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Adaptive Lossless Image Coding Using Least Squares
Optimization With Edge-Look-Ahead

Lih-Jen Kau and Yuan-Pei Lin, Senior Member, IEEE

Abstract—In predictive image coding, the least squares
(LS)-based adaptive predictor is noted as an efficient method
to improve prediction result around edges. However pixel-by-pixel
optimization of the predictor coefficients leads to a high coding
complexity. To reduce computational complexity, we activate the
LS optimization process only when the coding pixel is around an
edge or when the prediction error is large. We propose a simple
yet effective edge detector using only causal pixels. The system
can look ahead to determine if the coding pixel is around an edge
and initiate the LS adaptation to prevent the occurrence of a
large prediction error. Our experiments show that the proposed
approach can achieve a noticeable reduction in complexity with
only a minor degradation in the prediction results.

Index Terms—Adaptive prediction, context modeling, edge de-
tection, entropy coding, least squares (LS) optimization, lossless
image coding.

I. INTRODUCTION

ANY OF THE recent advances in lossless image coding

are based on predictive coding with context modeling
[1]-[8]. Moreover, the image model is assumed to be stationary
during prediction. However, this rarely happens in the real world
and large prediction errors can take place especially when the
coding pixel is around edges. Recently, linear predictors adapted
by least squares (LS) optimization have been proposed as an
efficient approach to accommodate varying statistics of coding
images [1]-[4]. Among which, edge-directed prediction (EDP)
[1] pointed out that the superiority of LS optimization is in
its edge-directed property. For complexity consideration, per-
forming the LS adaptation process in a pixel-by-pixel manner
is regarded as prohibitive. Therefore, the EDP [1] proposed ini-
tiating the LS optimization process only when the prediction
error is beyond a preselected threshold such that the compu-
tational complexity can be reduced. The EDP [1] has made a
noticeable improvement over the state-of-the-art lossless image
coder—context-based adaptive lossless image coding (CALIC)
[S].

As large prediction errors usually take place in pixels around
an edge, the prediction result can be improved if we can foresee
the existence of an edge. Therefore, we propose an adaptive pre-
dictor with edge-look-ahead which can fully exploit the edge-di-
rected characteristic of the LS-based adaptation process. To do
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Fig. 1. Ordering of pixels for prediction inputs.

this, we propose a simple and efficient edge detector using only
causal pixels, i.e., pixels that have already been coded. With
the proposed edge detector, the predictor can look ahead if the
coding pixel is around an edge and initiate the LS adaptation
process beforehand to prevent the occurrence of a large predic-
tion error. We will see that the proposed edge detector, though
very simple, can pick out the edges successfully in the exper-
iments. Our experiments also show that a very good tradeoff
between the computational complexity and the prediction result
can be obtained.

The rest of the paper is organized as follows. Section II in-
troduces the proposed “edge detector.” The LS-based adaptive
predictor is given in Section III. Experimental results of the pro-
posed method and comparisons to existing predictors and coders
are given in Section I'V. A conclusion is given in Section V.

II. EDGE DETECTOR

To determine whether the coding pixel is around an edge, we
propose a very simple algorithm that uses only causal pixels. It
should be noted that conventional edge detectors, e.g., “Sobel”
operator, can not be applied here because they use noncausal
pixels.

We observe that the variance of an area that contains an edge
is usually large. Furthermore, the histogram of such an area
tends to have two peaks, one on each side of the mean value.
We will use these two observations to determine the existence
of an edge. We define the texture context r of a coding pixel as
the collection of the four nearest causal pixels x,, (1), ..., z,(4)
in Fig. 1

k= {z,(1),...

The mean Z and variance o of the texture context are calculated.
Moreover, the four pixels can be divided into two groups, the
pixels with gray levels higher than Z in one group xj and the
rest in another x;. We also compute the variance O'}ZL, crl2 of those
pixels in kj and x; respectively.

@ (4)}- ey
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A pixel around an edge is likely to have a large o2 but small
o7 and 0. We determine whether the coding pixel is around an
edge if the following two conditions are both satisfied:

2

o2 >, and 5 > 72 2

0.01 4 o} + o;
where 0.01 is added so that the denominator of (2) does not
become 0 when o7 and o} are both zero. The case that o7 and
o? are both zero can occur in an artificial image. We have found
through experiments that v; = 100 and 7, = 10 work very well
and these values will be used throughout the paper.

III. LS-BASED ADAPTIVE PREDICTION

In this paper, the predicted value of the coding pixel is a linear
combination of its causal neighbors. The corresponding inputs
for different prediction orders are shown in Fig. 1 where the
ordering of pixels is based on the distance to the pixel to be
encoded. Therefore, the predicted value z,, of x,, is given by

n = a(k)zn(k) 3)

where N is the prediction order, z,(k) is the kth nearest
neighbor of z,, and a(k) is the corresponding predictor coef-
ficient.

To adapt the predictor to the varying statistics around the
coding pixel, the LS-based adaption process is activated when-
ever the two conditions in (2) are satisfied or when the prediction
error is greater than a predefined threshold. Suppose we have M
pixels in the training area, our objective is to find a least-square
solution for the system

Pa=y )
where
ot e R
P=| " . :
ERVICORPVIC) BNRET0\)

is an M x N matrix with its rows consisting of the N neigh-
bors of the M training pixels, a = [a(1),a(2),...,a(N)]T
is the Nth predictor coefficient vector to be determined and
Y = [Tn-1,Tn_2,-.. ,a:n_M]T is the M -dimensional vector
consisting of the M training pixels.

To minimize the square errors, ||y — Pa)
a should satisfy the normal equations [10]

%, for (4), the vector

PTPa=PTy. )

If we define B = PTP and c = PTy, (5) can be written as
Ba=c (6)
where B is an N x [N symmetric matrix and c is an N-dimen-

sional vector. There are well-developed numerical approaches
to solve (6). For the case that P has full rank; i.e., rank NV,
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Fig. 2. (a) Image “Shapes.” (b) Pixels for which (2) is satisfied in the image
“Shapes.”
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Fig. 3. (a) Image “Noisesquare.” (b) Pixels for which (2) is satisfied in the

image “Noisesquare.”

PTP is nonsingular and positive definite. The normal equa-
tions will have a unique solution a = (PTP)~!PTy. In this
case, the Cholesky decomposition, a fast algorithm which re-
quires only half the usual number of multiplications than alter-
native methods, can be used to solve (6) [10], [11].

If P is defective; i.e., rank < N, PTP fails to be positive
definite and the singular value decomposition (SVD) provides
the key to solve (6) [10]. Indeed, the positive definite property
of B can be easily examined in the process of Cholesky decom-
position [11].

IV. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed predictor with edge-look-ahead. Comparisons to existing
state-of-the-art predictors and coders are also given. All the
test images used in the experiments are from the website of
TMW![7]. For LS adaption, we use the same parameters as
defined in EDP [1] ; that is, the same training area and the
same error threshold. We first demonstrate the usefulness of
the proposed edge detector and then present the bit rate perfor-
mance of the system. Finally, we give a description about the
computational complexity of the proposed system.

The Edge Detector

To demonstrate the effectiveness of the proposed edge de-
tector, we use the image “Shapes” [Fig. 2(a)], which is an ar-
tificial image with many edges and lines. The pixels that satisfy

Thttp://www.csse.monash.edu.au/~bmeyer/tmw/

Authorized licensed use limited to: National Chiao Tung University. Downloaded on October 13, 2008 at 06:33 from IEEE Xplore. Restrictions apply.



KAU AND LIN: ADAPTIVE LOSSLESS IMAGE CODING USING LS OPTIMIZATION

50 100 150 200 250 300 350 400 450 500
(@) (b

50 100 150 200 250 300 350 400 450 500

Fig.4. (a)Image “Lennagrey.” (b) Pixels for which (2) is satisfied in the image
“Lennagrey.”
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Fig. 5. Pixels for which LS adaption is used in the proposed edge-look-ahead

predictor for the image “Lennagrey.”

the two conditions in (2) are marked in Fig. 2(b). We can see
from Fig. 2(b) that the edge detector has successfully picked
out the pixels around edges. To test the robustness of the de-
tector, we apply the edge detector to the image “Noisesquare”
[Fig. 3(a)], an image with salt-and-pepper noise. The pixels
picked out by the edge detector are as shown in Fig. 3(b). We see
from Fig. 3(b) that the edge detector is robust to moderate salt-
and-pepper noise. In addition to artificial images, we also apply
the edge detector to natural image, “Lennagrey” [Fig. 4(a)].
As can be seen in Fig. 4(b), the pixels around edges in image
“Lennagrey” have been picked out successfully.

Performance of the Proposed System

The usefulness of the proposed predictor with edge-look-
ahead mechanism can be demonstrated through the following
experiment. We construct two tenth-order LS based predictors;
one with the use of the proposed edge-look-ahead mechanism
and the other performs LS adaptation in a pixel-by-pixel
manner. Then we compare the performance of the two pre-
dictors. The image “Lennagrey” in Fig. 4(a) is used for this
experiment.

For the predictor with edge-look-ahead, the pixels for which
LS adaption is activated are shown in Fig. 5. Overall, about
17% of pixels activate the LS adaptation process. The image
of uncompensated prediction errors and the corresponding
histogram are shown in Figs. 6 and 7 respectively. As can be
seen in Fig. 6, the proposed mechanism performs very well
around edges. For comparison, we also show in Fig. 7 the
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Fig. 6. Image of uncompensated prediction errors using the proposed
edge-look-ahead approach for “Lennagrey.”
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Fig. 7. Histogram of prediction errors for the proposed approach and that of a
pixel-by-pixel adaptation.

histogram of uncompensated prediction error when the LS
adaptation process is performed in a pixel-by-pixel manner.
The histogram using the proposed approach is very close to
that with pixel-by-pixel adaptation although only 17% of pixels
activate the LS adaptation process. The proposed approach has
achieved a good tradeoff between the prediction results and the
computational complexity. Indeed, the entropies corresponding
to the two histograms in Fig. 7 are respectively 4.159 bits
(Proposed approach) and 4.145 bits (adapted in a pixel-by-pixel
manner).

Comparisons to Existing State-of-the-Art Predictors

Table I gives comparisons of uncompensated prediction er-
rors for a set of eight test images in first-order entropies. To have
a comparison with the existing linear and nonlinear predictors,
we have completed a set of predictors with different orders from
4 to 10. The results of a median edge detector (MED) [6], a gra-
dient adjusted predictor (GAP) [5] and an EDP with different
orders are taken from [1]. As can be seen in Table I, the pro-
posed system can remove the statistical redundancy efficiently.
It achieves noticeable improvement when compared with MED
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TABLE 1
FIRST-ORDER ENTROPIES OF PREDICTION ERRORS

lmge | MED GAP EDP Proposed Algorithm Pixelby Pixel Optimization
| N=4 | N=6 | N=8 [N=10, N=4 N=6| N=8 N=10| N=4| N=6, N=8 N=10
Baboon | 6.28  6.22 | 6.04 | 6.01 | 6.00 | 599 | 6.03 599 | 598 598 | 6.03| 599 598 | 598
Lena | 490 475 4.64 |4.60 | 4.59 | 458 458 453|453 4.51 |4.58 | 4.53 | 4.53 451
Lennagrey | 4.56  4.40 1 4.32 | 426 | 424|422 424 420 4.19 416 422|418 4.17 4.15
Peppers | 4.95 | 478 | 4.55 | 452 | 4.51 | 4.50 448 445|444 443 | 447|443 443 443
Barb 521 | 5.15 | 4.67 | 444 | 440 | 435 4.52 436 | 430 425 446|431 426 421
Barb2 | 5.19 | 5.06 | 4.93 | 480 | 479 | 478 1490 4.77 | 4.75 | 4.75 |4.88 | 475 4.74 4.74
Boats | 4.31 429 1420 | 4.14 | 412 |4.10 4.16  4.10 | 4.07 4.05 |4.07 | 4.00 | 3.97 |3.96
GoldHill | 4.72 | 470 | 4.64 | 4.60 | 4.59 | 4.58 | 4.64  4.60 | 4.59 4.59 | 4.63 | 4.58  4.57 | 4.57
Average | 5.02 4.92 475 |4.67 | 4.66 | 4.64 4.69 4.63 | 461 459 |4.67| 4.60 | 4.58 4.57

TABLE 1I

COMPARISONS WITH EXISTING LOSSLESS IMAGE CODERS (IN BITS/SAMPLE). THE SECOND COLUMN IS EXECUTION TIME OF PROPOSED EDGE-LOOK-AHEAD
APPROACH ON A PIII-600 MHZ MACHINE

Image ‘Proposed.seconds JPEG-LS [6] | CALIC [5] | EDP [1] [TMW [7]
Baboon 581 844 604 588 581 | 573
Lena | 434 | 602 | 461 | 448 440 | 430
Lennagrey 3.94 | 587 | 424 | 411 | 402 | 391
Peppers | 426 | 5.93 | 451 | 442 | 435 | 425
Barb | 4.11 | 741 469 | 432 | 411 | 4.09
Barb2 | 452 1119 469 453 452 | 438
Boats | 372 9.48 | 393 | 383  3.80 | 3.61
GoldHill 436 932 | 448 439 439 | 427
Average | 438 | 7.96 | 4.65 @ 450 @ 443 | 432
TABLE III

PERCENTAGE OF PIXELS PERFORMING LS ADAPTION AND NUMBER OF PIXELS PERFORMING CHOLESKY DECOMPOSITION AND SVD

Proposed linear predictor with edge-look-ahead
Image N=4 N=6 N=8 N=10

% | Cholesky| SVD | % | Cholesky| SVD | % | Cholesky| SVD | % | Cholesky| SVD

Baboon | 65.1| 170545 0] 64.7| 169588 0] 64.7| 169651 0] 64.5| 169203 0
Lena 24.4| 63989 16| 23.9| 62681 52| 23.9| 62568 76| 23.4| 61136 83
Lennagrey | 18.2| 47757 14| 17.9| 46856 29| 17.9| 46754 42| 17.4| 45607 32
Peppers | 19.0| 49789 0| 18.4| 48362 0| 18.3| 47940 0| 18.1| 47567 0
Barb 35.8] 93825 0| 34.8| 91254 0] 34.5| 90552 0| 34.3| 89946 0
Barb2 39.7| 164570 0] 38.7| 160509 0| 38.8| 160888 0] 38.8] 160829 0
Boats 193] 79992 65| 18.8| 78030 0| 18.5| 76863 21| 18.3| 76036 36
Gold Hill | 24.8| 102857 1| 24.2| 100169 0] 24.0] 99628 0] 239 99086 0
Average | 30.8] 96666 | 12.0 | 30.2| 94681 | 10.1 | 30.1| 94356 | 17.4 | 29.9| 93676 | 18.9

and GAP predictor. The proposed predictor also gives lower en-
tropies when compared with those of EDP [1]. Moreover, the
results of the proposed approach are very close to those with
pixel-by-pixel LS adaptation.

To compare with state-of-the-art lossless coders, we also
complete a sixth-order coder. We borrow the bias cancellation
techniques in [8] so that the prediction is further refined through
context modeling. The refined error signal is then entropy en-
coded using conditional arithmetic coding [9]. Table II gives
the actual bit rates by JPEG-LS [6], CALIC [5], EDP [1], and
TMW [7] for a set of eight test images. In Table II, the results of
CALIC, EDP and TMW are taken directly from [1] and those
of the JPEG-LS are simulated with the program from the web-
site of LOCO-I [6]. All the bit rates reported by the proposed
algorithm are obtained using the same parameters described in
previous sections and no individual optimization is performed.
We also show in the second column of Table II the execution

time of the proposed coder so that we can get a picture on the
runtime performance of the proposed coder. Table II shows that
the proposed system achieves lower bit rates than JPEG-LS [6],
CALIC [5], EDP [1] and provides competitive results with the
highly complex two-pass coder TMW [7].

Computational Complexity

Numerically, the normal equations [(5) and (6)] can be solved
by Cholesky decomposition or SVD depending on the rank of P
in (4). For P to be full-ranked, the Cholesky decomposition can
be used and it requires only N?/6 multiplications to solve (6),
which is about half the usual number of multiplications than al-
ternative methods [10], [11]. If P is defective, SVD, which re-
quires much higher computations, is applied. Fortunately, our
experiments show that most of the LS adaptations in the coding
process are solved by the use of Cholesky decomposition. This
can be seen in Table III, where we have listed the percentage
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TABLE IV
OPERATION COUNTS FOR EDGE DETECTOR IN (2)
Operation Compare ADD/SUB MUL/DIV Square
Edge detection n+2 <4n <7 < (nt+3)

[N

is the number of pixels in texture context. In this paper, n=4

TABLE V
COMPARISONS OF EXECUTION TIME BETWEEN PROPOSED ALGORITHM
AND THOSE OF PIXEL-BY-PIXEL ADAPTATION (IN SECONDS, ON A
PIII-600 MHZ MACHINE)

Image Proposed Algorithm | Pixe!—by-Pixel Adaptation

N=4 | N=6 N=8 | N=10 N=4 N=6| N=8 | N=10

Baboon | 2.30 | 7.54 15.41 |22.49 | 3.41 11.53|23.20 |33.98
Lena | 0.99| 3.06 6.04| 855 3.43 11.49|23.54|57.58

Lennagrey| 0.83 | 2.38 | 4.58 | 6.41 | 3.49 11.18|23.36 |34.59
Peppers | 0.84 | 2.40 4.68 | 6.63 | 3.30 11.24 |23.02 |33.66
Barb 1.46 | 4.18 | 8.48|12.25 | 3.35 11.28 |23.08 |34.02

Barb2 | 2.45| 7.56 14.91|21.93 | 5.72 18.00|59.46 |90.95

Boats | 1.33 | 3.84 7.34|10.53 | 5.38 17.73|36.63 |53.80

GoldHill | 1.61 | 4.85 9.61 |13.61 | 5.70 | 17.70 | 59.17 |90.97
Average | 1.48 | 448 8.88 |12.80 | 4.22 13.76[33.93 |53.69

of pixels performing LS adaption and the number of pixels per-
forming Cholesky decomposition or SVD for predictors with dif-
ferent orders. Indeed, this is because pixels around boundaries
usually have large variation in the gray level and thus the matrix
P in (4) is seldom defective. Therefore, most of the computa-
tions take place in forming the normal equations (6) rather than
solving them. For this, [2] had proposed an inclusion and exclu-
sion method for fast construction of the PTP matrix.

The operation counts for each coding pixel in the edge detec-
tion process are listed in Table IV. It should be noted that there
is no need to check both of the two inequalities in (2) for every
pixel. Only when the variance inequality holds then we check
the other condition. Therefore, the actual computational cost is
lower than what is listed in Table IV. The execution time (in
seconds) of the proposed algorithm and that of pixel-by-pixel
adaptation for different orders of predictors are listed in Table V.
The proposed approach has achieved a noticeable improvement
on the runtime performance with only a minor degradation in
entropy when compared with that of pixel-by-pixel adaptation
approach (Table I).
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V. CONCLUSION

In this paper, an LS-based adaptive predictor for lossless
image coding has been proposed. By exploiting the edge-di-
rected characteristic of the LS-based predictor, we propose
initiating the LS adaptation process only when the coding pixel
is around an edge or when the prediction error is greater than
a predefined threshold. For this, a simple yet effective edge
detector using only causal pixels is proposed. With the pro-
posed edge detector, the predictor can look ahead if the coding
pixel is around an edge and initiate the LS adaptation process
beforehand to prevent the occurrence of a large prediction
error. When compared with the pixel-by-pixel LS adaptation,
the proposed approach can achieve a noticeable reduction in
complexity with only a minor degradation in entropy; a good
tradeoff between computational complexity and the prediction
results has been obtained.
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