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Lapped Unimodular Transform and Its Factorization
See-May Phoong, Member, IEEE,and Yuan-Pei Lin, Member, IEEE

Abstract—Two types of lapped transforms have been studied
in detail in the literature, namely, the lapped orthogonal trans-
form (LOT) and its extension, the biorthogonal lapped transform
(BOLT). In this paper, we will study the lapped unimodular trans-
form (LUT). All three transforms are first-order matrices with fi-
nite impulse response (FIR) inverses. We will show that like LOT
and BOLT, all LUTs can be factorized into degree-one unimodular
matrices. The factorization is bothminimal and complete. We will
also show that all first-order systems with FIR inverses can be min-
imally factorized as a cascade of degree-one LOT, BOLT, and LUT
building blocks. Two examples will be given to demonstrate that
despite having a very small system delay, the LUTs have a satisfac-
tory performance in comparison with LOT and BOLT.

Index Terms—Filterbank, polynomial matrix, transform,
unimodular matrix.

I. INTRODUCTION

F ILTER banks (FBs) and transforms have found many appli-
cations in signal processing [1]–[3]. When the polyphase

matrix has order one, such an FB is also known as a lapped trans-
form. Two classes of lapped transforms [the lapped orthogonal
transform (LOT) [1], [4], [6] and the biorthogonal lapped trans-
form (BOLT) [5]] have been studied in detail. The LOTs [6]
and its generalization (GenLOT [3], [7]) have been widely ap-
plied in various applications. Many properties of LOTs and Gen-
LOTs, such as the factorization and phase linearity, have been
developed. In [5], Vaidyanathan and Chen relax the orthogo-
nality condition and introduce a more general class of trans-
forms called the BOLTs. BOLT is the class of lapped transforms
that have anticausal FIR inverses. It includes the LOT as a useful
special case. Like LOT, it was shown [5] that BOLT can also be
factorized into degree-one matrices. A design example showed
that BOLT has more design freedom and that its filters have
better frequency responses than those of LOT with the same de-
gree.

In this paper, we will study a class of lapped transform called
the lapped unimodular transform (LUT). LUTs are first-order
unimodular matrices. When the polyphase matrix of an FB
is unimodular, we say it is a unimodular FB. Like LOTs and
BOLTs, the LUTs and unimodular matrices have the advantage
that both their inverses and themselves are FIR matrices. If they
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are used as the polyphase matrices, the FBs have FIR analysis
and synthesis filters and achieve perfect reconstruction (PR). In
additional to having causal FIR inverses, unimodular FBs also
enjoy the advantage of having the smallest system delay among
all FBs. The system delay of -channel unimodular FBs is
always , no matter how long the analysis and synthesis
filters are. System delay is of particular importance in appli-
cations such as speech coding and adaptive subband filtering.
In speech coding, excessive delay can be very annoying [8]. In
adaptive subband filtering, long system delay can degrade the
performance [9]. Although there are efficient design methods
for low delay FBs [10]–[12], there are relatively few results on
unimodular FBs.

The earliest paper that studied the relationship between
unimodular matrices and FIR PR FB is [13]. Using system-the-
oretic concepts, the authors derived a number of properties
for causal FIR unimodular matrices. In particular, the authors
showed that there are examples of second-order unimodular
matrices that cannot be factorized into degree-one unimodular
matrices. Moreover, it was shown that any causal FIR matrix

with can always be decomposed
into a product of a unimodular matrix and a paraunitary
matrix. Even though such a decomposition is not necessarily
minimal, it proved that all FIR PR FBs can be captured by a
paraunitary matrix and a unimodular matrix. In [5], the authors
showed that all BOLTs can be decomposed into degree-one
building blocks. In addition, the authors showed that the lapped
transform is a LUT if and only if the matrix

has all the eigenvalues equal to zero. The most general
degree-one unimodular matrix was also given [5]. However,
the factorization of LUTs into these degree-one unimodular
matrices was not established. Another type of factorization
of unimodular matrices has been studied before. It is also
shown in a corollary in [14, Sect. II, ch. 6] that unimodular
matrices can be expressed as a product of elementary matrices
containing delay elements. Elementary matrices can be realized
by using the lifting schemes [15], [16]. Lifting schemes enjoy
the advantages of having low complexity and being structurally
PR, that is, the FB continues to have PR even when the lifting
coefficients are quantized. However, such a representation is
not minimal and not unique. It would not be useful for the
parameterization of filter banks as it does not give a structure
with a fixed number of multipliers.

The following results are the main contributions of this paper.

1) All LUTs can be factorized into degree-one unimodular
matrices. The factorization is both minimal and complete.

2) All lapped transforms with FIR inverses, which include
LOTs, BOLTs and LUTs as special cases, can be min-
imally factorized as a cascade of degree-one building
blocks.

1053-587X/02$17.00 © 2002 IEEE
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3) There do not exist any set of finite-degree unimodular
matrices that form the building blocks of all unimodular
matrices.

4) All factorable unimodular matrices can be captured using
orthogonal matrices and unit-delay lifting matrices.

5) There do not exist linear-phase unimodular FBs with
equal filter length.

6) Two examples demonstrate that despite having a very
small system delay, we are able to i) design LUT with
stopband attenuation comparable with that of LOTs and
BOLTs ii) obtain a satisfactory coding performance.

A. Paper Outline

In Section II, we will first review some results from [5] and
[13]. Then, we will show that we cannot have linear-phase uni-
modular FBs with equal filter length. The factorization theorem
of LUTs is presented in Section III. In Section IV, we consider
unimodular matrices of higher order. We first give a class of
undecomposable unimodular matrices. Then, we show that fac-
torable unimodular matrices, not restricting to first order, can be
completely parameterized in terms of orthogonal matrices and
unit-delay lifting matrices. In Section V, we will show that all
lapped transforms with FIR inverse can be minimally factorized
into degree-one building blocks. Section VI gives two examples
to demonstrate the potential applications of LUTs. A conclusion
is given in Section VII. Parts of the results in this paper have
been presented in [17].

B. Notations and Definitions

Boldfaced upper and lower case letters are used to denote
matrices and vectors, respectively. All matrices and vectors are

and , respectively. For a causal polynomial
with , its

order is equal to , whereas itsdegreeis the minimum number
of delay required to realize the matrix. For example, the matrix

has order one, whereas its degree is equal
to the rank of . An implementation of a polynomial matrix
is said to beminimal if it uses the minimum number of delays
needed to implement the matrix. A representation or structure is
said to becompletefor a certain class of matrices if every matrix
in that class can be expressed in such a representation.

The first-order matrix will be called
thelapped transform. It is well known that such a matrix has an
FIR inverse if and only if its determinant is for
some nonzero constantand integer . The lapped transform

is a BOLT if it has an anticausal inverse [5]. Moreover,
if the coefficients of BOLT satisfy and

, then it is a LOT [4], [6]. Both the BOLTs and LOTs
have been studied in detail [1], [5], [6], [19].

II. PROPERTIES OFUNIMODULAR MATRICES AND LUT

A causal matrix is unimodular if its determinant
for some nonzero constant. The inverse of a

causal unimodular matrix is also causal unimodular. When the
first-order matrix

(1)

is unimodular, it is called the LUT. Many useful properties of
unimodular matrices can be found in [1], [5], and [13]. In this
section, we will first review some results from [5] and [13] that
are useful for later discussions. Then some new results will be
stated.

A. Some Known Results From [5] and [13]

Parts of the results on unimodular matrices from [5] and [13]
will be given later. For proofs and more results see [5] and [13].

Theorem 1: Let with
be unimodular. Then, we have i) that is singular

and ii) that is nonsingular.
Theorem 2: The degree-one matrix

is unimodular if and only if , and more generally, the
order-one matrix

(2)

where and are matrices with rank , is a degree-
matrix having FIR inverse if and only if has all eigenvalues
equal to zero or one. Moreover, the degree-matrix in (2) is
unimodular if and only if has all eigenvalues equal to zero.

As a result of Theorem 1, we can also express the unimodular
matrix in (2) as

Thus, it is also true (see [5, Ex. 5.4]) that is
unimodular if and only if has all eigenvalues equal to zero.
In particular, the degree-one matrix is unimodular
if and only if . In this paper, we will use
as the building block because it gives a neater expression. All
the derivations in Section III can also be done using

as the building block. Though all LUTs are factorable,
as we will show in Section III, there are higher order unimodular
matrices that cannot be decomposed into degree-one building
block. One such example was given in [5]

(3)

It was shown [5] that the matrix in (3) is unimodular and that it
cannot be decomposed into degree-one building blocks.

B. Existence of Linear Phase Unimodular FBs With Equal
Filter Length

In [20], it was shown that there exist nontrivial linear-phase
paraunitary FBs when the number of channels . Let

be the polyphase matrix. The class of
linear phase paraunitary FBs derived in [20] satisfy the sym-
metry constraint

(4)
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Fig. 1. Implementation of (a) a degree-one unimodular matrixD(z) and the inverseD (z). Here, the vectors satisfyv u = 0.

where is a diagonal matrix with 1 diagonal entries, and
is the reversal matrix

...
...

...

Note that all linear-phase FBs with filter length equal to (
integer) satisfy this constraint. When is even, it was shown
[20] that minimal factorization theorem exists for such matrices.
We may ask if there are unimodular FBs satisfying the linear-
phase constraint (4). The answer is, unfortunately, no. To see
this, note that (4) implies that the ranks of and are the
same. This contradicts the fact that for a unimodular FB,is
nonsingular, and is singular. Therefore, we conclude that
there does not exist any unimodular FB satisfying the linear-
phase constraint(4).

III. FACTORIZATION OF LUT

We will first derive the most general degree-one unimodular
matrix and then show that all LUTs can be factorized into these
building blocks. From Theorem 1, we know that the unimodular
matrix can always be written as

. The matrix has degree one if and only if has
rank one. Since has rank one, for some nonzero

vectors and . From Section II-A, we know that
is unimodular if and only if . Hence, the

most general degree-one unimodular matrix is a cascade of a
nonsingular matrix and a building block of the form

(5)

Its inverse is given by , which
is also a degree-one unimodular system. The implementations
of and its inverse using one delay are shown in Fig. 1.
Using as a building block, we are now ready to show the
factorization of LUTs.

Theorem 3: The matrix is a
degree- LUT if and only if it can be expressed as

(6)

where , and is nonsingular. The vec-
tors and are such that i) both

and have full rank, and ii) their
product satisfies (here “” denotes the don’t-care term)

...
...

...
. . .

...

(7)

Proof: If can be expressed as the product in (6) and
(7), it is not difficult to verify that it is a degree-LUT. The
LUT matrix will have the form of . Sup-
pose that is an LUT; then, it can be rewritten as

. As has degree, the rank of is also .
Therefore, there exist full rank matrices and such
that . From Section II-A, we know that the ma-
trix has all the eigenvalues equal to zero. Using Schur’s
unitary triangularization theorem, we can find a unitary
matrix such that

for some lower triangular matrix with all the diagonal ele-
ments equal to zero. Letting and , one can
verify that

where the vectors and are obtained from
and .

Note that the number of degree-one building blocks in the
factorization (6) is equal to, which is the degree of the LUT.
Hence, such a factorization is minimal.

From (6), the inverse of LUT can be expressed as

Although the inverse is also unimodular, its order is, in
general, higher than one when . It is not difficult to show
that also has order one if and only if the vectorsand

satisfy

...
...

...
. . .

...
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Combining the above result and (7), we conclude that both
and are LUTs if and only if the vectors and are
orthogonal, that is, .

A note on the degree of cascade of unimodular systems:It is
well known if we cascade two causal paraunitary matrices of
degree and , the resulting system is a causal paraunitary
system with degree . The same is true for the class
of causal FIR matrix with anticausal FIR inverse (CAFACAFI)
[5]. The LOT is a member of the paraunitary family, and the
BOLT belongs to the CAFACAFI class. Therefore, cascading
degree-one LOT and BOLT building blocks always results in
systems with higher degree. For unimodular matrices, this is no
longer true. For example, if we cascade two degree-one unimod-
ular system, namely, as in (5) and , the resulting
system is the identity matrix, which has a degree of zero. There-
fore, cascading more unimodular systems does not always result
in an unimodular system with a higher degree. However, in the
LUT case, the degree-one system in (6) cannot cancel
itself since the vector sets and are both linearly inde-
pendent sets.

Degrees of freedom:Any degree- LUT system is
characterized by (6). The constant matrix has elements,
and the vectors and have elements, but there are

constraints in (7). Therefore, the degrees of freedom
are given by .

Factorization using a different degree-one building block:In
[5], a different degree-one unimodular system is introduced. It
has the form

Comparing with in (5), one can verify that
. Using an approach similar to the proof of The-

orem 3, one can also factorize LUTs in terms of . It is not
difficult to show that is a degree- LUT
if and only if

where , and the vectors and
satisfy the relation given in (7).

IV. HIGHER ORDER UNIMODULAR MATRICES

From Section III, we know that all first-order unimodular ma-
trices (LUTs) are factorable. For higher order unimodular ma-
trices, there are examples that are not factorable. For example,
see the unimodular matrix in (3). In the following, we will first
show that in fact, we can never capture all unimodular matrices
with any set of finite-degree unimodular matrices. Then, we will
show that we can capture the class of factorable unimodular ma-
trices, not restricting to first-order, with orthogonal matrices and
unit-delay lifting matrices.

A. Class of Undecomposable Unimodular Matrices

Consider the following matrix:

where , and . One can verify that is uni-
modular and that its inverse is given by . Its degree
is equal to . We will show that cannot be minimally de-
composed into any unimodular matrices of degree . Sup-
pose that

(8)

where and are unimodular matrices with degree
equal to and , respectively. Using minimality, we have

. To avoid triviality, we assume that ,
. Let the inverse of
with . Then, is unimodular, and

hence, its first coefficient is nonsingular. Moreover, its order
satisfies degree of , where we have
used the fact that for any invertible square matrix, its inverse has
the same degree [13]. From (8), we have

As the degree of is , the order of
. From the previous equation, if we compare the coefficients of

the term , we get

As is a nonzero vector, this contradicts the fact that is
nonsingular. Therefore, cannot be decomposed into any
unimodular matrix of smaller degree. Ascan be any integer,
the matrix can have an arbitrary degree. We conclude that
there do not exist any set of finite-order unimodular matrices
that forms a building block for all unimodular matrices.

B. Parameterization of Factorable Unimodular Matrices
Using Orthogonal and Unit-Delay Lifting Matrices

It is well known [1] that all paraunitary matrices can be de-
composed as degree-one building blocks. They can also be pa-
rameterized in terms of orthogonal matrices and diagonal ma-
trices with a single delay. Define the unit-delay matrix

...
...

. . .
...

Then, all paraunitary matrices can be expressed as

for some orthogonal matrices . Similarly, it was shown ([5,
Fig. 6 and (27)])1 that all factorable CAFACAFI matrices can
be expressed in the previous form with being nonsingular
matrices. In the following, we will derive a similar parameteri-
zation of factorable unimodular matrices.

Consider the degree-one building block in (5). By
simple normalization, we can express the building block using
unit-norm vectors

(9)

1Although it was derived only for BOLT in [5], it can easily be generalized
to the class of factorable CAFACAFI matrices.
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where are nonzero scalars, and and are unit-norm
vectors such that As and are orthonormal
vectors, we can always form the unitary matrix

. Using , we can rewrite as

where the matrix is given by

...
...

...
...

...

Note that is an elementary row operation matrix with a
delay element. Its inverse is . The matrix is there-
fore also unimodular. As can be implemented using a
lifting with a single delay, it will be called a unit-delay lifting
matrix. Suppose that is a unimodular matrix that can be
factorized in terms of degree-one building blocks, that is

(10)

Then, using the above derivation in (10), can be rewritten
as the following cascade form:

(11)

where is a nonsingular matrix, and for are unitary
matrices. This cascade form is shown in Fig. 2. On the other
hand, if a matrix can be implemented using Fig. 2, it is clearly a
unimodular matrix. Moreover, each section can be rewritten as

for some unitary . Therefore, any unimodular ma-
trix of the form (11) can be factorized as in (10). In other words,
Fig. 2 captures all degree-factorable unimodular matrices.

V. LAPPEDTRANSFORMSWITH FIR INVERSES

In this section, we will first compare the three classes of
first-order systems, namely, LOTs [1], [4], [6], BOLTs [5], and
LUTs. All of these transforms are first-order matrices with
FIR inverses. Then, we will show that using three different
degree-one matrices as building blocks, we are able to factorize
any lapped transforms having FIR inverse. A summary on
factorization theorems will be given at the end of the section.

The LOTs, BOLTs and LUTs can, respectively, be factorized
into the following three different degree-one building blocks:

Note that , , and are, respectively, de-
gree-one LOT, BOLT, and LUT matrices. Combining our
earlier results and those in [1], [4], and [5], we can conclude
that the first-order degree-system is

Fig. 2. Characterization of all degree-J unimodular matrices using a
nonsingular matrixT and unitary matricesT (i � 1) .

1) an LOT if and only if
, where the vectors are such that

[1];
2) a BOLT if and only if

, where the vectors and are such that
for

some lower triangular matrix with all diagonal elements
equal to one [5];

3) an LUT if and only if
, where the vectors (linearly inde-

pendent) and (linearly independent) are such that
for

some lower triangular matrix with all diagonal elements
equal to zero.

In fact, not only LOTs, BOLTs and LUTs are factorable, but
all lapped transforms with FIR inverses are factorable. Consider
a degree- system . It is well known [1]
that a polynomial matrix has an FIR inverse if and only if

for some integer . A complete characteri-
zation of first-order matrices having an FIR inverse was given
in [5]. The authors showed that the degree-lapped transform

has an FIR inverse if and only if it can
be expressed as

where and are matrices such that the eigenvalues of
their product are either one or zero. Using this result and
Schur’s triangularization theorem, we can find a unitary matrix

such that , where is a lower triangular
matrix with its diagonal elements equal to either one or zero.
Using a procedure similar to the proof of Theorem 3, one can
show the following theorem.

Theorem 4: Let be a degree-lapped transform with an
FIR inverse. Then, , where

and
are such that is a lower triangular matrix with diagonal
entries equal to zero or one. Moreover, can be decomposed
as

where

if
if
if .

A summary of factorization theorems for FIR PR FBs:For the
past 15 years, there has been a lot of interest in the study of the



2700 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 11, NOVEMBER 2002

TABLE I
SUMMARY OF FACTORIZATION THEOREM OFFBS

factorization theorem for FIR PR FBs. The advantage of a fac-
torized form is that it efficiently (i.e., minimally) captures all
FBs within the specific class of FB by using simple building
blocks. Using the cascade structure from the factorization the-
orem, PR is guaranteed, and the free parameters can be designed
to achieve the desired goal. The earliest minimal factorization
results for FIR PR FBs was shown by Vaidyanathan. In [19],
Vaidyanathan showed that paraunitary FBs can always be min-
imally factorized into degree-one building blocks. Since then,
the factorization of various classes of FBs has been investigated
by a number of researchers. In Table I, we summarize some of
the results. Note that all the FBs in Table I have FIR analysis
and FIR synthesis filters. Unless stated explicitly, the FBs listed
in Table I are assumed to be LTI and over the real or complex
field. From the table, we can conclude the following.

1) Except for the paraunitary case, FBs with arbitrary order
are, in general, unfactorable. These FBs include the
CAFACAFI FB [5], the unimodular FB [5], [13], the
time-varying lossless FB [21], and the paraunitary FB
over the finite field GF(2) [22].

2) All the listed order-one FBs (i.e., lapped transforms)
are factorable. These FBs include the LOT [1], [19], the
BOLT [5], the LUT, the order-one FB with FIR inverse,
and the LOT over GF(2) [22].

VI. TWO EXAMPLES

In thissection,weprovide twoexamples todemonstratepoten-
tial applications of LUTs. In both examples, we use the factoriza-
tion in Theorem 3 to design the vectorsand using nonlinear
optimizationpackages[24].Hence,theresultsarenotoptimal,but
theyshowthatdespitehavingaverysmall systemdelay, their per-
formance is comparable with that of LOTs and BOLTs.

Example 1—LUT with Good Frequency Response:In this
example, we apply the factorization theorem in Section III to
the design of LUTs with good filters. The number of channel
is , and the degree is . The system delay of the
LUT is therefore 7. The free parameters are optimized so that
the total stopband energy of the eight filters is minimized. The
result is shown in Fig. 3. The filters have a stopband attenuation
of at least 21.7 dB. Comparing the result with those in [5], the

Fig. 3. Magnitude response of the analysis filters for an eight-channel LUT
with degree� = 3.

Fig. 4. Comparison of coding gain of eight-channel degree-two LUT, BOLT,
and LOT for AR(1) input with correlation�.

LOT and BOLT ( and ) have a stopband attenu-
ation of around 20 and 26 dB, respectively. The system delays
of LOT and BOLT are 15 and 31, respectively. We see that the
LUT, which has a much smaller system delay, has a better stop-
band attenuation than the LOT. Although BOLT is better than
LUT, its system delay is significantly larger.

Example 2—Coding Gain for AR(1) Processes:In this ex-
ample, we compare the coding performances of LOTs, BOLTs,
and LUTs for AR(1) process. The input signal (which
is a vector of dimension ) is taken as the blocked version
of a scalar AR(1) process with correlation coefficients. The
number of channels is , and the number of degrees
is . For , we optimize the coding
gain of LOTs, BOLTs, and LUTs.2 The results are plotted in
Fig. 4. From Fig. 4, we see that the LUTs always outperform
the BOLTs, whereas the BOLTs always outperform the LOTs.

2Like other nonparaunitary matrices, the direct application of LUTs in sub-
band coding will suffer from noise amplification at the synthesis end. To avoid
this problem, we employ the minimum noise structure in [23], which is closely
related to the closed-loop vector DPCM.
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The system delays of the LUTs, BOLTs, and LOTs are, respec-
tively, 7, 23, and 15. We see that the LUTs have the highest
coding gain and the smallest system delay when the input is an
AR(1) process. The gain can be substantial when the correlation
coefficient is close to 1.

VII. CONCLUSIONS

In this paper, we have shown that like LOTs and BOLTs, all
LUTs can be minimally factorized. Moreover, all first-order ma-
trices with FIR inverse can be decomposed into a cascade of de-
gree-one LOT, degree-one BOLT, and degree-one LUT building
blocks. For higher order unimodular matrices, we show that
there exists a class of unimodular matrices that cannot be de-
composed into any unimodular matrices with a smaller degree.
This shows that there are no finite degree building blocks that
can capture all unimodular matrices. Design examples show that
the LUTs, which have a much smaller system delay, can achieve
comparable or better performance than LOTs and BOLTs. Thus,
the LUT is an attractive candidate for applications where low
delay is a desired feature.
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