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Lapped Unimodular Transform and Its Factorization

See-May PhoongMember, IEEEand Yuan-Pei LinMember, IEEE

~ Abstract—Two types of lapped transforms have been studied are used as the polyphase matrices, the FBs have FIR analysis
in detail in the literature, namely, the lapped orthogonal trans-  and synthesis filters and achieve perfect reconstruction (PR). In
form (LOT) and its extension, the biorthogonal lapped transform 54 itional to having causal FIR inverses, unimodular FBs also

(BOLT). In this paper, we will study the lapped unimodular trans- . .
form (LUT). All three transforms are first-order matrices with fi- enjoy the advantage of having the smallest system delay among

nite impulse response (FIR) inverses. We will show that like LOT all FBs. The system delay at/-channel unimodular FBs is
and BOLT, all LUTs can be factorized into degree-one unimodular  always(M — 1), no matter how long the analysis and synthesis
matrices. The factorization is bothminimal and completeWe will  fijlters are. System de|ay is of particu|ar importance in apph_
also show that all first-order systems with FIR inverses can be min- cations such as speech coding and adaptive subband filtering.

imally factorized as a cascade of degree-one LOT, BOLT, and LUT | h codi ve del b . gl |
building blocks. Two examples will be given to demonstrate that N SP€&ch coding, excessive delay can be very annoying [8]. In

despite having a very small system delay, the LUTs have a satisfac-adaptive subband filtering, long system delay can degrade the
tory performance in comparison with LOT and BOLT. performance [9]. Although there are efficient design methods

Index Terms—Filterbank, polynomial matrix, transform, OF low delay FBs [10]-{12], there are relatively few results on
unimodular matrix. unimodular FBs.

The earliest paper that studied the relationship between
unimodular matrices and FIR PR FB is [13]. Using system-the-
oretic concepts, the authors derived a number of properties

ILTER banks (FBs) and transforms have found many appfier causal FIR unimodular matrices. In particular, the authors

cations in signal processing [1]-[3]. When the polyphasshowed that there are examples of second-order unimodular
matrix has order one, such an FB is also known as a lapped tramgtrices that cannot be factorized into degree-one unimodular
form. Two classes of lapped transforms [the lapped orthogomaétrices. Moreover, it was shown that any causal FIR matrix
transform (LOT) [1], [4], [6] and the biorthogonal lapped transH(z) with [det H(z)] = ¢z~ can always be decomposed
form (BOLT) [5]] have been studied in detail. The LOTs [6]Jnto a product of a unimodular matrix and a paraunitary
and its generalization (GenLOT [3], [7]) have been widely agnatrix. Even though such a decomposition is not necessarily
plied in various applications. Many properties of LOTs and Geminimal, it proved that all FIR PR FBs can be captured by a
LOTSs, such as the factorization and phase linearity, have bggfaunitary matrix and a unimodular matrix. In [5], the authors
developed. In [5], Vaidyanathan and Chen relax the orthogghowed that all BOLTs can be decomposed into degree-one
nality condition and introduce a more general class of tranBudilding blocks. In addition, the authors showed that the lapped
forms called the BOLTs. BOLT is the class of lapped transfornteansformA, + A;z~! is a LUT if and only if the matrix
that have anticausal FIR inverses. Itincludes the LOT as auseful has all the eigenvalues equal to zero. The most general
special case. Like LOT, it was shown [5] that BOLT can also b@egree-one unimodular matrix was also given [5]. However,
factorized into degree-one matrices. A design example showibé factorization of LUTs into these degree-one unimodular
that BOLT has more design freedom and that its filters haveatrices was not established. Another type of factorization
better frequency responses than those of LOT with the same d&-unimodular matrices has been studied before. It is also
gree. shown in a corollary in [14, Sect. I, ch. 6] that unimodular

In this paper, we will study a class of lapped transform callgtiatrices can be expressed as a product of elementary matrices
the lapped unimodular transform (LUT). LUTs are first-ordegontaining delay elements. Elementary matrices can be realized
unimodular matrices. When the polyphase matrix of an Ay using the lifting schemes [15], [16]. Lifting schemes enjoy
is unimodular, we say it is a unimodular FB. Like LOTs an¢he advantages of having low complexity and being structurally
BOLTSs, the LUTs and unimodular matrices have the advantag®, that is, the FB continues to have PR even when the lifting
that both their inverses and themselves are FIR matrices. If tregefficients are quantized. However, such a representation is

not minimal and not unique. It would not be useful for the

parameterization of filter banks as it does not give a structure
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3) There do not exist any set of finite-degree unimodula unimodular, it is called the LUT. Many useful properties of
matrices that form the building blocks of all unimodulaunimodular matrices can be found in [1], [5], and [13]. In this
matrices. section, we will first review some results from [5] and [13] that

4) All factorable unimodular matrices can be captured usirage useful for later discussions. Then some new results will be
orthogonal matrices and unit-delay lifting matrices.  stated.

5) There do not exist linear-phase unimodular FBs with

equal filter length. A. Some Known Results From [5] and [13]

6) Two examples demonstrate that de.sp|te .havmg a \./eryParts of the results on unimodular matrices from [5] and [13]
small system delay, we are able to i) design LUT with

stopband attenuation comparable with that of LOTs and ! Ee given Ifater. For proofs and m‘fﬂe results see_[&;)\l ar'ua[13].
BOLTs ii) obtain a satisfactory coding performance Theorem 1 LetA(z) = Ao+ Az~ + -+ Ay Wit

" Apn # 0be unimodular. Then, we have i) thAty is singular
and ii) thatA, is nonsingular.

A. Paper Outline Theorem 2: The degree-one matrix

In Section Il, we will first review some results from [5] and
[13]. Then, we will show that we cannot have linear-phase uni-
modular FBs with equal filter length. The factorization theorem
of LUTs is presented in Section lll. In Section IV, we consider. . . g

. . ) ) : |§ unimodular if and only ifv'u = 0, and more generally, the
unimodular matrices of higher order. We first give a class g .

. . order-one matrix
undecomposable unimodular matrices. Then, we show that fac-
torable unimodular matrices, not restricting to first order, can be .
completely parameterized in terms of orthogonal matrices and I-uVh+ 2Vt (2
unit-delay lifting matrices. In Section V, we will show that all _ _ _
lapped transforms with FIR inverse can be minimally factorizetiherel/ and) are M x p matrices with ranl, is a degreg
into degree-one building blocks. Section VI gives two exampl&atrix having FIR inverse if and only P72/ has all eigenvalues
to demonstrate the potential applications of LUTs. A conclusidiflual to zero or one. Moreover, the degpematrix in (2) is

is given in Section VII. Parts of the results in this paper hawhimodular if and only i/ has all eigenvalues equal to zero.
been presented in [17]. As a result of Theorem 1, we can also express the unimodular

matrix in (2) as

I-—uvl+ 2z tuvt

B. Notations and Definitions

Boldfaced upper and lower case letters are used to denote T —UVH) T+ 271UV,
matrices and vectors, respectively. All matrices and vectors are
M x M and M x 1, respectively. For a causal polynomiaiThus, it is also true (see [5, Ex. 5.4]) thdt + »~'UVT) is
A(z) = Ao+ A1zt + -+ Ayz~N with Ay # 0, its unimodular if and only iU has all eigenvalues equal to zero.
orderis equal taV, whereas itslegreeis the minimum number In particular, the degree-one matilix- uv’z " is unimodular
of delay required to realize the matrix. For example, the matriand only if viu = 0. In this paper, we will us& + uviz=!

A(z) = Ao+ A1~ ! has order one, whereas its degree is equa$ the building block because it gives a neater expression. All
to the rank ofA ;. An implementation of a polynomial matrix the derivations in Section Il can also be done usirguv’ +

is said to beminimalif it uses the minimum number of delaysz~*uv' as the building block. Though all LUTs are factorable,
needed to implement the matrix. A representation or structuredgwe will show in Section Il1, there are higher order unimodular
said to becompletdor a certain class of matrices if every matrixnatrices that cannot be decomposed into degree-one building
in that class can be expressed in such a representation. ~ block. One such example was given in [5]

The first-order matrixA(z) = Ag + A2~ will be called
thelapped transformit is well known that such a matrix has an 1 0
FIR inverse if and only if its determinantdet[A.(z)] = cz” for <z )
some nonzero constantand integer/. The lapped transform
A(z) is a BOLT if it has an anticausal inverse [5]. Moreovert was shown [5] that the matrix in (3) is unimodular and that it
if the coefficients of BOLT satishATA; = 0 andAT A, + cannot be decomposed into degree-one building blocks.
ATA; =T, thenitisaLOT [4], [6]. Both the BOLTs and LOTs

®3)

have been studied in detail [1], [5], [6], [19]. B. Existence of Linear Phase Unimodular FBs With Equal
Filter Length
II. PROPERTIES OFUNIMODULAR MATRICES AND LUT In [20], it was shown that there exist nontrivial linear-phase

A causal matrix A(z) is unimodular if its determinant paraunitary FBs when the number of channkls > 2. Let
det[A(z)] = ¢ for some nonzero constant. The inverse of E(z) = SN Eiz~" be the polyphase matrix. The class of
causal unimodular matrix is also causal unimodular. When theear phase paraunitary FBs derived in [20] satisfy the sym-
first-order matrix metry constraint

A(Z) = AO + Alz_l (1) EN*Z‘ = DEZJ (4)
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Fig. 1. Implementation of (a) a degree-one unimodular ma{x) and the invers®~!(z). Here, the vectors satisfy'u = 0.

whereD is a diagonal matrix with:-1 diagonal entries, andl andV = [vo vi ... v,_1] have full rank, and ii) their
is the M x M reversal matrix product satisfies (hereX” denotes the don’t-care term)
0 0 0 ... 0
0 0 1 x 0 0 ... 0
0O ... 10
I=1. A ViU = X X 0 0 ' )

1 ... 00 x x x ... 0

Note that all linear-phase FBs with filter length equaktd (k Proof: If A(z) can be expressed as the product in (6) and

integer) satisfy this constraint. Whed is even, it was shown (7), it is not difficult to verify that it is a degrep-LUT. The

[20] that minimal factorization theorem exists for such matricesUT matrix will have the form of Ao(I + UVTz~1). Sup-

We may ask if there are unimodular FBs satisfying the lineasose thatA(z) is an LUT,; then, it can be rewritten a(z) =
phase constraint (4). The answer is, unfortunately, no. To S&E[I + P~»~!]. As A(») has degree, the rank ofP is alsop.
this, note that (4) implies that the ranks Bfy andE, are the Therefore, there exist/ x p full rank matricesU and V' such
same. This contradicts the fact that for a unimodular EBjs  thatP = UV'. From Section II-A, we know that thex p ma-
nonsingular, and y is singular. Therefore, we conclude thatrix VU has all the eigenvalues equal to zero. Using Schur’s
there does not exist any unimodular FB satisfying the lineaimitary triangularization theorem, we can fingpa< p unitary
phase constrain{4). matrix T such that

TIVIUT = A
Ill. FACTORIZATION OF LUT
We will first derive the most general degree-one unimodul&?’ Some lower triangular matrixy with all the diagonal ele-
matrix and then show that all LUTSs can be factorized into the§2€Nts equal to zero. Letting = UT andV = VT, one can
building blocks. From Theorem 1, we know that the unimoduld€"ify that
matrix A(z) = Ag + A; 27! can always be written a& [T +
P~71]. The matrixA(z) has degree one if and only B has .
rank one. Sinc@ has rank oneP = uv’ for some nonzero =I+UV':
M x 1 vectorsu andv. From Section 1I-A, we know thdl + = [I + uovngl} . [I + u,,_lv;_lzfl}
uviz~1] is unimodular if and only ifvfu = 0. Hence, the
most general degree-one unimodular matrix is a cascade oflzere the vectorsu; and v; are obtained fromU =
nonsingular matrixA, and a building bloc(z) of the form  [ug w ... u,;]andV = [vg vi ... v,_1]
Note that the number of degree-one building blocks in the
factorization (6) is equal tp, which is the degree of the LUT.
D(z) =T+uviz"!, viu=o. (5)  Hence, such a factorization is minimal. AAA
From (6), the inverse of LUT can be expressed as

I+P» ! =1+ UV

Its inverse is given bP~1(z) = D(—z) = I—uviz~!, which

is also a degree-one unimodular system. The implementations A™!(z) = D,_1(—2)...Di(—2)Do(—2)Aj".

of D(z) and its inverse using one delay are shown in Fig. 1. _ _ _ _ o
UsingD(z) as a building block, we are now ready to show thélthough the inversé\.~1(z) is also unimodular, its order is, in

factorization of LUTSs. general, higher than one when> 1. It is not difficult to show
Theorem 3: The M x M matrix A(z) = Ao + Az tisa thatA~!(z) also has order one if and only if the vectarsand
degreep LUT if and only if it can be expressed as v; satisfy
0 x x X
A(z) = AgDo(2)Dy(2)...D,_1(2) (6) 0 0 x x
viu=]10 0 0 X

whereD;(z) = I+ w;v, z 1, andA, is nonsingular. The vec- R .o
torsu; andv; are such thati) botlVl = [ug u; ... wu, 1] 0 0 0 ... 0
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Combining the above result and (7), we conclude that Adth)  wherebta = 0, andL > 2. One can verify thaG( ) is uni-
andA~1(z) are LUTs if and only if the vectora; andv; are modular and that its inverse is given by- ab’z £ Its degree
orthogonal, that isViU = 0. is equal toL. We will show thatG(z) cannot be minimally de-

A note on the degree of cascade of unimodular systériss: composed into any unimodular matrices of degeed.. Sup-
well known if we cascade two causal paraunitary matrices pbse that
degreep; andp., the resulting system is a causal paraunitary
system with degreép; + p2). The same is true for the class

of causal FIR _matrix with anticausal FIR ir_1verse (C,AFACAH}NhereGO(z) and G, (») are unimodular matrices with degree
[5]. The LOT is a member of the paraunitary family, and thg o to 1, ‘and L,, respectively. Using minimality, we have
BOLT belongs to the CAFACAFI class. Therefore, cascading | 1 — 1 To avoid triviality, we assume that < Lo

degree-one LOT and BOLT building blocks always results ijqulJ < L — 1. Let the inverse ofG; 1(2) = Co + Ciz~ ! +

systems with higher degree. For unimodular matrices, this is no ;Ck7—k.with Cy # 0. Then é—1(7) is unimodular. and
longer true. For example, if we cascade two degree-one unimegds. o it ' Ll ’
ular system, namelyD(z) as in (5) andD(—z), the resulting ¢, sisfies: < degree 0fG>1(z) = Lo < L— 1,, where we have

system is the identity matrix, which has a degree of zero. The{gse j the fact that for any invertible square matrix, its inverse has
fore, cascading more unimodular systems does not always reﬁ%t same degree [13]. From (8), we have

in an unimodular system with a higher degree. However, in the

LUT case, the degree-one systd(z) in (6) cannot cancel (Co + Ciz '+ Ckz_k) (I + asz_L) = Gy(2).

itself since the vector sefsy; } and{v;} are both linearly inde-

pendent sets. Asthedegree ofx1(z)isL; < L—1,theorderofGy(z) < L—
Degrees of freedomAny M x M degreep LUT system is 1. From the previous equation, if we compare the coefficients of

characterized by (6). The constant matAiy hasM? elements, the termz—%, we get

and the2p vectorsu; andv; have2 p elements, but there are

0.5p(p+1) constraints in (7). Therefore, the degrees of freedom Coa = 0.

are given byM2 +2Mp —0.5p(p + 1). . As a is a nonzero vector, this contradicts the fact it is

Factgnzaﬂon using a dlfferept degree-one bu.|ld.|ng blolck: nonsingular. Thereforez(z) cannot be decomposed into any
[5], a different degree-one unimodular system is 'ntrOduced'dhimodular matrix of smaller degree. Ascan be any integer,
has the form the matrixG(z) can have an arbitrary degree. We conclude that
there do not exist any set of finite-order unimodular matrices
that forms a building block for all unimodular matrices.

G(2) = Go(2)G(») (®)

rst coefficient is nonsingular. Moreover, its order

ﬁ(z) =I—uvi4+uviz™!, viu=0.

ComparingD(z) with D(z) in (5), one can verify thaD(z) = B. Parameterization of Factorable Unimodular Matrices
(I—uv")D(»). Using an approach similar to the proof of Theysing Orthogonal and Unit-Delay Lifting Matrices

orem 3, one can also factorize LUTs in termd¥fz). It is not
difficult to show thatA(z) = Ao + A;2~ ' is a degrees LUT
if and only if

It is well known [1] that all paraunitary matrices can be de-
composed as degree-one building blocks. They can also be pa-
rameterized in terms of orthogonal matrices and diagonal ma-

— — — trices with a single delay. Define the unit-delay matrix
A(z) = A()Do(2)D1(2)...D,1(2) g y y

whereDy(z) = I — wv] + w,vl 271, and the vectors,, and A |0 0
v, satisfy the relation given in (7). (2) = on T :
0o 0 --- z1

IV. HIGHER ORDER UNIMODULAR MATRICES . .
Then, all paraunitary matricds(z) can be expressed as

From Section Ill, we know that all first-order unimodular ma-
trices (LUTs) are factorable. For higher order unimodular ma- E(z) = ToA(2)T1A(2) Ty ... A(2) T,

trices, there are examples that are not factorable. For examl?le, . o .
. . . - ToF'some orthogonal matricéF;. Similarly, it was shown ([5,
see the unimodular matrix in (3). In the following, we will first

show that in fact, we can never capture all unimodular matricF'sq' 6 and (27)}) that all factorable CAFACAFI matrices can

with any set of finite-degree unimodular matrices. Then, we Wﬁe expressed in the previous form wilh being nonsingular

: matrices. In the following, we will derive a similar parameteri-
show that we can capture the class of factorable unimodular ma-. . .
zqatlon of factorable unimodular matrices.

trices, not restricting to first-order, with orthogonal matrices an Consider the degree-one building blo®(z) in (5). By

unit-delay lifting matrices. simple normalization, we can express the building block using

. . unit-norm vectors
A. Class of Undecomposable Unimodular Matrices

Consider the following matrix: D;(2) = I+ w2 9)

L 1Although it was derived only for BOLT in [5], it can easily be generalized
G(z) =T+abz~ to the class of factorable CAFACAFI matrices.
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where \; are nonzero scalars, and and v; are unit-norm > e
vectors such thavjui = 0. As u; andv; are orthonormal S R
vectors, we can always form the unitary mat'k; = T T T
[to ... tym_3 Vv; u;]. .UsingT;, wecanrewritd;(»)as 1 T , Il J
1 7“13_+ 7‘1—22_+ 7&—1;l+
DZ(Z) =I+ X2z "T; » »>
X <0M—1><M_2 Orr—1x1 0M—1X1> ’i‘j Fig. 2. Characterization of all degrefe-unimodular matrices using a
O1xnm—2 1 0 nonsingular matrixT’, and unitary matriceT; (¢ > 1) .
1) an LOT if and only if A(z) = A(1)Bo(2)B1(2)
where the matriX; (=) is given by ...B,_1(2), where the vectorsv, are such that
Lo 0 0 {]‘jo vi .. Vp—l]T[VO Vi ... Vp—l] = 1,
0100 2) a BOLT if and only if A(z) = A(1)Co(2)Ci(%)
Oi(z)=1|: ™. : e ...C,_1(2), where the vectors;, andv;, are such that
00 - 1 0 [Vo Vi ... fol]T[llo u ... upfl]IAfOF
00 - Xzt 1 some lower triangular matrix with all diagonal elements

equal to one [5];

3) an LUT if and only if A(z) = A(1)Dy(2)Dy(2)
...D,_1(#), where the vectorsu; (linearly inde-
pendent) andv; (linearly independent) are such that
[Vo Vi ... fol]T[llo u; ... upfl]IAfOT
some lower triangular matrix with all diagonal elements
equal to zero.

A(z) = AgDo(2)... Dy 1(2). (10) In fact, not only LOTs, BOLTs and LUTs are factorable, but
all lapped transforms with FIR inverses are factorable. Consider

Then, using the above derivation in (1@(z) can be rewritten a degrees systemA(z) = Ag + A,z 1. Itis well known [1]

as the following cascade form: that a polynomial matriA () has an FIR inverse if and only if

[det A(z)] = 2= for some integer.. A complete characteri-

zation of first-order matrices having an FIR inverse was given

in [5]. The authors showed that the degrekpped transform

= Ay + A;~! has an FIR inverse if and only if it can

Note thaté;(>) is an elementary row operation matrix with a
delay element. Its inverse #(—z). The matrixé;(z) is there-
fore also unimodular. A9;(z) can be implemented using a
lifting with a single delay, it will be called a unit-delay lifting
matrix. Suppose thah(z) is a unimodular matrix that can be
factorized in terms of degree-one building blocks, that is

A(Z) = T090(2)T191(z) ...TJ,19J,1(Z)TJ (11)

whereT is a nonsingular matrix, and; for < > 1 are unitary

matrices. This cascade form is shown in Fig. 2. On the oth’ét(z)

hand, if a matrix can be implemented using Fig. 2, itis cIearIyt?ae expressed as

unimodular matrix. Moreover, each section can be rewritten as A(z) = A(1) [I _UVi 4+ ﬁ{,—]‘z—l}

Tiei(z)TZ for some unitaryT’;. Therefore, any unimodular ma-

trix of the form (11) can be factorized as in (10). In other wordsvhereU andV areM x p matrices such that the eigenvalues of

Fig. 2 captures all degreé{actorable unimodular matrices.  their productV iU are either one or zero. Using this result and
Schur’s triangularization theorem, we can find a unitary matrix

V. LAPPED TRANSFORMSWITH FIR INVERSES T such thatT"VIUT = A, whereA is a lower triangular

In this section, we will first compare the three classes §fatrix with its diagonal elements equal to either one or zero.
first-order systems, namely, LOTs [1], [4], [6], BOLTSs [5], andJsing a procedure similar to the proof of Theorem 3, one can

LUTs. All of these transforms are first-order matrices wittfhow the follgwing theorem. _
FIR inverses. Then, we will show that using three different 1heorem4:LetA(z) be a degreg-lapped transform with an

degree-one matrices as building blocks, we are able to factoriZ& inverse. ThenA(z) = A(1)(I- UV’ + 271 UVT, where

any lapped transforms having FIR inverse. A summary oh = [vo w1 e V1] and_U = [uo u - ‘{‘pfl]
factorization theorems will be given at the end of the section.2® such tha¥'U is a lower triangular matrix with diagonal

The LOTs, BOLTs and LUTS can, respectively, be factorizeg'triés equal to zero or one. Moreova,z) can be decomposed
into the following three different degree-one building blocks: &S

A(z) = A(1)Eo(z)E1(2)... E,_1(2)

Bk(z) =I - Vkv"]; + VkV;;Z_l, V,};Vk = 17
Ci(z) =T —wev| + vz ufve =1 where
Dy (#) =T - ukvz + ukvlz_l, uka =0. Bi(z), ifuy=wy

Ex(z) = Cilz), ifviu =1

Note thatB.(z), Ci(z), and Dy(z) are, respectively, de- Dilz), if V;:uk _o

gree-one LOT, BOLT, and LUT matrices. Combining our
earlier results and those in [1], [4], and [5], we can conclude A summary of factorization theorems for FIR PR FBar the
that the first-order degregsystemA(z) = Ao+ Az~ is past 15 years, there has been a lot of interest in the study of the
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TABLE | 10 f ? ? f
SUMMARY OF FACTORIZATION THEOREM OFFBs :

Class of FBs Always —

Factorable? %
Paraunitary FB [19)] YES g
CAFACAFI FB [5] NO 2
Unimodular FB [13] NO i
Time-varying Lossless FB [21] NO §
Paraunitary FB over GF(2) [22] NO %
Order-One Paraunitary FB (LOT) [19)] YES =
Order-One CAFACAFI FB (BOLT) (5] YES
LOT over GF(2) [22] YES |
Order-One Unimodular FB (LUT) YES PR 0% 08 y
Order-One FIR FB with FIR Inverse YES Frequency normalized by ©t

Fig. 3. Magnitude response of the analysis filters for an eight-channel LUT
factorization theorem for FIR PR FBs. The advantage of a fah degreep = 3.
torized form is that it efficiently (i.e., minimally) captures all
FBs within the specific class of FB by using simple building
blocks. Using the cascade structure from the factorization tt
orem, PR is guaranteed, and the free parameters can be desi
to achieve the desired goal. The earliest minimal factorizatis
results for FIR PR FBs was shown by Vaidyanathan. In [1¢
Vaidyanathan showed that paraunitary FBs can always be mg
imally factorized into degree-one building blocks. Since theg
the factorization of various classes of FBs has been investigaS
by a number of researchers. In Table |, we summarize some3
the results. Note that all the FBs in Table | have FIR analys
and FIR synthesis filters. Unless stated explicitly, the FBs listt
in Table | are assumed to be LTI and over the real or compl
field. From the table, we can conclude the following.

1) Except for the paraunitary case, FBs with arbitrary ord

10 T T T T

of — - LT /]

3 1 1 1 1
are, in general, unfactorable. These FBs include tl 085 0.87 0.89 0.91 0.93 0.95
CAFACAFI FB [5], the unimodular FB [5], [13], the o
time-varying lossless FB [21]’ and the paraunitary FBig- 4. Compariso_n of coding gain o_f eight-channel degree-two LUT, BOLT,
over the finite field GF(2) [22] and LOT for AR(1) input with correlation:.

2) All the listed order-one FBs (i.e., lapped transforms)
are factorable. These FBs include the LOT [1], [19], theOT and BOLT (M = 8 andp = 3) have a stopband attenu-
BOLT [5], the LUT, the order-one FB with FIR inverse,ation of around 20 and 26 dB, respectively. The system delays

and the LOT over GF(2) [22]. of LOT and BOLT are 15 and 31, respectively. We see that the
LUT, which has a much smaller system delay, has a better stop-
VI. TWO EXAMPLES band attenuation than the LOT. Although BOLT is better than

) ) ) LUT, its system delay is significantly larger.

Inthis section, we provide two examplesto demonstrate potenEyample 2—Coding Gain for AR(1) Processés:this ex-
tial applications of LUTSs. In both examples, we use thefactorizgmme, we compare the coding performances of LOTs, BOLTS,
tionin Theorem 3 to design the vectarsandv; using nonlinear gnd LUTs for AR(1) process. The input signafn) (which
optimization packages[24].Hence,theresultsarenotoptimgl,lpyta vector of dimensiod) is taken as the blocked version
they show that despite having a very small systemdelay, their pgf scalar AR(1) process with correlation coefficientsThe
formance is comparable with that of LOTs and BOLTSs. number of channels i4/ = 8, and the number of degrees

Example 1—LUT with Good Frequency Responkethis g p = 2. For0.85 < a < 0.95, we optimize the coding

example, we apply the factorization theorem in Section IlI gain of LOTs, BOLTs, and LUT&.The results are plotted in
the design of LUTs with good filters. The number of channgtiy 4. From Fig. 4, we see that the LUTs always outperform
is M = 8, and the degree is = 3. The system delay of the the BOLTSs, whereas the BOLTSs always outperform the LOTSs.
LUT is therefore 7. The free parameters are optimized so that

the total stopband energy of the eight filters is minimized. TheZLike other nonparaunitary matrices, the direct application of LUTs in sub-

. . . . .band coding will suffer from noise amplification at the synthesis end. To avoid
resultis shown in Fig. 3. The filters have a stopband attenuatigfy oroblem, we employ the minimum noise structure in [23], which is closely

of at least 21.7 dB. Comparing the result with those in [5], thelated to the closed-loop vector DPCM.



PHOONG AND LIN: LAPPED UNIMODULAR TRANSFORM AND ITS FACTORIZATION 2701

The system delays of the LUTs, BOLTS, and LOTSs are, respei4] F.R. Gantmatchefthe Theory of Matrices New York: Chelsa, 1959,
tively, 7, 23, and 15. We see that the LUTs have the highest _ vol- 1.

W. Sweldens, “The lifting scheme: A custom-design construction of

. ) . . 115]
coding gain and the smallest system delay when the input is aln biorthogonal wavelets Appl. Comput. Harmon. Analol. 3, no. 2, pp.

AR(1) process. The gain can be substantial when the correlation  186-200, 1996.
coefficienta is close to 1. [16] A. R. Calderbank, I. Daubechies, W. Sweldens, and B. Yeo, “Lossless

image compression using integer to integer wavelet transformBroin
IEEE Int. Conf. Image Processl997, p. 596.

VIl. CONCLUSIONS [17] S. M. Phoong and Y. P. Lin, “Minimal factorization of lapped unimod-
ular transforms,” inProc. Int. Conf. Acoust., Speech, Signal Progess.

In this paper, we have shown that like LOTs and BOLTSs, all Istanbul, Turkey, June 2000.

LUTs can be minimally factorized. Moreover, all first-order ma-

[18] P. P. Vaidyanathan and T. Chen, “Role of anticausal inverses in multi-
rate filter banks—Part I: System-theoretic fundamentdBEE Trans.

trices with FIR inverse can be decomposed into a cascade of de-  sjgnal Processingvol. 43, pp. AUTHOR: Please indicate on which
gree-one LOT, degree-one BOLT, and degree-one LUT buildin pages this paper appeared.—, May 1995.

blocks. For higher order unimodular matrices, we show tha

9] P. P. Vaidyanathan, “Passive cascaded-lattice structures for low-sensi-
tivity FIR filter design, with applications to filter banks|EEE Trans.

there exists a class of unimodular matrices that cannot be de-  circuits Syst. vol. CAS—33, pp. AUTHOR: Please indicate on which
composed into any unimodular matrices with a smaller degree.  pages this paper appeared.—, Nov. 1986.

This shows that there are no finite degree building blocks tha¢®!

A. K. Soman, P. P. Vaidyanathan, and T. Q. Nguyen, “Linear phase pa-
raunitary filter banks: Theory, factorizations and desighsSEE Trans.

can capture all unimodular matrices. Design examples show that  signal Processingvol. 41, pp. 3480-3496, Dec. 1993.
the LUTSs, which have a much smaller system delay, can achievigl] S. M. Phoong and P. P. Vaidyanathan, “Factorability of lossless

comparable or better performance than LOTs and BOLTSs. Thus,

time-varying filter banks,1EEE Trans. Signal Processingol. 45, pp.
1971-1986, Aug. 1997.

the LUT is an attractive candidate for applications where low22] —— “paraunitary filter banks over finite fields/EEE Trans. Signal
delay is a desired feature. Processingvol. 45, pp. 1443-1457, June 1997.

[23] S. M. Phoong and Y. P. Lin, “Application of unimodular matrices to
signal compression,” ifProc. Int. Symp. Circuits SystPhoenix, AZ,
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