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Linear Phase Cosine Modulated Maximally 
Decimated Filter Banks with Perfect Reconstruction 

Yuan-Pei Lin, Student Member, IEEE, 

Abstract-We propose a novel way to design maximally deci- 
mated FIR cosine modulated filter banks, in which each analysis 
and synthesis filter has linear phase. The system can be designed 
to have either the approximate reconstruction property (pseudo- 
QMF system) or perfect reconstruction property (PR system). 
In the PR case, the system is a paraunitary filter bank. As in 
earlier work on cosine modulated systems, all the analysis filters 
come from a FIR prototype filter. However, unlike in any of the 
previous designs, all but two of the analysis filters have a total 
bandwidth of 27r/M rather than 7r/M (where 2M is the number 
of channels in our notation). A simple interpretation is possible in 
terms of the complex (hypothetical) analytic signal corresponding 
to each bandpass subband. 

The coding gain of the new system is comparable with that 
of a traditional M-channel system (rather than a 2M-channel 
system). This is primarily because there are typically two band- 
pass filters with the same passband support. Correspondingly, 
the cost of the system (in terms of complexity of implementation) 
is also comparable with that of an M-channel system. We also 
demonstrate that very good attenuation characteristics can be 
obtained with the new system. 

I. INTRODUCTION 

HE M-channel maximally decimated cosine modulated T filter bank shown in Fig. 1 has been studied extensively 
in [1]-[19]. When the system in Fig. 1 is alias free, it is an LTI 
system with transfer function T(z ) ,  as indicated in Fig. 1. T ( z )  
will be called the distortion function or the overall response 
in the following discussion. 

The system in Fig. 1 is said to be a cosine modulated filter 
bank if all analysis and synthesis filters are generated by cosine 
or sine modulation of one or two prototype filters. Cosine 
modulated filter banks [5]-[15] are well known for their design 
cost saving and implementation saving. Two types of cosine 
modulated filter banks have been developed: pseudo-QMF 
systems [5]-[9] and perfect reconstruction systems [ 101-[15]. 
Unlike a PR system, a pseudo-QMF filter bank is only approx- 
imately alias free and has approximate reconstruction property 
(and the approximation improves with filter order). 

A. Previous Work 
In [7], Chu mentioned three approaches for designing cosine 

modulated filter banks with approximate aliasing cancellation. 
The first one involves designing two prototype filters. The 
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implementation cost for the analysis bank is that of two 
prototype filters plus cosine and sine modulation. The second 
method, similar to the one proposed earlier by Rothweiler 
[6], requires only one prototype filter. Its distortion T ( z )  has 
linear phase and approximately flat magnitude response, but 
individual analysis and synthesis filters do not have linear 
phase, which is important for image coding applications. The 
third method, given in [7], needs also only one prototype filter. 
With this method all the analysis and synthesis filters have 
linear phase, but the resulting IT(eJw)l has a peak or a null 
at zero frequency and at T. 

Recently, some cosine modulated maximally decimated 
systems with perfect reconstruction property have been pro- 
posed [lo]-[15]. In [lo], the individual filters in the filter 
bank have linear phase but the length of the prototype can 
not be larger than the number of channels. Although the 
length of the prototype in [11]-[15] is not as restricted, the 
individual analysis and synthesis filters do not have linear 
phase even if the prototypes have linear phase. In [16], some 
techniques for characterizing and designing paraunitary linear 
phase filter ban!ks have been developed, but these are not 
cosine modulated. 

In general, the following results are typically desired in a 
bank: 
Cancellation of aliasing errors: Exact or approximate 
alias cancelation is desired. 
Distortion.finction: T ( z )  is exactly or nearly a delay. In 
particular the magnitude response IT(eJW) I is required 
to be flat. 
Cosine modulation: All filters must be cosine modulated 
versions of a prototype. In this case, only the design 
of the prototype filter is needed. Besides the implemen- 
tation cost is only that of the prototype filter plus one 
DCT matrix working at a decimated rate. For instance, 
in an M channel maximally decimated filter bank, the 
DCT matrix computation is performed after M fold 
decimators. Design cost and implementation cost are 
significantly reduced. 
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Fig. 2. New setup for derivation of the cosine modulated maximally decimated filter bank. 
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Fig. 3.  
(a) First subsystem; (b) second subsystem. 

Magnitude responses of the cosine modulated analysis bank filters: 

4) Linear phase property of analysis and synthesis $filters: 
These are desired in image coding applications, when 
the subbands are heavily quantized. (The nonlinearity of 
phase of individual filters leads to some artifacts in the 
reconstructed image.) 

5) Filter length: If the filters are restricted to be short, they 
can not have very good attenuation. So the length of the 
filters should be allow to be large. 

In this paper, we will show how to achieve all of these 
properties.' 

B. The New System 

We propose a novel way to design a cosine modulated filter 
bank with perfect reconstruction or approximate reconstruc- 
tion. The set up of this new filter bank is shown in Fig. 2. It 
has 2 M channels and is maximally decimated. Every analysis 
and synthesis filter in this system is some cosine modulated 
version of the same prototype filter. In the nearly PR case, 
the new filter bank can be designed to be almost alias free. 
Its overall response, T ( z ) ,  has approximately flat magnitude 
response and linear phase. In the PR case aliasing is cancelled 
exactly and T ( z )  is merely a delay. In both systems, every 
analysis and synthesis filter has linear phase property. 

We would like to regard this filter bank as a connection 
of two subsystems. The first subsystem has M + 1 channels 
and the second subsystem has 2\11 - 1 channels. Fig. 3(a) and 
(b) show, respectively, the magnitude response sketches of 
analysis filters in the two subsystems. Notice that the second 
subsystem does not have filters with pass-bands covering 
zero frequency or 7r while the first subsystem does. The 
synthesis filters are time-reversed versions of analysis filters, 
and therefore have identical magnitude responses. 

'While this paper was under preparation, we learnt from Dr. Fliege of 
Hamburg University that he has developed similar results [18]. 

In a conventional N channel maximally decimated cosine 
modulated PR or approximately PR system, all filters have the 
same total bandwidth 2x/N (including positive and negative 
kequency) and the same height in passband. Their pass-bands 
do not overIap significantly. When the subband signals are 
decimated by N ,  there is no severe aliasing. Aliasing is caused 
only by the nonideal nature of the bandpass filters, which have 
a finite stopband attenuation and nonzero transition bandwidth. 

The new system, however, is unusual. As shown in 
Fig. 3(a), HI, (z )  and H i ( z )  have the same spectral supports 
and total bandwidth 2 x / M ,  i.e., two times wider than they 
are in the traditional case while Ho(z) and H M ( z )  have total 
bandwidth only x / M .  Also Ho(z) and H M ( z )  have 8 times 
the height of other filters. In each channel serious aliasing 
occurs. However, since there is spectral overlapping of the 
filters in the first and second subsystems, we are able to cancel 
this aliasing. Cancellation of these aliasing components is 
possible by judiciously choosing the parameters. The supports 
of the analysis filters are similar to those given in [lo]. In 
addition, perfect reconstruction is possible with this scheme 
by imposing certain conditions on polyphase components of 
the prototype filter. 

Furthemore, in conventional N channel filter banks, each 
subband signal represents the input signal in that particular 
subband. In the presence of quantizers in the subbands, bits 
are aUocated based on subband energy. We will explain in 
Section V that the 2M-channel cosine modulated filter bank 
can be interpreted as a modified DFT filter bank. As a result, 
the subband signals retain the usual meaning and can still be 
quantized in the usual manner although some filters in the 
new system have twice the bandwidth of a filter in a typical 
M-channel filter bank. Detailed discussion is given in Section 
V. An image coding example is included to demonstrate the 
usefulness of the system. 

Although this is a 2M channel system, we will show that 
design cost and implementation cost are equivalent to that 
of a conventional M channel maximally decimated cosine 
modulated filter bank. The coding gain performance is also 
close to that of an 2\11 channel system. 

C. Paper Outline and Notations 

This paper is organized as follows: In Section 11, we 
introduce the new maximally decimated linear phase cosine 
modulated filter bank with approximate reconstruction prop- 
erty. The prototype filter is further constrained in Section 
111 to achieve perfect reconstruction. Necessary and sufficient 
conditions for PR with this scheme will be given therein. 
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Efficient implementation of this new filter bank is presented in 
Section IV. Coding gain and optimal bit allocation of the new 
system will be discussed in Section V. Numerical examples 
and tables of prototype filter coefficients are given in Section 
VI. 
Notations: 

1) Boldfaced quantities are used to represent matrices. 
2) The notations AT, A*, and At represent the transpose, 

conjugate, and transpose-conjugate of A. The 'tilde' 
notation is defined as follows: A(z) = At(l/z*).  

3) Matrix 11, denotes a k x k identity matrix and JI, denotes 
a k x k reversal matrix with 

/o I . .  0 1) 

4) The delay chain e(.) is the vector 

e(.) = [I z - l . .  . z - ( ~ - ' ) ] ~ .  

5 )  The unit-pulse, denoted as s(n), is defined according to 

1 n = 0 ,  c 0 otherwise. s(n) = 

6)  The value of the function, is the smallest integer 
greater or equal to x and the value of the function, 1x1, 
is the largest integer less or equal to x. 

11. LINEAR PHASE COSINE MODULATED RLTER 

In this section, we introduce a new maximally decimated 
linear phase cosine modulated filter bank with approximate 
reconstruction property. The system is nearly alias free. Alias- 
ing errors decrease as the stopband attenuation of the prototype 
increases. The distortion function T(x )  has linear phase and 
approximately flat magnitude response. Every analysis and 
synthesis filter comes from modulation of the same prototype 
filter. Furthermore, all of them have linear phase. 

Consider the 2 M channel maximally decimated filter bank 
shown in Fig. 2. Suppose prototype filter PO(.) is of order N 
and linear-phase. Let 

BANKS WITH APPROXIMATE RFiCONSTRUCTION 

Uk(z) = po(zw!M) (1) 

where WiM = e-Jk?r/M. In all equations to follow un- 
subscripted W stands for WZM unless otherwise indicated. 
Magnitude responses of Po(.) and U k ( z )  are shown in Fig. 4. 
As we can observe from Fig. 4, IUk(eJ")I is a shift of 
IPo(eJW)I by k r / M .  For HI,@) to be a cosine modulation 
of Po(z), we can choose 

Hk(Z) = U k U k ( 2 )  + aiU-k(z) 

for some a k .  Taking a hint from paraunitary perfect recon- 
struction filter banks, let us constrain 

Fk(Z) = z- io&(z),  F;(z)  = z-"";(x) (2)  

-knlM 0 kn /M o 

Fig. 4. Magnitude responses of Po ( z )  and uk ( z )  

for some i o .  We will show that the choice 

H;(z )  = z-M((u;Uk(z)  + U p L & ) ) ,  

k = 1,2 ,  * .  . , M  - 1 

for the second set of filters will yield approximate reconstruc- 
tion for appropriate choice of ai  to be determined later. To 
keep FL(z) causal, we will take i o  = A 4  + N in (2). 

Summarizing, the filters to be considered in our system will 
have the form 

H k ( X )  = akUk(z)  + . p , ( Z ) ,  k = 0,1,. . . , M ,  
H; ( z )  = z - - M ( a ; u k ( z )  + @ L k ( Z ) ) ,  

Fk(Z) = z - - ( N + M ) & ( z ) ,  

IC = 1 , 2 , . .  . , M - 1, 
k = 0,1, .  ..,Ad, 

F;(x) = z - - ( ~ + ~ ' ~ ? ; ( z ) ,  IC = 0 , 1 , .  . . , M - 1. (3) 

We now show that with proper design of Po(.) and appropriate 
choices of a k ,  U;, this filter bank has the following four 
properties: 1) lT(eJW)l is approximately flat, 2) T ( z )  has linear 
phase, 3) the system is nearly alias free, and 4) every analysis 
and synthesis filter has linear phase. 

I) Flatness ofIT(eJ")I: From [17], we know that the dis- 
tortion function T ( z )  of the 2M channel system in Fig. 2 can 
be expressed as 

. / M  M - 1  

Assume that nonadjacent bands of U k ( z )  do not overlap, i.e. 

(5) 

This assumption is reasonable if Po(x) has stopband edge 
w, < 2 and large enough stopband attenuation. In this case 
the distortion function becomes 

lUk(ej")Uk(e'"Wi)l M 0, i = 2 , .  . . ,2M - 2 .  

. , - ( N t M )  
D \  

??(e'") M -- 
2 M -  

k=l / 

If we choose lakl = = 1, for k = 1,. . . , M - 1 and 

then we have 

which can be designed to be nearly flat by optimizing over the 
filter coefficients of PO(.) [171. 
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2 )  Linear Phase Property of T ( z ) :  Using our constraint 
that the synthesis filters are time-reversed versions of the 
corresponding analysis filters, the distortion function assumes 
the form 
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/ M  M-1 

\k=O k=l 

which shows that T ( z )  has linear phase. 
3) Approximate Alias Cancellation: A 2M channel maxi- 

mally decimated filter bank as in Fig. 2 is alias free if all alias 
transfer functions are zero. The alias transfer function of the 
ith alias component as defined in [17] is 

We say that the system in Fig. 2 is alias free if Ai(z) = 0, 
for i = 1 ,2 , .  . . ,2M - 1. With the choice of analysis and 
synthesis filters in (3), we have 

+ A{')(z) + Aj2'(z) + Ai3'(.) + AY'(.)) (9) 

where 

k=l 
M-1 

k=l  
111-1 

k = l  

By appropriate choice of a0 and a M  and some relation between 
N and M ,  we will ensure that A,(z) z 0. More specifically, 
if we choose 

ak = 1, a; = --, k 1 1, 2,  . . . , M - 1 (10) 
and 

N = (2m0 + l)M for arbitrary integer m0 (11) 

and further constrain a0 and aM as in (6), then we can 
verify that A,(%) E 0 (to be verified in Appendix A). The 
above values of ak and a/, are chosen for simplicity. A 
more generalized formula can be derived. However, the more 
generalized expressions for ak and a/, do not provide more 
flexibility in the design of the prototype. They will not be 
discussed. 

4) Linear Phase Property ofIndividua1 Analysis and Synthe- 
sis Filters: Having determined the parameters U k  and a/,, we 
can write the impulse responses of the analysis and synthesis 
filters 

hk(72) = J Z p o ( n )  cos ( G k n ) ,  k = 0 or M ,  

hk(n) = 2po(n) cos -kn , k = 1,. . . , M - I, 

ht(n) = 2po(n - M )  sin (-fi(n M - M I ) ,  

fk(n) = h',(N + M - n),  k = 1,. . , , M - 1. 

G 
%- 

k = I , . .  . , M - 1, 
fk(n) = h k ( N +  M - n ) ,  k = 0 , .  . . , M ,  

(12) 

By using the linear phase property of PO ( 2 )  and the constraint 
N = (27x0 + l)M we can verify that every filter above has lin- 
ear phase. The number of symmetric filters and antisymmetric 
filters agrees with the result from [ 161; in a 2M channel linear- 
phase paraunitary filter bank, M analysis filters are required to 
be symmetric and the remaining M filters are antisymmetric. 

5) Relation to a Paraunitary System: Having decided the 
values of a k  and U; in (3) ,  we can obtain symbolic magnitude 
reponses of Hk(z )  and HL(z) as in Fig. 3. In our formulation, 
the synthesis filters are constrained to be the time-reversed 
versions of corresponding analysis filters. Consequently, if 
the system in Fig. 2 is PR, then it is a paraunitary system. 
In a paraunitary system, every filter has the same engergy, 
i.e., E, I fk (n)12 is a constant for all k .  However, the total 
bandwidth of H&) and H M ( z )  are only half that of all other 
filters. In order to have about the same energy as the other 
filters, IHo(e3W)I and IHM(eJ") l  have fi times the heights 
of other filters. In the derivation of properties (1) and (3) ,  
we need Ho(z)  and H M ( z )  to have fi times the heights 
of other filters for aliasing cancellation and flat IT(eJU) 1 .  
This is consistent with the equal engery property of filters in 
paraunitary systems. 

It can be verified that when the prototype filter is an ideal 
brick wall filter, the system in Fig. 2 is indeed a PR system. 

6)  Design Cost: An objective function reflecting the non- 
flatness of /T(eJ'-')l in (7) and the stop attenuation of PO(.) 
is [17] 

The objective function can be minimized by using nonlinear 
optimization packages [20]. The optimization is the same as 
in the case of traditional M channel cosine modulated filter 
banks [17]. 

Summarizing the results, we have shown that the system in 
Fig. 2 is a cosine modulated maximally decimated filter bank 
with approximate reconstruction property if the analysis and 
synthesis filters are chosen as in (12), N = (2m0 + l)M and 
the linear-phase prototype Po ( z )  is properly designed. 



111. LINEAR PHASE COSINE MODULATED FILTER 
BANKS WITH PERFECT RECONSTRUCTION 

Cosine modulated PR filter banks were reported in 
[ 111-[ 131. In [ 111, perfect reconstruction property is achieved 
by imposing some conditions on the polyphase components 
of the prototype filter so that the resulting filter bank is 
paraunitary. We will do something similar on the 2 M  channel 
system. We will show that the filter bank in Fig. 2 with 
analysis and synthesis filters as in (12) is paraunitary and 
hence PR if the polyphase components of PO(.) satisfy some 
conditions to be derived in this section. 

Let 
2M-1 

Po(.) = G , ( Z ~ ~ ) Z - ~  
n=O 

where Gn(z) is the nth type 1 polyphase component of Po(z). 
Then 

n=O 

Rewriting analysis filters in (3) in terms of polyphase compo- 
nents of Po(x) with a k ,  u i  and N as determined in Section 
11, we obtain 

2M-1 

H k ( z )  = 2 G , ( z ~ ~ ) z - ~  cos ( G k r r ) ,  
n=O 

I C = O , l ,  . . . ,  M, 

n=O 

IC=1 ,2  ,..., M-1. (14) 

Define the following 2 M-component vectors 

In addition, C and S are ( M  + 1) x M and ( M  - 1) x M 
matrices with 

[C],, = K, cos ( G m n ) ,  

m =  0, . . . ,  M, n = 0, . . . ,  M - 1  

and 
[SI,, = sin ( S m n ) ,  

m = l ,  ..., M-1,  n=O , . . . ,  M - 1  (18) 

where 

& = { -  A, i f m = O o r M ,  
I,  otherwise. 

We can rearrange (15) and obtain 

The analysis bank has type I polyphase matrix [17] given by 

Since the synthesis filters are time-reversed versions of 
corresponding analysis filters (3), we can write fT(z) = 
~ - ( ~ + " ) h ( z ) .  The synthesis bank has type I1 polyphase 
matrix given by 
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Using (14) the vector h(z) can be written as 

where gi(z) and Ai are diagonal matrices with 

From [17], we know if R(z)E(z) = C Z - ~ O I  for some constant 
c and nonnegative integer no, then the system in Fig. 2 is P R .  
By (20) and (21), we have (22), which appears at the bottom 
of this page. By exploiting the properties of C and S and using 
the same choice of N as in (1 l), we obtain (23), which appears 
at the bottom of the next page) (see Appendix B for proof). In 
(23), g,(z) is abbreviated g, for convenience. The right-hand 
side of (23) is equal to 212M if and only if the following two 
conditions are tirue: 

Condition 1: Go(.z)Go(z) = 1, 

and G " ( X ) G M ( Z )  = 1. (24) 
Condition 2: Gk(z )Gk(z )  + G k + ~ ( z ) G k + ~ ( z )  = 2, 
for k = 1 , 2  ,..., M-1. (25) 

Summarizing, we have the following theorem. 
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Theorem 3.1: If the above two conditions are imposed on 
Gk(z)  and, furthermore, the analysis and synthesis filters are 
as in (12) with the order of the prototype filter chosen as in 
(1 l), then the 2M channel maximally decimated system in 
Fig. 2 has the following properties: 

1) It is a cosine modulated system. 
2) It has perfect reconstruction, i.e., 2(n) = ex(. - no). 
3) Each of the 2M analysis and synthesis filters has linear 

4) The prototype filter PO(.) is Nyquist (2M)  and 

Remark on Theorem 3.1: In the thoerem, we have con- 
strained the order of the prototype N to be an odd multiple 
of M .  It can be shown that the theorem can be extended to 
the case when N + M is even. 

1) Nonzero Samples and Free Parameters of PO(.): 
Although Po(.) is of order N ,  the number of free parameters 
in Po(.) is only about N / 4  for reasons to be explained 
below. Notice that with N = (2mo + 1)M the first M + 1 
polyphase components of Po(z) have order ma and the last 
M - 1 polyphase components of Po(.) have order m0 - 1. 
Suppose that G ~ ( z )  has impulse reponse gk(n) .  To satisfy 
(25), it can be verified that g k ( 0 )  or g k ( m 0 )  must be zero 
for IC = 1 , 2 , .  . . , M - 1. From (24) we see that Go(.) and 
GM (2) are merely delays, i.e., of the form C Z - ~ O .  The nonzero 
samples and free parameters of Po(.) are discussed in two 
cases: odd M and even M. 

Case 1 M is Odd: Both G ~ ( z )  and G ~ + M ( z ) ,  for k = 
1,2, . . . , M - 1 have mo nonzero samples. As a result, PO(.) 
has 2mo(M - 1 )  + 2 nonzero samples. Since Po(.) is linear- 
phase, the polyphase components Gk(z)  and GM-k, for k = 
1 , 2 ,  . . . , M - 1 are time-reversed versions of each other. So 
are G ~ + M ( z )  and G z M - ~  for IC = 1,2 , .  . . , M - 1. These 
constraints reduce the number of free parameters to about N/2. 
But G ~ + M ( z )  is also related to G ~ ( z )  by (25). The number 
of free parameters is again cut down by half. The number of 
free parameters for PO(.) is only ( M  - l)mo/2 NN N/4.  

Case 2 M is Even: In this case, G ~ ( x )  are constrained as 
in odd M case with G+ ( 2 )  and G y  (2) satisfying additional 
conditions. By (25), G+((x) and G y ( z )  form a power 
complementary pair and they both have linear phase because 
Po(.) is linear-phase. As a result, G+((z) and G y ( z )  are 
further constrained in the following: 

phase. 

Po(z)&(z) is also Nyquist (2M). 

even mo,G+((z)G+(z)=2, and G y ( z )  = 0, 
odd mo, G ~ ( z )  = 0 

In the even M case, PO(.) has 2mo(M - 2) + 1 nonzero 
samples and free parameters wmo, which is equal to the 

and G y  ( . ) C y  (2) = 2. 

Fig. 5. Implementation of the 2M channel system. Both TI and TZ in the 
figure are of dimension M by 2 M .  

(b) 

Fig. 6.  Interpretation of zk (n )  and x;(n + M ) ,  le = 1 , 2 , .  . . , M - 1. 

total number of parameters for M - 1 case and is also close 
to Nf4. Therefore, when we increase the number of channels 
from 2(M - 1 )  to 2M (where M - 1 is odd), the number of 
free parameters for Po(.) does not increase. 

2) Design Complexity: Since the system in this case is PR, 
it is sufficient to minimize the stopband energy of the prototype 
filter under the two conditions in (24) and (25). This is similar 
to the case of traditional M channel cosine modulated filter 
banks [17]. 

Iv. EFFICIENT IMPLEMENTATION OF THE LINEAR 
PHASE COSINE MODULATED FILTER BANK 

The implementation cost of a conventional M channel 
maximally decimated cosine modulated filter bank is that of 
the prototype filter plus one DCT matrix working at M-fold 
decimated rate [17]. We will show that the proposed 2M 
channel linear phase cosine modulated system in Fig. 2 has 
nearly the same cost, i.e., number of computations per input 
sample is nearly the same. The implementation proposed here 
can be applied to both the approximate PR case (Section 11) 
and the PR case (Section 111). 

Define two M x 2M matnces 
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Fig. 7. Example 6.1-Approximate PR system: (a) Normalized magnitude responses of the first set of analysis filters: (b) magnitude responses of the second 

set of analysis filters; (c)  plot of aliasing  error^^^^:"-' IAz(eJw)12; (d) plot of amplitude distortion function MIT(eJw)I.  

where C,S,Al, and Rz are as defined in (17) and (18). 
From (15), we can draw Fig. 5,  the implementation of the 
2M channel cosine modulated system. The input to TI, a(.) 

is partitioned according to a(.) = (z:!:;). Similarly, 

b(n), which is the input vector to Tz, is partitioned as (::I:;). The vectors al(n), aZ(n), bl(n), and b2(n) are all 

of dimension M x 1. Their dependence on n will be dropped 
for convenience. As indicated in Fig. 5 outputs of T1 and Tz 
are dl and dp, respectively. 

dl =Tla,  and d2 =Tab. 

They can also be expressed in terms of a1 , a2, bl , and b2 as 
(Appendix C) 

d ,=S(bl -  (' 0 JM-i )bz) 

where [a2IO is the 0th element of a2, and r is fi the last 
column of C. From (26), we observe that the major compu- 
tation in T, is only the matrix C and the major computation 
in T2 is the matrix S. Matrices C and S can be implemented 
by fast algorithms for DCT and DST matrices [21]. But both 
computations are done after 2M-fold decimation, which is 
equivalent to computing one matrix after M-fold decimation. 
That is the same as the case in a conventional M channel 

maximally decimated cosine modulated filter bank [17]. The 
implementation of synthesis bank is similar. 

Notice that quantization of filter coefficients will not af- 
fect the relation that G ~ ( z )  is the time-reversed version of 
GM-k(z), for IC = 1 , 2 , .  . . , M - 1. Similarly for G z ~ - k ( z )  
and G ~ + M ( z ) ,  for k = 1,2 , .  . . , M - 1. We conclude that the 
linear phase property of the individual analysis and synthesis 
filters is preserved in spite of filter coefficient quantization. 

V. SUBBAND SIGNALS, CODING GAIN, 
AND OPTIMAL BIT ALLOCATION 

In a traditional N-channel subband coding system, the 
output zk(n) of the kth analysis filter has total bandwidth 
27r/N in [ -T,  7 r )  and is decimated by N.  This decimation does 
not cause aliasing except for the reason that the analysis filters 
are not ideal bandlimiting functions and cannot have infinitely 
sharp roll-off. This aliasing created due to practical limitations 
of filters is cancelled by the choice of synthesis filters. 

In the 2M-channel maximally decimated system of Fig. 2, 
however, the situation is very unusual. Each analysis filter 
has a total bandwidth of 27r/M in [ - - 7 r , 7 r )  [except Ho(z) 
and H M ( z ) ]  and yet its output is decimated by 2M. This 
means there will be severe aliasing even if the filters were ideal 
bandpass filters. Even this aliasing is cancelled by appopriate 
choice of synthesis filters, as already proved in the preceding 
sections. 

In the context of subband quantization and coding, one 
wonders how this system would perform: with such severe 
aliasing in the subbands, would it still be possible to obtain 
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I I 

w 
0.0 0.1 0.2 0.3 0.4 0.5 

[a) 

(b) 

Fig. 9. Example 6.3. Cosine modulated PR system: (a) Normalized magni- 
tude responses of the first set of analysis filters; (b) magnitude responses of 
the second set of analysis filters. 

Hk(z)  and HL(z) respectively, as in Fig. 6(a). With the filters 
constructed as in (12), we obtain 

X k ( Z )  = X(Z)(Uk(Z) + U-~(Z)), k = O , l , .  . . , M (27) 

k = 1 , 2  ,..., M-1 (28) 
XL(Z) = . - M X ( Z ) ( - j U k ( Z )  + j U - k ( Z ) ) ,  

where j = a. With (27) and (2Q we get the following 
expression: 

2z-"x(Z)u,(Z) = Z T M X k ( Z )  + jXL(Z) ,  

k 1,. . . , M - 1. (29) 

(b) 

Fig. 8. Example 6.2. Image coding example with,the linear phase subband 
coder design in Example 6.1: [a) Image of "Lenna" with 8 b/pixel; @) 
reconstructed version from subbands. The PSNR is 35.5 dB, and the subband 
bit rate is 0.35 b/pixel (bit allocation followed by entropy coding). 

the usual coding gain advantage? That is, would it still be 
possible to exploit the energy distribution of the original input 
signal z(n) in the usual way? In short, does the proposed filter 
bank scheme make sense as a subband coder? We now look 
deeper into this important aspect. 

A. An Interpretation of the Subband Signals 
To explain this, consider the filter bank in Fig. 2. Suppose 

z(n) is the input. Let zk(n) and zk(n) denote the outputs of 

If we take a real signal z(n) as the input of the complex 
coefficient filter ~ z - ~ U ~ ( Z ) ,  then the output is the right hand 
side of (29). The output represents the energy of z(n) in the 
U ~ ( Z )  subband (Fig. 4). From (29), we observe that the output 
of 2Uk ( z )  has real part z h  (n)  and imaginary part zk (n + nil-). 
Fig. 6(b) illustrates this relation. 

Thus, except for delays and scale factors, the signals xk (n) 
and zi(n) can be interpreted as the real and imaginary parts 
of the one-sided (hypothetical) complex subband signal yk (n) 
(which is analogous to the analytic signal of x k ( n )  [22]). 
Therefore, zk(n) and zi(n + M )  together retain the usual 
meaning of subband signals. From the fact that H~(z) and 
HL(z) have the same spectral occupancy (Fig. 3), we see 
that the energies of z k ( n )  and &(n) are essentially the 
same. These, in tum, are proportional to the energy of the 
hypothetical complex subband signal y k  (n). The decimation of 
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TABLE I 
PROTOTYPE FILTERS WITH STOPBAND ATTENUATION ABOUT 25 d13 AND ORDER 3M 

n M=7 M=8 M=9 M=l 1 M=l3 M=15 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
I5 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

0.0000000E+00 O.OMMO00E+OO O.MMOOWE+OO 0.0000000E+00 
O.OOOOOM)E+OO O.OOOOOOOE+OO 0.0000000E+00 O.MXXHWH)E+OO 
0.0000000E+00 O.OOOOOM)E+00 0.00000OOE+00 0.0000000E+00 
0.0000000E+OO 0.0000OE+00 O.OOOOOOOE+CU 0.0000000E+00 
1.8732471E-02 O.OMXXXX)E+OO 0.0000000E+00 O.OOOOOOOE+OO 
3.5665461E-02 1.8383085E-02 1.3193124E-02 0.0000000E+00 
5.6870395E-02 3.2890536E-02 2.2634022E-02 1.0140769E-02 
7.8559943E-02 5.1283753E-02 3.4499846E-02 1.6130896E-M 
9.5441539E-02 7.041688OE-02 4.7970428E-02 2.351 1272E-02 
1.0522026E-O 1 8.5364224E-02 6.1201 399E-02 3.2084683E-02 
I .0950993E-01 9.3996206E-02 7.2042075E-02 4.1267157E-02 

9.7873062E-02 7.9378732E-02 5.010561 1E-02 
9.9584507E-02 8.3539952E-02 5.7603527E-02 

8.5540423E-02 6.3180042E-02 
6.6845827E-02 

7.0130659E-02 
6.8999556E-02 

0.0000000E+00 
0.0000000E+00 
0.0000000E+00 
0.0000000E+00 
O.MHx)OOOE+00 
O.MHH)OOOE+OO 
I3.0000000E+00 
8.2246300E-03 
1.2364566E-02 
1.7353WE-02 
2.3139003E-02 
2.9520914E-02 
3.6116001E-02 
4.2403735E-02 
4.7872622E-02 
5.2198363E-02 
5.5323955E-02 
.5.740222 1 E-02 
5.8679392E-02 
5.9401 254E-02 

0.0000000E+00 
O.oOoOMX)E+OO 
0.0000000E+00 
0.0000000E+00 
0.0000000E+00 
O.OoOOOOOE+OO 
O.OMWXHX)E+OO 
0.0000000E+OO 
6.8684742E-03 
9.8544567E-03 
1.3401593E-02 
1.7506612E-02 
2.2101899E-02 
2.7027928E-02 
3.2028343E-02 
3.6784 105E-02 
4.0991781E-02 

4.7091 898E-02 
4.8986318E-02 
5.0264681 E-02 
5.1078668E-02 
5.1565 152E-02 

4.4448081 E-02 

M=16 M=l7 M=19 M=:21 M=24 

0.0000000E+00 
0.0000000E+OO 
0.0000000E+OO 
0.0000000E+00 
0.0000000EKX) 
0.0000000E+00 
0.0000000E+00 
0.0000000E+00 
0.0000000E+00 

-7.0567914E-03 
-9.9461336E-03 
-1.3300380E-02 
-1.7161896E-02 
-2.1408026E-02 
-2.5932379E-02 

-3.4808738E-02 
-3.8653819E-02 

-3.0482434E-02 

-4.1842661E-02 
-4.432824 1 E 4 2  
-4.61 38550E-02 
-4.73961 65E-02 
-4.821 1730E-02 
-4.8718561E-02 
-4.9226990E-02 

0.0000000E+00 
O.O000000E+00 
0.0000000E+00 
0.0000000E+00 
O.OOMKXN)E+OO 
0.0000000E+OO 
0.0000000E+OO 
O.O000000E+00 
O.O000000E+00 
5.9379618E-03 
8.234279OE-03 
1.0910574E-02 
1.3968583E-02 
1.7380301E-02 
2.1 07555 1 E-02 
2.4932616E-02 
2.8784655E-02 
3 ,2440869E-02 
3.5724832E-02 

4.0750965E-02 
3.8512137E-02 

4.2458746E-02 
4.37ooO99E-02 
4.4562085E-02 
4.5133321E-02 
4.5492424E-02 

0.0000000E+00 
0.0000MW)E+OO 
O.OOOMHX)E+OO 
0.0000000E+00 
0.0000000E+00 
0.0000000E+M) 
O.OOOOOOOE+OO 
0.0000OOOE+OO 
0.0000000E+00 
0.00MMOOE+OO 
5.1904905E-03 
6.9789570E-03 
9.0403012E-03 
1.1381438E-02 
1.3993922E-02 
1.6846952E-02 
1.9880926E-02 
2.3005024E-02 
2.6102687E-02 
2.9045232E-02 
3.1715938E-02 
3.4029691E-02 
3.5944399E-02 
3.7462398E-02 
3.861 892213-02 
3.9467884E-02 
4.006899OE-02 
4.0478947E-02 
4.0746900E-02 

O.OMX)OOOE+00 
O.M)OOOOE+OO 
O.OOOOOOOE+OO 
0.0000000E+OO 
O.OOOOOOOE+00 
0.0000000E+00 
O.OOOOOOOE+M) 
O.O000000E+00 
O.O000000E+00 
0.0000000E+M) 
0.0000000E+00 
4.6321577E-03 
6.0823399E-03 
7.7328479E-03 
9.5890298E-03 
1.1647991E-02 
1.3894873E-02 
1.6299068E-02 
1.8811663E-02 
2.1 365729E-02 
2.3880869E-02 
2.6272669E-02 
2.8464194E-02 
3.0397564E-02 
3.2041030E-02 
3.3389319E-02 
3.4459233E-02 
3.5282 156E-02 
3.589fA73E-02 
3.6341565E-02 
3.5653941 E-02 
3.6865287E-02 

O.M)(X)OOE+OO 
0.0000000E+00 
0.0000000E+00 
0.0000000E+00 
0.0000OE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OMH)OOOE+OO 
O.OOOOOoOE+OO 
O.OOOOOOOE+00 
O.MHXXXX)E+OO 
0.0000000E+00 
4.0860508E-03 
5.3841990E-03 
6.805668OE-03 
8.3809124E-03 
l.Oo60428E-02 
1.1857825E-02 
1.3719700E-02 

1.7568068E-02 
1.9479842E-02 
2.1328626E-02 
2.3085849E-02 
2.4718467E-02 
2.6200165E-02 
2.7518646E-02 
2.8657760E-02 

3.0418824E-02 
3.1059631 E-02 
3.1554290E-02 
3.1931110E-02 
3.2201293E-02 
3.2391621E-02 
3.2648321E-02 

1.5641 153E-02 

2.962571 1E-02 

xk(n> and xi(.) by 2M is equivalent to decimating yk(n) by 
2M.  Because yk(n) has bandwidth 27r/2M, the decimation of 
pk (n )  by 2M does not lead to severe aliasing other than due to 
usual filter nonidealities. Therefore, even though the decima- 
tion of the subband signals in Fig. 2 creates severe aliasing, it 
still makes sense to quantize and encode the decimated signals 
based on the energy distributions of the undecimated signals. 
In Section VI, we provide an image coding example (Example 

6.2) that shows that subband quantization and reconstruction 
work in the usual way. We now proceed to give the quantitative 
details. 

B. Coding Gain 
In Section 111, the type I polyphase matrix of the analysis 

bank is constrained to be paraunitary, i.e., E(z)E(z) = 
czVnoI, so that the system in Fig. 2 is PR. The resulting new 
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cosine modulated filter bank with perfect reconstruction falls 
into the category of paraunitary filter banks. The coding gain 
and optimal bit allocation for paraunitary systems can be found 
in [19]. 

Suppose that the real input signal x(n) has power spectral 
density Sxx(w) and variance 02. Let 0 - 2 ~  be the variance of 
zk(n) and a2, be the variance of xk(n). 

xk 

4 r 2 n  

A 2M channel paraunitary filter bank in Fig. 2 has coding 
gain G ~ M  [19] 

Assume that the prototype filter Po(z) has large enough 
stopband attenuation and U~(Z) and U-~(Z) do not overlap 
in passbands, i.e., IUk(e3w)U-k(e3w)l M 0 (see Fig. 4). From 
(30) and (31), we have 

a,, 2 M a $ ; ,  k = 1 , 2  , . . . ,  M - 1 .  

Equation (32) then becomes 

-2 

which is closer to the coding gain of M channel rather than 
2M channel paraunitary systems. 

C. Optimal Bit Allocution 

In a conventional M channel filter bank with quantizers 
in the subbands, bits are allocated according to the energy 
of subband signals [17]. Let ? k ( n )  and iik(n) be decimated 
signals of xk(n) and xi(n). Since decimators do not change 
signal variances, we have = aik and a? = U:;. 

Allocating bits according to a& and a?, is equivalent to 
allocating bits according to aik and a$;, which represent the 
energy of the subband signals. Therefore, the idea of optimal 
bit allocation in this 2M channel system is the same as the 
conventional case. 

In the approximate PR case, if we ignore the residual 
aliasing and reconstruction errors, we can use the above 
formula for coding gain and optimal bit allocation. 

4 
xk 

VI. NUMERICAL EXAMPLES AND TABLES 
OF PROTOTYPE FILTER COEFFICIENTS 

We now present two design examples. This will be followed 

All of them are obtained by using nonlinear optimization 
by tables of prototype filter coefficients for the PR case. 

programs in [20]. 

Example 6.1: Approximately PR system with M = 7, i.e., 
14 channels. The prototype filter has order N = 49, stopband 
attenuation 39 dB, and stopband edge w, = 0.133~.  Fig. 7(a) 
and (b) show, respectively, magnitude responses of the first 
set of analysis filters and the second set of analysis filters. 
(In Fig. 7(a) magnitude responses are all normalized with 
maximum value of 0 dB.) Fig. 7(c) is a plot of aliasing 
error ~ ~ ~ = ~ " '  IAz(e3W)12. Aliasing error is suppressed 
satisfactorily; worst peak aliasing error is very small, only 
about 0.0013. We can see from Fig. 7(d) that the amplitude 
distortion function is approximately flat with peak amplitude 
distortion 0.02. 

Example 6.2-Image Coding: For this, a 2-D separable fil- 
ter bank is used, which is based on the l-D example above. 
We apply the separable filter bank on the 512 x 512 picture 
"Lema." The original image with 8 b/pixel is shown in 
Fig. 8(a). Bit allocation and entropy coding are performed in 
the subbands. The reconstructed image shown in Fig. 8(b) has 
a subband bit rate of 0.35 b/pixel. The peak signal-to-noise 
ratio ( P S N R )  is 35.5 dB. 

A PSNR = 

(peak-to-peak value of the original image)' 
MSE IOlog,o 

where MSE is the mean square error of the reconstructed 
image. We notice that the reconstruction quality is very good 
and shows no artifacts due to the excess passband width 
discussed at the beginning of Section V. 

Example 6.3-PR System with M = 19, i.e., 38 Channels: 
The prototype PO(.) in this example is of order 133. Following 
the discussion in Section 111, the number of nonzero samples 
of Po(z) is 110. It has stopband attenuation 40 dB and 
stopband edge w, 0 . 0 6 ~ .  Fig. 9(a) and (b) show, respectively, 
normalized magnitude responses of the first set of analysis 
filters and the second set of analysis filters. 

In both of these examples, the analysis filters have linear 
phase by construction; therefore, we have not shown the phase 
responses. In the second example, the system has PR property 
by construction; therefore, we have not shown any aliasing 
error or the magnitude response of the distortion function. 

Tables of Prototype Filter Coeficients for Pe@ect Recon- 
struction: We list two groups of filter banks. Only the co- 
efficients of the prototype filters po(n) are listed. The filters in 
the first group are of order N = 3M (where the meaning of 
M is the same as in Fig. 2). The filters in the second group has 
order N r 7M.  The prototype filters are linear-phase; only the 
first half of the coefficients are shown. From the coefficients of 
the prototype PO (2) we can find the coefficients of all analysis 
and synthesis filters using (12). 

1) Filters with order 3M:  Prototype filter coefficients p o ( n )  
are listed in Table I. Filters in this group have stop band 
attenuation A, M 25 dB. 

2) Filters with order 7 M :  Prototype filter coefficients po (n) 
are listed in Table 11. Filters in this group have A, M 40 
dB. 

Notice that in Tables I and I1 every prototype filter starts 
zeros. The notation r 1 and the notation 1 1 with 
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TABLE II 
PROTOTYPE FILTERS WITH STOPBAND ATTENUATION ABOUT 40 dB AND ORDER 7 M :  PART 1 

n M=7 M=9 M=l 1 M=13 M=15 m=17 

0 00000000E+M) 00000000E+00 00000000E+M) 00000000E+00 OOOOOOOOE+OO 00000000E+00 
1 OoM)oE+OO O ~ O E + O O  OoMHxMoE+M) 00000000EKH) 00000WOE+00 00000000E+00 

3 OOOOoooOE+OO 00000000E+M) 00000000Em OoooO00OE+M) 00000000E+00 OOOOoooOE+OO 
4 -67978138E-04 00000000E+00 00000000E+00 00000OOOE+M) 000MHWx)E+OO OOOO~E+OO 

2 OOOOoooOE+M) 00000000E+M) 00000000E+00 OMxxHwx)E+M) 0 0 0 ~ 0 E + 0 0  00000000E+00 

5 
6 
7 
8 
9 
10 
11  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

'27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 .. 
57 
58 
59 

-6.7628801E-04 
-4.0454551E-04 
O.OOOOOOOE+00 

-7.6992401E-04 
-2.0355803E-03 
-3.4812475E-03 

-4.1820964E-03 
-2.7657296E-03 

-4.3485166E-03 

0.0000000E+00 
5.2636888E-03 
1.2587822E-02 
2.226931OE-02 
3.3964824E-02 
4.6897783E-02 
6.0046992E-02 
7.229 1059E-02 
8.2524184E-02 
8.9844578E-02 
9.3653468E-02 

-5.1424337E-04 

-4.6574969E-04 
-2.8685604E-04 

-5.3310500E-04 
-I. 1604805E-03 
-2.0107373E-03 
-2.8242451 E-03 
-3.3206044E-03 
-3.3414132E-03 
-2.8254978E-03 
-1.6758764E-03 

3.1 145173E-03 

-5.5565799E-04 

0.0000000E+00 

O.O00OOOOE+OO 

7.0401227E-03 
1.2O91438E-02 
1.8236891 E-02 
2.5315655E-02 
3.30377 17E-02 
4.1034799E-02 

5.6230719E-02 
6.2603026E-02 
6.768 1773E-02 

4.890576OE-02 

7.1207984E-02 
7.3014065E-02 

O.MXWWXME+OO 
-4.1089306E-04 
4.5550830E-04 
-4.3325456E-04 
-3.4597558E-04 
-2.2815828E-04 
0.0000000E+00 

-4.4237113E-04 
-7.8913118E-04 
-1.2985038E-03 

-2.3635259E-03 
-2.6749144803 
-2.72851 17E-03 
-2.505904OE-03 
-1.970169OE-03 

-1.8618945E-03 

-1.0762419E-03 
0.0000000E+00 

4.4937327E-03 

1.1 152817E-O2 
1.5386557E-02 
2.0128782E-02 

3.0574428E-02 
3.5936126E-02 
4.1 144825E-02 

5.0354801E-02 
5.4018886E-02 
5.6876247E-02 
5.8833442E-02 
5.9828410E-02 

2.0867021E-03 

7.510425OE-03 

2.524648OE-02 

4.6012297E-02 

O.OMMOOOE+00 
0.0000000ENO 

-2.3753750E-04 
-2.68 18 1 15E-04 
-2.6459598E-04 
-2.1799966E-04 
-1.3245846E-04 
8.4582874E-05 
O.OOOOO00E+00 

-6.0356928E-05 
-2.4826199E-04 
-5.6044074E-04 
-9.2668924E-04 
-1.2837077E-03 
-1 S795348E-03 
-1.7616044E-03 
-1.8101016E-03 
-1.7319940E-03 
-1.5293427E-03 
-1.195741 8E-03 
-6.105264OE46 
0.0000000E-r00 

-4.3566146E-06 
2.241 1346E-03 
3.9316848E-03 
6.0659284E-03 
8.6644470E-03 
1.1714005E-02 
1.517198 1 E42  
1.8965488E-02 
2.3001951E-02 
2.7175943E-02 
3.1369115E-02 
3.5456422E-02 
3.9299808E-02 
4.27993 12E-02 
4.5808262E-02 
4.8293471 E-02 
5.0190996E-02 
5.1470294E-02 
5.2114185E-02 

0.0000000E40 
0.0000000E+00 
O.OOOOOOOE+OO 

-3.345145OE-04 
-3.6708079E-04 
-3.7 170523E-04 
-3.4512883E-04 
-2.91 16705E-04 
-2.2215026E-04 
-1.5212153E-04 
O.OOOOOOOE+OO 

-2.8745428E-04 
43298166E-04 
4.682328OE-04 
-9.6850692E-04 

-1.6320878E-03 
-1.9243028E-03 
-2.1297547E-03 
-2.22447OOE-03 
-2.2049230E-03 
-2.0540988E-03 

-1.3016585E-03 

-1.756193OE-03 
-1.2950668E-03 

0.0000OOOE+00 
1.2415753E-03 
2.5241480E-03 
4.0304895E-03 
5.7642502E-03 
7.721 3246E-03 
9.8902761E-03 
1.225 1466E-02 
1.4779999E-02 
1.7440394E-02 
2.0188871E-02 
2.2982202E-02 
2.5774117E-02 
2.8515837E-02 
3.1 157139E-02 
3.3648561E-02 
3.5938906E-02 
3.7987010E-02 
3.9752809E-02 
4.1203964E-02 
4.2314864E-02 
4.3066456E-02 
4.3445987E-02 

-6.5704476E-04 

O.O000000E+00 
O.OMXMOOE+OO 
O.OMXMOOE+00 
O.OOOOOOOE+OO 

-2.891 3044E-04 
-3.170766OE-04 
-3.2738333E-04 
-3.1725513E-04 

-2.4 1661 90E-M 

-1.3245575E-04 

-2.7298008E-04 
-3.71 33376E-04 
-5.3290996E-04 
-7.4432310E-04 

-1.2421812E-03 
-1.4866742E-03 
-1.7003521E-03 

-2.871 3764E-04 

-1.8912721E-04 

O.OMXMOOE+00 

-9.8761395E-04 

-1.8521292E-03 
-1.9280654E-03 
-1.9291234E-03 
-1.8450335E-03 
-1.6665926E-03 
-1.3847337E-03 
-9.8984707E-04 
-4.7750042E-04 
O.OOOOOOOE+M) 
9.8408793E-04 
1.943473OE-03 
3.0535983E-03 
4.3201697E-03 
5.743582OE-03 
7.3 1961 75E-03 
9.0401 028E-03 
1.0892218E-02 
1.2860679E-02 
1.4923902E-02 
1.7055081E-02 
1.9227724E-02 
2.1414194E-02 
2.3584936E-02 
2.5709521 E-02 
2.7756975E-02 
2.9697395E-02 
3.1498132E-02 
3.3135487E-02 
3.4583767E-02 
3.5822129E-02 
3.6833357E-02 
3.7603806E-02 
3.8123431E-02 
3.8385256E-02 

to be used later are defined in Section I. Those zeros at the 
beginning of the prototype filters are the result of optimization. 
As indicated in Section 111, g k ( 0 )  or g k ( m 0 )  must be zero 

component of po(n ) .  After optimization, we found that it is 

By linear-phase constraint of Po(z), we have 

for k = 1 , 2 , .  . . , M - 1, where g k ( n )  is the kth polyphase g M ( n )  = 6(71- [VI), 
best to choose g k ( m o )  = 0, k = [TI,. . . , M  - 1. 

M - 1  
k =  1,2 ,  ..., 

Those zeros at the beginning of the prototype filters can not 
be removed without shifting the cosine modulation in (12). To 
be consistent with (12), we keep the zeros in the tables. If the 
quantity p o ( n )  is directly used in (12) with no modifications, - -  ~, 

then the set of analysis A d  synthesis filters have linear phase 
and give perfect reconstruction. where the unit impulse function 6(n) is defined in Section I. 
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TABLE II 
PROTOTYPE FILTERS WITH STOPBAND ATTENUATION ABOUT 40 dB AND ORDER 7 M :  PART I1 

n M=19 m 2 1  n M=21 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

O.IXHOOOOE+W 
0.0000000E+00 
0.0000000E+OO 
0.0000000E+00 
0.0000000E+00 
O.MXXHMOE+OO 
0.0000000E+00 
O.WM)OOOE+W 
0.0000000E+W 
O.MXXHMOE+OO 

-1.6558991E-W 
-1.8282560E-04 

-1 301 1410E-W 

-1.1192666E-04 

5.5887284E-05 
7.2636483E-05 
0.0000000E+00 
6.0126739E-05 

-4.2543141E-05 
-9.0937729E-05 
-2.3797256E-04 
-4.1450247E-04 
-6.0520828E-04 
-7.9667202E-04 
-9.7569657E-04 
-1.1310135E-03 
-1.2469601E-03 
-1.3171386E-03 
-1.3439718E-03 

-1.8876425E-W 

-1.5469053E-04 

-5.4660475E-05 

-1.3251588E-03 
-1 2590624E-03 
-1.1446079E-03 

-4.4522150E-07 
-4.5714288E-04 

0.0OCKHNOm 
3.7841191E-04 

-3.3891647E-07 
1.626819OE-03 
2.4336049E-03 
3.3737325E-03 
4.4527 167E-03 
5.6721796E-03 
7.0292544E-03 
8.5169971E-03 
1.0126429E-02 

1.3646013E-02 
1.5519257E-02 

-9.7784165E-04 

1.1842074E-02 

1.7440829E-02 
1.9385151 E 4 2  
2.1 327708E-02 
2.32&52E-02 
2.5093044E-02 
2.6858275S-02 
2.8508104E-02 
3.0038678E-02 
3.137274OE-02 
3.2552236E-02 
3.3546808E-02 
3.4349747E-02 
3.4955258E-02 
3.5360550E-02 
35563866E-02 

0.0000000EM 67 2.8981500E-02 
0.0000000E+00 68 2.9858191E-02 
0.0000000Em 69 3.0597509E-02 
O.OOCU#OE+O 70 3.1194316E-02 

71 3.1644872E-02 0.0000000EM 
0.00000E+00 72 3.1946621E-02 
0.0000000E+00 73 3.2097969E-02 
0.0000000E+00 
O.oooMHx1E+OO 
0.0000000E+00 
O.OOOOOOOE+00 

-1 5293333E-04 

-1.8310268E-04 
-1.8959924E-04 
-1.8877979E-04 
-1.8021234E-04 
-1.6435662E-04 
-1.4248425E-04 
-1.1524764E-04 
-7.4995432E-05 
0.0000000EM 

-1.7038287E-04 

-2.2376960E-04 
-2.7436140E-04 
-3.4867946E-04 
4.4487897E-04 
-55593359E-04 
4.7403513E-04 
-7.9140243E-04 
-9.0085521E-04 
-9.961 1584E-04 
-1.0715"8E-O3 
-1.1 187296E-03 
-1 .134f471 E 4 3  
-1.1219655E-03 
-1.0812291E-03 
-1.01 13O93E-03 
-9.1131257E-W 
-7.7954597E-04 
4.13288 13E-04 
-4.0962793E-04 
-1.7489569E-04 
O.MHXXXX)E+OO 
521 84964E-04 
9.7517046E-04 
15008043E-03 
2.1100678E-03 
2.8112907E-03 
3.6108632E-03 
45131371E-03 
55200092E-03 
6.6306072E-03 
7.8411619E-03 
9.1458015E-03 
1.0534418E-02 
1.1994196E-02 
1.351 1032E-02 
1.5068990E4 
1.6650708E-02 
1.8237892E-02 
1.981 1553E-M 
2.1 353022E-02 
2.2843957E-02 
2.4267602E-02 
2.5605235E-02 
2.6845376E-02 
2.7974363E-02 

VII. CONCLUDING REMARKS 4) This new 2M channel maximally decimated cosine 
modulated filter bank has the same design cost and im- 
plementation cost as conventional A4 channel maximally 
decimated cosine modulated filter banks. Correspond- 
ingly, the coding gain is nearly identical to that of an 
M channel Daraunitarv svstem. 

In this paper, we introduced a new class of maximally dec- 
imated cosine modulated systems, which have the following 
properties: 

1) Aliasing is canceled exactly or approximately as desired. 
I <  

2) Amplitude distortion function can be designed to be flat 

3) Each analysis and synthesis filter in the filter bank has 

5 )  Perfect reconstruction is possible if polyphase compo- 
nents of the prototype filter satisfy the two conditions 
given in Section 111. Linear phase property of each 
analysis and synthesis filter is still preserved in this case. 

by optimizing over prototype filter coefficients. 

linear phase. 
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U.(d"W'2"") U~!*le"W@+1)Ct')) a 
(k- l )n/M kn/M (k+l)n/M o 

CD) 

Fig. 10. Image copies of U-k(t) due to decimation followed by expansion. 

Summarizing, we have developed a linear phase cosine 
modulated maximally decimated perfect reconstruction sys- 
tem. Design examples show that very good attenuation char- 
acteristics can be obtained as well. 

APPENDIX A 

The quantity A! l ) ( z )  in (9) is zero if 1 + W P M 2  = 0 
or V ~ ( Z W ~ ) O ~ ( . Z )  = o for /c = 1,2, . .  . , M  - 1. Since 

i # 1, A!l ) ( z )  in (9) is approximately 0. So is Aj4'(2) for 
the same reason. 

Similarly A!"(.) is zero if aE2 + a',*2W-M' = o or 
U-,(zW'))uk(z) M 0, for IC = 1 , 2 , .  . . , M-1. The case when 
i is even and the case when i is odd are discussed separately. 

1) i is even: From Fig. 10(a), we observe that only the term 
IC = 2/2 is the major nonzero part of A,@). By choosing 
ak = 1 and ai  = ---, k = 1,. . . , M - 1, it can be 
completely eliminated. 

W - M Z  - - -1 for odd i and by ( 5 )  Uk(zW')Ok(z) PZ 0, for 

2) i is odd: Consider two cases: 

a) 1 < i < 2M - 1: By using ( 5 )  and (9), we have 

A, (2) (2) M ~ U - . - ~ ( Z W ' ) U ~ ( Z )  
I + 2U-+(zW2)U+(z). (A.1) 

We can also observe the result in (A.l) from 
Fig. 10(b). Since Po(x) has linear phase, 
Po(eJw) = e-JWN/2P~(~), where PR(w) is a 
real-valued function. We can rewrite (A. 1) in 
terms of PR(w) as 

If N = (2mo+ l ) M  for some positive integer mo, 
then ( W N l 2  + W-N/2)  = 0. In this case Ai2)(z )  
in (9) is approximately zero. 
i = 1 or 2M - 1: When i = 1, A, ( 2 )  has 
a major nonzero term, ZU-l(zW)fil(z), which 
cancels the term 2Uo(zW))u0(z) in (9) with the 
same choice of N .  This is similar for i = 2 M -  1. 

(2) b) 

The cancellation of is similar to the cancellation of 
the A,"'(z). 

APPENDIX B 
PROOF OF (23) 

To derive (23), we need to prove the following properties 
of C and S: 

(B.1.a) 

(B.1.c) 

(B.1.d) 

If (B.1.a)-(B.1.d) are true, then (23) follows. 
Matr ixCisverysimilar toa(M+l)x(M+l)  typeIDCT 

matrix, CL+,, and S is very similar to a ( M  - 1) x ( M  - 1) 
type I DST matrix, SL-l. (Both C L + ,  and S L P l  are 
documented in [21].) CL+, and SLPl have entries 

Several useful properties of CL+, and SLP1 are stated in 

CL+l  CL+l  = IM+1, (B.2.a) 

(B.2.b) CL+1 h l C L + i  = J M + I ,  

the following to help proving (B.1). 
T 

T 

S M - ~  I T  sh-1 = I M - 1 1  (B.2.c) 

Sh-1 T I  A2SM-1 = -JM-I. (B.2.d) 

Proof of (B.1.u)-(B.1.d): C and S are related to CL+, and 
I SM-1 as 

where r is the last column of &CL+, and I' = 

($ with inverse '= (" 0 IM-1 ). By 

(B.2.a), we have 

M M I  T I  cM+l  YIM+l* 
-'M+l 2 

and from (B.3), we have 

Comparing (B.4) and (B.5) gives us 
M 
2 

rTcTcr = - I ~ .  

Relation (B. 1 .a) follows the above equation. Similarly for 
(B.1.c). Relations (B.1.b) and (B.1.d) can be proved in a 
similar manner. 
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With (B.l), the right-hand side of (22) can be written as the 
matrix at the top of this page. The dependence of gi on z is 
dropped for convenience. Notice that the off diagonal elements 
in the above big matrix is 0 if and only if 

G k + ~ ( z ) G ~ - l c ( z )  - Gk(z)Ga~--k(z) = 0, -1 - 

k = l ,  . . . ,  M-1. (B .6) 

Because the prototype filter Po(.) is of order N = (2mo + 
l )M and has linear phase, Gk(z )  is related to G M - ~ ( z )  and 
G ~ + M ( z )  is related to G z ~ - k ( z ) ,  for k = 1 ,2 , .  . . , M - 1. 

G k ( z )  = z - ~ ~ G M - ~ ( z ) ,  
G ~ + M  ( z )  = z - ( ~ O - ~ ) G ~ M - ~ ( Z )  

k = 1 , 2  ) . ” ,  M-1. 

The above property makes (€3.6) automatically satisfied. 

APPENDIX C 
From the definitions of T1 and Tz, we know 

dl = Cal + AlCa2, and d2 = Sbl + AzSbz. 
(C.1) 

Using the relations of (B.3) and (B.l), we can write 

Al(CI’ r ) = ( C r  r)JM+l 
and 

I Az(0 SM-1) = -S&-1(0 JM-1 ). 

That gives us 

A l C = C ( ’  0 JM-1 )+ \ /z ( r  0 )  

and 

A z S = - S ( ~  0 JM-1 ). 
Substituting (C.2) into (Cl), we obtain (26). 
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