploring the relationship between the
MISO-IC and the cognitive radio (CR) MISO channel. We show that each
Pareto-boundary rate-tuple of the MISO-IC can be achieved in a decentral-
ized manner when each of the BSs attains its own channel capacity subject
to a certain set of interference-power constraints (also known as interfer-
ence-temperature constraints in the CR system) at the other MS receivers.
Furthermore, we show that this result leads to a new decentralized algo-
rithm for implementing the multi-cell cooperative downlink beamforming.

Index Terms—Beamforming, cooperative multi-cell system, interference
channel, multi-antenna, Pareto optimal, rate region.

I. INTRODUCTION

Conventional wireless mobile networks are designed with a cel-
lular architecture, where base stations (BSs) from different cells
control communications for their associated mobile stations (MSs)
independently. The resulting inter-cell interference is treated as
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