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Abstract—Many coding methods are more efficient with some
images than others. In particular, run-length coding is very useful
for coding areas of little changes. Adaptive predictive coding
achieves high coding efficiency for fast changing areas like edges.
In this paper, we propose a switching coding scheme that will
combine the advantages of both run-length and adaptive linear
predictive coding. For pixels in slowly varying areas, run-length
coding is used; otherwise least-squares (LS)-adaptive predic-
tive coding is used. Instead of performing LS adaptation in a
pixel-by-pixel manner, we adapt the predictor coefficients only
when an edge is detected so that the computational complexity can
be significantly reduced. For this, we use a simple yet effective edge
detector using only causal pixels. This way, the proposed system
can look ahead to determine if the coding pixel is around an edge
and initiate the LS adaptation in advance to prevent the occur-
rence of a large prediction error. With the proposed switching
structure, very good prediction results can be obtained in both
slowly varying areas and pixels around boundaries. Furthermore,
only causal pixels are used for estimating the coding pixels in
the proposed encoder; no additional side information needs to
be transmitted. Extensive experiments as well as comparisons to
existing state-of-the-art predictors and coders will be given to
demonstrate its usefulness.

Index Terms—Adaptive prediction, context modeling, edge de-
tection, entropy coding, least-squares (LS) optimization, lossless
image coding, run-length encodings.

I. INTRODUCTION

THERE have been great advances in lossless image coding
recently [1]–[23], [26]–[31]. Some of which are based

on reversible wavelet transformation using lifting structure
[6]–[10]. By using integer wavelet transformation, lossless to
near-lossless compression as well as progressive reconstruc-
tion of image data can be achieved [6]–[10]. However, the
compression results obtained with the use of integer wavelet
transformation are typically inferior to that of obtained by pre-
dictively encoded techniques [11]. Therefore, an approach that
achieves progressive transmission of lossless and near-lossless
coding of image data using predictive coding in a single frame-
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work has been proposed [11]. The results presented in [11] are
competitive to that of obtained by state-of-the-art compression
schemes.

To accommodate the varying statistics of coding images,
adaptive predictors with context modeling are often used
in predictive coding schemes [11]–[23], [26]–[31]. Besides,
adaptive prediction is achieved in most of the coders by using
multi-predictor structures [13]–[23]. Among which, the con-
text-based adaptive lossless image coding (CALIC) system
[16], a state-of-the-art lossless coder proposed for JPEG-LS,
uses a gradient adjusted predictor (GAP). Based on the gradient
of neighboring pixels, one out of a set of seven predictors is
chosen. The low-complexity lossless compression for images
(LOCO-I) coder [17], an algorithm motivated by CALIC [16]
and standardized into JPEG-LS, uses a median edge detector
(MED) to choose one of three predictors for current prediction.
In [18], adaptive prediction is achieved by choosing one out of a
set of predictors that minimizes the energy of prediction errors
in a specified cluster of causal pixels and the predictor coef-
ficients of the selected predictor are then updated by applying
gradient descent rule. In [19], [20], multiple-pass prediction
is introduced. With multiple passes, the encoder can form a
360 prediction [19] or perform a global image analysis [20]. A
highly complex two-pass coder called TMW has been proposed
in [20]. Using multiple linear predictors and global image anal-
ysis, the TMW system can achieve lower bit rates than existing
coders for most images. While achieving very low bit rates, the
computational cost is regarded as prohibitive in TMW [20].
Recently, a fuzzy logic-based adaptive DPCM algorithm called
fuzzy logic-based matching pursuits (FMP) [21] is proposed.
The FMP presents a competitive, and in some cases superior
result than TMW but with a lower computational cost. Though
FMP is effective in removing the statistical redundancy, it still
takes minutes.

In the context of optimal predictors, the minimum mean
square error estimate of given observations
is , generally a nonlinear function.
Therefore, there have been many results using neural networks
as nonlinear estimators [22], [23]. Neural-network-based pre-
dictors perform well in slowly varying areas. However, there
can be large prediction error around boundaries [24]. The result
can be improved using additional hidden layers or hidden
neurons, but this incurs a drastic increase in complexity [22],
[25].

Recently, linear predictors adapted by LS optimization have
been proposed as an efficient approach to accommodate varying
statistics of coding images [26]–[31]. Among which, the edge-
directed prediction (EDP) [26] pointed out that the superiority
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Fig. 1. Proposed RALP system.

of LS optimization is in its edge-directed property. For com-
plexity consideration, performing the LS adaptation process in
a pixel-by-pixel manner is regarded as prohibitive. Therefore,
the EDP [26] proposed initiating the LS optimization process
only when the prediction error is beyond a preselected threshold
such that the computational complexity can be reduced. The
EDP [26] has made a noticeable improvement over the state-of-
the-art lossless coder CALIC.

It is known that many coding methods are more efficient with
some images than others. In particular, run-length coding is
very useful for coding areas of little changes. Adaptive predic-
tive coding achieves high coding efficiency for fast changing
areas like edges. In this paper, we propose a switching coding
scheme (as shown in Fig. 1) that will combine the advantages of
both run-length and adaptive linear predictive (RALP) coding.
There are other switching methods that achieve very low bit
rates [20]–[22]. However the results are usually obtained with
a very high computational complexity [20]–[22]. On the con-
trary, the proposed RALP coder can achieve a very good coding
efficiency but still with a moderate computational complexity.
In the proposed approach, the run-length encoder is used for
pixels in slowly varying areas; otherwise an LS-based adaptive
predictor is used. The LS-based predictor has been shown to be
very useful for the prediction of pixels around an edge [26], [27].
Moreover, we adapt the predictor coefficients only when an edge
is detected or when the prediction error is beyond a pre-selected
threshold so that the computational cost can be significantly re-
duced [27]. To do this, we use a simple and efficient edge de-
tector that uses only causal pixels, i.e., pixels that have already
been coded. This way, the predictor can look ahead if the coding
pixel is around an edge and initiate the LS adaptation process be-
forehand to prevent the occurrence of a large prediction error.
With the proposed switching structure, very good prediction re-
sults can be obtained in both slowly varying areas and pixels
around boundaries. Some preliminary results regarding the pro-
posed LS-based predictor with edge-look-ahead can be found in
[27].

For prediction error refinement, the so-called context mod-
eling technique [16], [19] is used in the proposed system. The
compensated error has a narrower histogram and hence a lower
first-order entropy. As we will see in the experiments that the
switching structure combined with edge-look-ahead prediction
as well as automatic error modeling renders the proposed RALP
highly adaptable and very feasible under limited resources. A
very good trade-off between coding efficiency and computa-
tional complexity can be achieved. Comparisons with existing
state-of-the-art LS-based predictors can also be found in our ex-
periments.

The rest of the paper is organized as follows. Section II gives
an overview of the proposed RALP system. Section III intro-
duces the proposed LS-adaptive predictor. The error compen-
sation is given in Section IV. Section V addresses the entropy
coding of prediction error. Extensive experiments of the pro-
posed method and comparisons to existing predictors and coders
are given in Section VI. A conclusion is given in Section VII.

II. PROPOSED RALP SYSTEM

The proposed RALP system, as shown in Fig. 1, has two op-
eration modes, run mode and regular mode. The “mode selec-
tion” block (Fig. 1) determine if the current pixel is in an local
area of little changes. If it is, the run mode is triggered and the
current pixel is encoded using run-length encoding. If not, the
regular mode is assumed and the pixel is encoded using predic-
tive coding.

A. Run Mode

It is known that the run-length coding is most efficient for the
encoding of consecutive pixels with identical gray values. The
case that consecutive pixels are identical can usually occur in
an artificial image or in slowly varying areas of a natural image.
Therefore, we use the run-length coding in the proposed RALP
system for the encoding of pixels in an area of little changes.
If the four pixels in Fig. 2 are identical, the
run mode is switched on and the run-length is encoded using an
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Fig. 2. Ordering of pixels for prediction inputs.

arithmetic coder with an alphabet set of . The 0,
called escape symbol in this paper, is used to indicate an unsuc-
cessful run and should be encoded if the gray value of the coding
pixel and that of are distinct so that the de-
coder can also make a right decision and quit the run mode auto-
matically. This time, the regular mode is used for the encoding
of the current pixel. It is noted that the run mode can also be
broken by ends of lines, in which case the encoder returns to
the regular mode, i.e., the regular mode is assumed for the first
pixel of every line. Moreover, the encoding of an escape symbol
can cause penalty and degrade the coding efficiency. Therefore,
we record the number of times of run mode triggered and the
times of unsuccessful run. If the percentage of unsuccessful run
is greater than a predefined threshold, the run mode is disabled
and not to be used for the rest of the coding process. It is noted
that all the pixels used for mode selection are causal and the
decoder can reproduce the same decisions without any side in-
formation.

B. Regular Mode

In the regular mode, pixels are encoded using predictive
coding. Predictive coding can be very efficient for the removal
of statistical redundancy between neighboring pixels in slowly
varying areas. However there can have a large prediction error
around boundaries. In this paper, we will use LS optimization to
update the predictor coefficients on the fly so that the predictor
can adapt itself to the varying statistics [27]. It is known that the
LS-based adaptive predictor is an efficient approach to improve
the prediction result around boundaries for its edge-directed
property [26], [27]. However a pixel-by-pixel adaptation of the
predictor coefficients is computationally expensive and often
not necessary. Therefore, we will initiate adaptation only when
the prediction is inadequate, which is around an edge. For
this, an “edge detector” is used to look ahead and determine
if the coding pixel is around an edge so that the predictor can
adapt itself beforehand to prevent the occurrence of a large
prediction error. In the regular mode, the prediction error is
further refined using error compensation. That is, the predictor
output is added by a correction term (as shown in Fig. 1)
to get a compensated prediction . The amount
of compensation is determined through an error modeling
mechanism. The refined error signal can then
be entropy encoded using conditional arithmetic coding to
produce the coded bit stream.

In the proposed encoder, only causal pixels, i.e., pixels that
have already been coded, are used for estimating the coding

pixels; no additional side information needs to be transmitted.
Moreover, the proposed RALP coder is symmetric, meaning
that the decoder has the same predictor switch as the encoder,
and performs prediction and error compensation just like the en-
coder. Therefore, the actual pixel value can be reconstructed in
the decoder with the received bit stream of refined errors. De-
tails of the individual components of the system are introduced
in subsequent sections.

III. LS-ADAPTIVE PREDICTION

In the regular mode, we use an LS-based adaptive predictor to
accommodate the varying statistics of the image. To save com-
putations, the predictor is adapted only when prediction error is
large or likely to be large. For a pixel around an edge, predic-
tion error is usually large and adaptation is needed. To determine
whether the coding pixel is around an edge, we use a simple
yet effective edge detector in this paper. It should be noted that
conventional edge detectors, e.g., “Sobel” operator, can not be
applied here because they use non-causal pixels, i.e., pixels yet
to be encoded.

We observe that an area that contains an edge usually has a
large variance. Furthermore, the histogram of such an area tends
to have two peaks, one on each side of the mean value. We will
use these two observations to determine the existence of an edge.
Moreover, the set of the four pixels in
Fig. 2 are used for the detection. The mean and variance
of the set are calculated. Furthermore, the four pixels can be
divided into two groups, the pixels with gray levels higher than

in group and the rest in group . We also compute the
respective variance , of the pixels in and .

A pixel around an edge is likely to have a large but small
and . We determine whether the coding pixel is around an

edge if the following two conditions are both satisfied:

and (1)

It is noted that the second condition in (1) is included because
a region with uniformly distributed gray values also results in
a large . Therefore, the switch first examines if
when a large is detected then the switch checks the second
inequality in (1). In this paper, the LS adaptation process in
the regular mode is activated whenever the two conditions
in (1) are satisfied. We have found through experiments that

and work very well and these values will
be used throughout the paper. It should also be noted that the
run mode will be triggered when , i.e., the case that

are identical. In this case, we do not have to
check the conditions in (1). As we will see later in experiments
that the proposed detector is very effective in detecting edges
although only four pixels are used. Moreover, since we use
only causal pixels for the detection of an edge, the decoder can
perform the same edge detection operation and switches on the
LS adaptation process.

In the regular mode, the LS adaptation process is activated
whenever the two conditions in (1) are both satisfied or when
the prediction error is greater than a predefined threshold . The
corresponding predictor inputs for different prediction orders
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Fig. 3. Online training regions for the proposed predictor.

are shown in Fig. 2 where the ordering of pixels is based on the
distance to the pixel to be encoded. In this paper, the predicted
value of the coding pixel is a linear combination of its
causal neighbors given by

(2)

where is the prediction order, is the kth nearest
neighbor of and is the corresponding predictor co-
efficient. It is noted that we do not use any training set for
the optimization of initial predictor coefficients in this paper.
The initial coefficients for the proposed predictor are equally
weighted, i.e., the coefficients for the th-order predictor
are respectively.

The training area for LS adaptation process of the coding
pixel is shown in Fig. 3. Suppose we have pixels in the
training area, our objective is to find a LS solution for the system

(3)

where

...
...

. . .
...

...

...

The optimal that minimizes the square errors
can be obtained by solving the normal equations [33]

(4)

There are well-developed numerical approaches to solve (4).
For the case that has full rank; i.e., rank , is non-
singular and positive definite [33], [34]. The normal equations

will have a unique solution . In this case,
the Cholesky decomposition, which requires only half the usual
number of multiplications than alternative methods, can be used
to solve (4) [33], [34].

If is defective; i.e., rank , fails to be positive def-
inite and the singular value decomposition (SVD) can be used
to solve (4) [33], [34]. The positive definite property of
can be easily examined in the process of Cholesky decomposi-
tion [34].

In this paper, updated predictor coefficients are used for cur-
rent prediction and passed on to the next coding pixel. For non-
edge pixels, we use the stored prediction coefficients of the four
nearest causal neighbors to generate four prediction values and
take their average as the final prediction result. This manner,
the predictor can resist against moderate salt-and-pepper noise.
To summarize, the proposed algorithm is given in the following
pseudo code.

{Pseudo code for the proposed approach.}

while (scan unfinished)

{

if (runmode or )

/ the case that run mode is initiated /

{

if

{

;

;

}

else

{

Encode runlength using
arithmetic coding.

;

;

}

}

else

;

if (not runmode)

/ the case that regular mode is used /

{

;

if
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{

Calculate variances and ;

if

/ the case that an edge exists /

;

}

if (edge_detected or )

Adapt predictor;

; / Perform
prediction /

Perform error compensation;

Encode the refined error signal using
conditional arithmetic coding;

} / end of regular mode /

}/ end of scan /

IV. ERROR COMPENSATION

It is known that the prediction error in the regular
mode can be further refined by learning from previous predic-
tions, i.e., the so-called bias cancelation technique [16], [19]. To
do this, we define the compound context of a coding pixel as

(5)

where , are as shown in Fig. 2 and ,
are the uncompensated prediction errors corre-

sponding to , respectively. We have incorpo-
rated prediction errors in error modeling because the amount of
compensation is likely to be related to the prediction errors of
neighboring pixels.

In the proposed RALP system, error modeling is achieved by
performing context clustering with a fixed number of contexts.
For this, a set of initial contexts are generated off-line using the
image “Lennagrey” (Fig. 4) for the clustering process. For each
coding pixel, the compound context is assigned to one of the
existing contexts using mean absolute error distance measure
and the corresponding context is then modified accordingly in
the coding process. By classifying coding pixels with similar
context into the same group, the amount of compensation
for the current prediction can be estimated by calculating the
sample mean of prediction errors in that group. Therefore, the
value to be used in compensating the current prediction is
given by

(6)

where is the prediction errors accumulated in the context
which belongs to, and is the number of members in that
context. With the correction term , we now form a more re-
fined prediction . The compensated error

Fig. 4. Image “Lennagrey.”

has a narrower histogram and hence a lower first-order
entropy. In the regular mode, the refined error is then entropy
encoded using a conditional arithmetic coder to produce the bit
stream.

V. ENTROPY CODING OF PREDICTION ERROR

For entropy coding of the refined error signal , we borrow
some of the concepts in [16], [17], [19] so that the coding effi-
ciency in actual bit rates can be further improved.

A. Conditional Entropy Coding

It is known that the coding efficiency can be further improved
with the use of conditional probability models. By classifying
similar prediction errors in the same group, the coding effi-
ciency can be improved by sharpening the error histogram in
each group and thus a smaller conditional entropy can be ob-
tained. To perform the classification, we have to define an error
strength estimate so that both the encoder and decoder know
exactly which group does the prediction error belongs to or
which probability model should be used. In this paper, we define
the error strength estimate of the coding pixel to be , that is

(7)

It is noted that the , introduced in the previous section, is used
in compensating the prediction error. Moreover, it is also avail-
able in both the encoder and the decoder. Therefore, we have
applied the use of as the error strength estimate.

By conditioning on the error strength estimate , we can
quantize refined errors into classes of different variances [16],
[19], [26]. Moreover, the error histogram in each quantization
bins can be sharpened and thus a smaller conditional entropy
can be obtained. Therefore, we are using the conditional prob-
ability model instead of for entropy coding of re-
fined errors. Furthermore, to find the optimal number of quanti-
zation bins as well as an optimal quantization for so that the
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conditional entropy can be minimized, we define a cost function
as

(8)

where , which maps into one of the quantization bins,
is the quantizer to be designed and is the number of quantiza-
tion bins to be decided. With such cost function, we are calcu-
lating the first-order entropy of assigned in each quantization
bins, i.e., , and then take expectation on the entropy

.
To minimize the cost function in (8), we use a set of training

pairs recorded in the prediction process of fourteen test
images [20] in next section. By performing dynamic program-
ming off-line, the final number of quantization bins is found to
be three and the optimized quantization of is found to be [0,
1], (1, 55], (55, ). Though the quantization may be subop-
timal, the compression result is satisfactory as the simulation
results in Section VI will demonstrate. Using the above quanti-
zation bins, one out of a set of three probability models is chosen
for the entropy coding of based on the value of error strength
estimate

if
if
otherwise .

(9)

B. Error Sign Flipping

The concept of error sign flipping in [16], [17], [19] is also
used in this paper for coding the refined error signal . Since

, the amount for prediction error compensation, is an average
result of past history or experiences, it is very likely that the
refined error has the same sign as . Therefore, the refined
error is encoded according to the following equation:

if
otherwise .

(10)

It is noted that all the pixels used in the proposed coding system
are causal, the decoder can calculate the error estimate
just like the encoder. Therefore, the decoder can reconstruct
the sign flipped errors successfully when the image is to be
decompressed.

C. Error Remapping

The range of the refined error is [ 255, 255]. In general, a
probability model with a set of 511 symbols should be used for
the entropy coding of prediction errors. However, they can only
take on values in the range [16], [17], [19].
We will use the following error remapping before it is entropy
encoded:

if
if

(11)

Fig. 5. Histogram of errors in quantization bins for image “Lennagrey.” (using
a sixth-order LS-based predictor with 
 = 100, 
 = 10).

In this case, the number of symbols used is reduced to 256,
which further improves the coding gain in the entropy coding
stage. Since all the pixels used are causal and the decoder per-
forms prediction and compensation just like the encoder, the
predicted value , the error estimate and thus the compen-
sated prediction, i.e., , can be calculated in the
decoder. Therefore, the decoder can reconstruct the remapped
by

if
if (12)

D. Histogram Tail Truncation

With the quantization bins in (9), the error histogram in each
quantization bin for image “Lennagrey” (Fig. 4) are plotted in
Fig. 5. The curve of Bin3 is not shown because no error strength
estimate falls in that region. As can be seen, most of the refined
errors fall in the region around 0. Though seldom occur, the
count of occurrence for those away from 0 are initialized to be 1
in case they do occur. This operation degrades the performance
of entropy coding. To conquer this problem, we use the concept
of histogram tail truncation in [16].

The probability distribution of the prediction error is usu-
ally a two-sided Laplacian distribution [16], [19]. Instead of
remapping the error into a one-sided monotonically decreasing
probability distribution in [16], the error histogram tail are trun-
cated symmetrically in each quantization bin. The cutoff region
for quantization bins are chosen to be [ 25,25], [ 48,48] and
[ 128,127] such that over 99% of the refined errors in each
quantization bin are within the truncated regions. For example,
an error 30 in Bin1, is encoded first to be 25 using , fol-
lowed by 5 using .

VI. EXPERIMENTS

In this section, we evaluate the performance of the proposed
lossless image codec. Comparisons to existing linear and non-
linear predictors and coders are also given. All the test images
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Fig. 6. (a) Image “Shapes.” (b) Pixels for which (1) is satisfied in the image “Shapes.”

Fig. 7. (a) Image “Noisesquare.” (b) Pixels for which (1) is satisfied.

used in the experiments are from the website of TMW1 [20].
We first demonstrate the usefulness of the proposed edge de-
tector and then the error compensation mechanism in the regular
mode. Then, the bit rate performance of the system is presented.
Finally, the computational complexity of the proposed system
will be discussed.

A. Edge Detector

To demonstrate the effectiveness of the proposed edge de-
tector, we use the image “Shapes” [Fig. 6(a)], which is an ar-
tificial image with many edges and lines. The pixels that satisfy
the two conditions in (1) are marked in Fig. 6(b). We can see
from Fig. 6(b) that the edge detector has successfully picked
out the pixels around edges. To test the robustness of the de-
tector, we apply the edge detector to the image “Noisesquare”

1http://www.csse.monash.edu.au/~bmeyer/tmw.

[Fig. 7(a)], an image with salt-and-pepper noise. The pixels
picked out by the edge detector are as shown in Fig. 7(b). We
see from Fig. 7(b) that the edge detector is robust to moderate
salt-and-pepper noise. In addition to artificial images, we also
apply the edge detector to “Lennagrey,” a natural image that is
shown in Fig. 4. As can be seen in Fig. 8, the pixels around the
edges have been picked out successfully.

B. Error Compensation

To demonstrate the usefulness of the proposed error com-
pensation mechanism in regular mode, we use a sixth-order
LS-based predictor. The image “Lennagrey” is used as the test
image. The compensated prediction errors for image “Lenna-
grey” is shown in Fig. 9(a). As can be seen in Fig. 9(a), the pro-
posed approach performs very well around edges and the statis-
tical redundancy has been removed effectively. Fig. 9(b) shows
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TABLE I
COMPRESSION RATIO AND THE RUNNING TIME (IN SECONDS, ON A PIII-1.06-GHz MACHINE) OF THE CONSTRUCTED CODER VARY WITH DIFFERENT PREDICTION

ORDER USING THE PROPOSED APPROACH

Fig. 8. Pixels for which (1) is satisfied in the image “Lennagrey” (
 = 100,

 = 10).

the histograms of prediction error with and without error com-
pensation. We can observe the usefulness of the proposed au-
tomatic context modeling for error refinement from Fig. 9(b).
The histogram of the refined error has a narrower peak. The
first-order entropy for the compensated error is 3.97 bits and
4.20 bits for the uncompensated error.

C. Order of Predictor

The order of the predictor affects coding gain in the reg-
ular mode. We list in Table I the compression ratio for order

,6,8,10 with the run mode disabled. The execution time
is also listed in the Table. As can be seen in Table I, the compres-
sion ratio quickly saturates when the prediction order is greater
than six. Moreover, the increases in the execution time does not
justify the use of prediction order higher than six. Therefore,
the use of a sixth-order predictor in the regular mode is a proper
choice and this will be used in the design of a lossless image
coder afterward for comparison with existing state-of-the-art
lossless image coders.

D. Effectiveness of the Edge-Look-Ahead Mechanism

The usefulness of the proposed predictor with edge-look-
ahead can be demonstrated through the following experiment.
We construct two sixth-order LS based predictors for the regular
mode; one with the use of the proposed edge-look-ahead mech-
anism and the other performs LS adaptation in a pixel-by-pixel
manner. Then we compare the performance of the two predic-
tors. In this experiment, the run mode is also enabled and the
image “Lennagrey” in Fig. 4 is used for this comparison.

For the predictor with edge-look-ahead, the pixels for which
LS adaption is activated are shown in Fig. 10(a). Overall,
about 17% of pixels activate the LS adaptation process. The
image of uncompensated prediction errors and the
corresponding histogram are shown in Fig. 10(b) and Fig. 11
respectively. For comparison, we also show in Fig. 11 the
histogram of uncompensated prediction error when the LS
adaptation process is performed in a pixel-by-pixel manner.
The histogram using the proposed approach is very close
to that with pixel-by-pixel adaptation although only 17%
of pixels activate the LS adaptation process. The proposed
edge-look-ahead approach has made a good tradeoff between
prediction efficiency and computational complexity. Indeed,
the entropies corresponding to the two histograms in Fig. 11
are, respectively, 4.20 bits (proposed approach) and 4.18 bits
(adapted in a pixel-by-pixel manner).

E. Comparisons to Existing Predictors

Table II gives comparisons of uncompensated prediction
errors for a set of eight test images in first-order entropies.
We compare with existing linear and nonlinear predictors for
prediction order ,6,8,10. In this experiment, the run
mode of the proposed system is disabled; only the regular mode
is used so that we can make a fair comparison. The results
of a MED [17], a GAP [16] and an edge directed predictor
(EDP) with different orders are taken from [26]. As can be
seen in Table II, the proposed system can remove the statistical
redundancy efficiently. It achieves noticeable improvement
when compared with MED and GAP predictor. The proposed
predictor also gives lower entropies when compared with those
of EDP [26]. Moreover, the results of the proposed approach
are very close to those with pixel-by-pixel LS adaptation.
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Fig. 9. (a) Image of refined errors using the proposed approach for “Lennagrey.” (using a sixth-order LS-based predictor with 
 = 100, 
 = 10) (b) histogram
of prediction errors for image “Lennagrey.”

Fig. 10. (a) Pixels for which LS adaption is used in the proposed edge-look-ahead predictor for the image “Lennagrey.” (using a sixth-order predictor with

 = 100, 
 = 10) (b) image of uncompensated prediction errors using the proposed edge-look-ahead approach for “Lennagrey.”

F. LS Adaptation

In this subsection, we investigate how the prediction perfor-
mance (entropy) varies with the variance threshold in (1)
for LS adaptation. We construct a tenth-order predictor with
edge-look-ahead for the experiment and the image “Lennagrey”
(Fig. 4) is used for the test. For LS adaptation, we use the same
training area as defined in EDP [26]. Moreover, we set
and for all cases in the experiment. By varying the vari-
ance threshold , the number of pixels that activates LS adapta-
tion also changes. The experimental results using the proposed
approach with various are shown in Table III.

We observe from Table III that a small may results in a
small entropy at the expense of an increased number of pixels
performing LS adaptation process. The percentage of pixels re-
garded as around an edge increases as decreases, but the

percentage of pixels that activates the LS adaptation in slowly
varying areas almost remain unchanged. This can be best ob-
served from the fifth column, which is obtained by subtracting
the fourth column from the third column, of Table III, and we
can find that about 3% to 5% of pixels in slowly varying areas
will activates the LS adaptation. Therefore, the improvement on
the entropy in the proposed approach is mainly around edges.

G. Further Insight on the Proposed Edge-Look-Ahead
Mechanism

To highlight the usefulness of the proposed edge-look-ahead
mechanism for LS-based predictor, we compare the proposed
approach and the state-of-the-art LS-based EDP predictor in
[26]. As in [26], we use a tenth-order predictor. With EDP [26],
the percentage of pixels activating LS adaptation is 9.87% and
the resulting entropy is 4.22 bpp. The results of the proposed
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TABLE II
FIRST-ORDER ENTROPIES OF PREDICTION ERRORS. (ONLY THE REGULAR MODE IS USED IN THE PROPOSED ALGORITHM; THE RUN MODE IS DISABLED)

TABLE III
PERCENTAGE OF PIXELS PERFORMING LS ADAPTION AND THE RESULTING FIRST-ORDER ENTROPY BY VARYING THE VARIANCE THRESHOLD 
 IN THE PROPOSED

APPROACH (THE IMAGE “LENNAGREY” IS USED FOR THE TEST WITH 
 = 10, � = 10 FOR ALL CASES)

Fig. 11. Histogram of uncompensated prediction errors for the proposed ap-
proach and that of a pixel-by-pixel adaptation. (both using a sixth-order pre-
dictor).

edge-look-ahead approach are given in Table III. As can be seen
in the rows for which varies from 300 to 500 (the last three
rows of Table III), the number of pixels performing LS adapta-
tion is fewer than that with EDP approach but still have lower
entropy than EDP.

To gain a further insight, we look into the case with .
The histogram of uncompensated prediction errors for those
pixels that are considered as around an edge [i.e., pixels for
which (1) are satisfied] is shown in Fig. 12(a). For compar-
ison, we also show the histogram of uncompensated predic-

tion error if EDP is used for those pixels instead. As can be
seen in Fig. 12(a), the histogram with the proposed approach is
much narrower than that with EDP. The proposed approach has
a smaller prediction error than EDP does around edges. Indeed,
the entropies corresponding to the two histograms in Fig. 12(a)
are, respectively, 5.12 bits (proposed) and 5.32 bits (EDP).

As another example, we use the artificial image “Shapes”
[Fig. 6(a)] for the same experiment. The pixels for which (1)
is satisfied have been shown in Fig. 6(b). The histogram of un-
compensated prediction errors using the proposed approach for
those pixels in Fig. 6(b) is shown in Fig. 12(b). The histogram
with the proposed approach is much narrower than that with
EDP; the proposed approach has a smaller prediction error than
EDP does around edges. The entropies corresponding to the two
histograms in Fig. 12(b) are, respectively, 4.51 bits (proposed)
and 5.28 bits (EDP).

As can be seen in Fig. 12(a) and (b), the proposed system
has achieved a noticeable improvement over the use of EDP
around edges. Moreover, the improvement is very distinct for
images with many edges and lines. As indicated in the title of
EDP [26], the EDP is designed mainly for natural images and
it is noted that most of the areas vary slowly in natural images.
The EDP initiates the LS adaptation process only after the pre-
diction error is beyond a preselected threshold so that the com-
putational complexity can be reduced. Nevertheless, an abrupt
change in the image pixel, e.g., an edge or a line, may results
in a large prediction error with EDP. Compared with EDP, the
proposed system can look ahead to determine if the coding pixel
is around an edge and initiate the LS adaptation process before-
hand to prevent the occurrence of a large prediction error. With
a moderately increased computational complexity in detecting
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Fig. 12. (a) Histogram of uncompensated prediction errors for the pixels in Fig. 8. (b) Histogram of uncompensated prediction errors for those pixels in Fig. 6(b).

TABLE IV
COMPARISONS WITH EXISTING LOSSLESS IMAGE CODERS (IN BITS/SAMPLE). THE FIFTH COLUMN IS THE EXECUTION TIME OF

THE PROPOSED APPROACH ON A PIII-1.06-GHz MACHINE

( For the EDP method, the bit rates for some of the images are not available and the average
is computed only for those that are available.)

the existence of an edge, the proposed system has achieved a
noticeable improvement around edges than that with the EDP
approach.

H. Comparisons to Existing State-of-the-Art Coders

Table IV gives the actual bit rates of proposed RALP coder,
JPEG-LS [17], CALIC [16], EDP [26] and TMW [20] for a
set of fourteen test images. In Table IV, the results of CALIC,
EDP and TMW are taken directly from [21] and those of the
JPEG-LS are obtained using the code given in the website of
LOCO-I [17]. All the bit rates of the proposed algorithm are ob-
tained using the same parameters described in previous sections
and no individual optimization is performed. Besides, we show
in the second column and the fourth column, respectively, the

first-order entropies of the compensated prediction errors and
the percentage of pixels performing LS adaptation using the pro-
posed approach. Moreover, we also show in the fifth column the
execution time of the proposed coder so that we can get a picture
on the runtime performance of the proposed approach. It should
be noted that some of the results in EDP are denoted by “N/A”
because they are not reported in the paper of EDP [26] and [21].
Therefore, the set of images included in the average is different
for that column than any other. Table IV shows that RALP has
lower bit rates than JPEG-LS in thirteen out of the fourteen test
images and outperforms CALIC [16] in eleven of fourteen test
images. Encouragingly, the proposed RALP achieves lower bit
rates than the highly complex TMW in two images, “Balloon”
and “Noise square.” It should be noted that the proposed bit rate
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TABLE V
OPERATION COUNTS FOR EDGE DETECTOR IN (1)

performance for the artificial image “Shapes” is inferior to that
of obtained by CALIC [16] and JPEG-LS [17]. For this, we can
see from Fig. 6(a) that the image “Shapes” can be segmented
into many slowly varying areas in which the run-length coding is
most efficient to be used. Therefore, the bit rate performance for
the artificial image “Shapes” can be improved if a more sophis-
ticated run-length encoding technique is used in the proposed
approach.

I. Computational Complexity

Numerically, the normal equations (4) can be solved by
Cholesky decomposition or SVD depending on the rank of
in (3). When is full-ranked, the Cholesky decomposition
can be used and it requires only multiplications to solve
(4), which is about half the usual number of multiplications
required by alternative methods [33], [34]. Only when is not
full ranked, SVD, which requires much higher computations, is
needed. Fortunately, our experiments show that in most cases
has full rank. This is because pixels around boundaries usually
have a large variation in gray levels and thus the matrix in (3)
is seldom rank deficient. Therefore, most of the computations
take place in forming the normal equations (4) rather than
solving them. For this, an inclusion and exclusion method for
fast construction of the matrix has been proposed in [28].

For the proposed edge detector, the operation counts for each
coding pixel in the edge detection process are listed in Table V.
It should be noted that there is no need to check both of the two
inequalities in (1) for every pixel. Only when the first inequality
holds then we check the second condition. Therefore, the ac-
tual computational cost is lower than what is listed in Table V.
Though edge detection incurs a slight increase in computations,
the overall complexity is reduced significantly when compared
with that of pixel-by-pixel adaptation approach. The proposed
approach has achieved a very good trade-off between runtime
performance and prediction efficiency.

VII. CONCLUSION

In this paper, a switching coding scheme that combines the
advantages of both RALP coding is proposed. For pixels in
slowly varying areas, run-length coding is used; otherwise an
LS-based adaptive predictor is used. Instead of performing LS
adaptation in a pixel-by-pixel manner, we adapt the predictor
coefficients only when an edge is detected or when the predic-
tion error is greater than a predefined threshold so that the com-
putational complexity can be significantly reduced. For this, we
use a simple yet effective edge detector using only causal pixels.
This way, the proposed system can look ahead to determine if
the coding pixel is around an edge and initiate the LS adaptation
in advance to prevent the occurrence of a large prediction error.

With the proposed switching structure, very good prediction re-
sults can be obtained in both slowly varying areas and pixels
around boundaries. Moreover, only causal pixels are used for
estimating the coding pixels in the proposed encoder; no addi-
tional side information needs to be transmitted. When compared
with the pixel-by-pixel LS adaptation, the proposed approach
can achieve a noticeable reduction in complexity with only a
minor degradation in entropy; a good tradeoff between compu-
tational complexity and prediction results has been obtained.
Furthermore, comparisons to existing state-of-the-art lossless
image predictors and coders have demonstrated the superiority
of the proposed system.
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