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Minimum Redundancy for ISI Free FIR
Filterbank Transceivers

Yuan-Pei Lin, Member, IEEE,and See-May Phoong, Member, IEEE

Abstract—There has been great interest in the design of filter-
bank transceivers. Usually, with proper time domain equalization,
the channel is modeled as an FIR filter. It is known that for
FIR channels, the introduction of certain redundancy allows
the receiver to cancel intersymbol interference (ISI) completely,
and channel equalization is performed implicitly using FIR
transceivers. This scheme allows us to trade bandwidth for ISI
cancellation. In this paper, we will derive the minimum redun-
dancy required for the existence of FIR transceivers for a given
channel. We will see that the minimum redundancy is directly
related to the zeros of the channel and to the Smith form of an
appropriately defined channel matrix.

I. INTRODUCTION

T HE connection between an -band filterbank and an
-band DMT (discrete multitone) or filterbank trans-

ceiver is well known [1]–[3]. When the analysis and synthesis
banks of a perfect reconstruction filterbank are interchanged,
the new structure becomes a filterbank transceiver (see Fig. 1).
The system in this case has interpolation ratio , and it
is calledminimally interpolated. When the channel is a
delay, i.e., ideal, the minimally interpolated-band filterbank
transceiver is ISI free if the corresponding filterbank has perfect
reconstruction [1]. The ISI-free property means that there is
no intraband or interband ISI. The discrete wavelet multitone
(DWMT) system [4] is obtained by interchanging perfect
reconstruction analysis and synthesis banks. However, when
the channel is not ideal, the perfect reconstruction property
of the filterbank no longer translates to ISI-free property of
filterbank transceivers. The resulting ISI can seriously degrade
the system performance [5], [6]. Additional interband and
intraband equalization can be used to reduce ISI [4], [7].

When the interpolation ratio , the filterbank trans-
ceiver is calledoverinterpolated; on average, every output
samples of the transmitter contain redundant sam-
ples. The cyclic prefix in DFT-based transceiver system [8], [9]
and zero padding in vector coding transceiver system [10] are
examples of such redundant samples. Using an overinterpolated
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Fig. 1. M -band DMT transceiver over a channelP (z) with additive noise
e(n).

filterbank transceiver, it is possible to cancel ISI completely
with appropriate redundancy. In a typical system model, the
channel is an FIR filter of order upon time domain
equalization. In the DFT-based transceiver system [9] or the
vector coding system [10], zero ISI is achieved using redun-
dancy .

As reducing redundancy leads to better bandwidth efficiency,
designs with smaller redundancy has been of great research
interest. Advances to the more general FIR overinterpolated
system have been made in [11] and [12] for ISI cancellation
using precoding. It has been shown that FIR transceivers exist
for redundancy under very general conditions. In
particular, for a given number of bands and interpolation
ratio , the condition for the existence of FIR transceivers can
be given in terms of the zeros of the channel . Let be
the set that contains the zeros of ,
with . The necessary and sufficient condition for the
existence of FIR transceiver is [12]

(1)

where

In [13], time-varying systems are employed for designing FIR
transceivers. Suppose the channel is of orderwith distinct
roots and that the interpolation ratio and number of bands

satisfy . It is shown in [13] that we can always
find a channel-independent time-varying transmitter such that
FIR time-varying receivers exist. In particular, redundancy of
one can be used as long as and the time-varying
receiving filters are sufficiently long. In addition, in [13], one
necessary condition for the existence of LTI transceivers is pre-
sented. Assume again that and that zeros of the
channel are distinct; in addition, assume that the transmitter
consists of a constant matrix. For the case where the channel
has zeros of the form , where for
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are integers, it is shown that the FIR receiver does not exist if
. However, for a given interpolation ratio, there has

been no method that computes explicitly the minimum redun-
dancy or, equivalently, the maximum number of bands that can
be used for ISI-free transmission.

In this paper, we will derive a new necessary and sufficient
condition for the existence of FIR transceivers. Given the zeros
of the channel and interpolation ratio , we will be able
to determine exactly the minimum redundancy for which FIR
transceivers with the ISI-free property exist. Furthermore, so-
lutions of FIR ISI-free transceivers with minimum redundancy
will be provided. There are cases where minimum redundancy

. The condition for such cases will be given. Moreover,
we will consider minimum redundancy for the class of block-
based DMT systems, in which case, the transmitter and receiver
of the filterbank transceiver are characterized by constant ma-
trices. The block-based system is the most widely used of all
transceivers [9], [10], [13]–[15]; the DFT based system and
the vector coding systems are both examples of block-based
transceivers. We will show that the minimum redundancy for
the block-based transceivers is given by . Furthermore,
when ISI-free block-based transceivers with minimum redun-
dancy exist, the solutions of the transceivers will
be parameterized.

The sections are organized as follows: In Section II, we
introduce the polyphase representation of the transmitter and
receiver, which will be the framework throughout this paper. In
the polyphase framework, the channel is formulated as a pseudo
circulant matrix [16]. The minimally interpolated filterbank
transceivers will be considered in Section III. In Section IV,
minimum redundancy for the existence of FIR transceivers is
presented. The block-based system is considered in Section V.
Some properties of pseudo circulant matrices that are useful for
our discussion are given in the Appendix.

A. Notations and Preliminaries

• Boldfaced lowercase letters are used to represent vectors,
and boldfaced uppercase letters are reserved for matrices.
The notations and represent the transpose of
and transpose-conjugate of.

• For an transfer matrix , the notation
denotes . For transfer matrices with real coeffi-
cients, .

• The notation is used to represent the identity
matrix. The subscript is omitted whenever the size is clear
from the context.

• Unimodular Matrices:An matrix is called
unimodular if det , which is a nonzero constant
[17]. A causal unimodular FIR matrix has the prop-
erty that is also causal and FIR.

B. Channel Models

Fig. 2(a) shows the block diagram of a filterbank transceiver.
The discrete time channel is modeled as an LTI filter with
additive noise , as shown in Fig. 2(a). A time domain equal-
izer (TEQ) precedes the receiver. Typically, the filter
can be further modeled as a rational transfer function

(a)

(b)

Fig. 2. (a) Block diagram of the DMT transceiver, including a discrete-time
channel model and an equalizerT (z). (b) Block diagram of the DMT
transceiver with an equalized channel model.

. The equalizer is usually designed to cancel
the poles of , and the resulting overall transfer function be-
comes the FIR filter , as shown in Fig. 2(b). Suppose
is of order and that

The equalized impulse response of the channel is thus short-
ened to . Each input sample of the channel will be spread to
a duration of length as a result. The noise shown in
Fig. 2(b) is obtained by feeding the original noise to the
equalizer . The equalized channel model in Fig. 2(b) will
be used throughout this paper; the channel refers to the equal-
ized channel ; and the channel noise refers to the equalized
noise in this paper.

II. POLYPHASE REPRESENTATION OFFILTERBANK

TRANSCEIVERS

Consider Fig. 1, where an -band filterbank transceiver is
shown. The channel is represented by an FIR filter with ad-
ditive noise , as explained in Section I-B. The filters
and are called transmitting and receiving filters, respec-
tively. It is not necessary for the interpolation ratioto be the
same as the number of bands. Two cases will be studied: i)
When , we say the system is minimally interpolated; ii)
when , we say it is overinterpolated, and redundancy
is introduced in this case. The case of is of no interest
in our application because in this case, the input data can
never be fully recovered, no matter what the channel is.

Using polyphase decomposition, we can decompose theth
transmitting filter with respect to the integer [17]

(2)

Writing the polyphase representation for all thetransmitting
filters, we have (3), shown at the bottom of the next page, where
the matrix is the polyphase matrix of the trans-
mitter. Using the noble identity [17], we can interchange the ex-
pander and . The transmitter can be implemented using



844 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 4, APRIL 2002

Fig. 3. Polyphase representation of the transmitter and receiver in a DMT
transceiver.

its polyphase matrix, as shown in Fig. 3. In a similar manner,
we can decompose the receiving filters as

(4)

Then, by invoking the noble identity, the receiver can be redrawn
as Fig. 3. The receiving filters are related to the

polyphase matrix of the receiver as (5), shown at the
bottom of the page.

1) Decomposition of the Channel:Using polyphase repre-
sentation, we can decompose the channel as

(6)

In order to further simplify Fig. 3, we need to apply an identity
from the multirate theory. It is shown in [17] that the multirate
system in Fig. 4 is, in fact, equivalent to an LTI system with
transfer function , which is given by

for
for

Fig. 4. Polyphase identity.

Fig. 5. Polyphase representation of a DMT transceiver.

where is defined in (6). We see that the system
from to in Fig. 3 is, in fact, an LTI system with
transfer matrix given by

...
...

...
. . .

...

(7)

Matrices in the above form are known as pseudo circulant ma-
trices [16], [17]. A first detailed study of pseudocirculant ma-
trices was made in [16]. Many useful properties, as well as ap-
plications of pseudocirculant matrices in QMF banks and block
filtering, are given therein. Properties of that will be used
in later discussions are given in the Appendix. With the channel
matrix , we can redraw Fig. 3 as Fig. 5. As we will see
later, the polyphase representation in Fig. 5 will facilitate a sys-
tematic study of filterbank transceivers. Many useful theoretical
and practical results can be drawn from such a representation.

2) Zero ISI Condition: From the polyphase decomposition
in Fig. 5, we see that even though multirate building blocks are

...
...

...
...

(3)

...
...

...
. . .

...
...

(5)
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used in a filterbank transceiver, it is, in fact, an LTI-input
-output system. The transfer matrix of the overall

system can be expressed as

(8)

The overall system is free from interband ISI if is a di-
agonal matrix. It is free from intraband ISI when the diagonal
elements of are merely delays. If it is free from both in-
terband and intraband ISI, we say that the filterbank transceiver
is ISI free; in the absence of channel noise, the outputs of an
ISI-free filterbank transceiver are identical to the inputs except
delays and scalars. Without much loss of generality, we can use
the ISI-free condition

(9)

III. FILTERBANK TRANSCEIVERSWITH NO REDUNDANCY

The filterbank transceiver in Fig. 1 is called minimally in-
terpolated if the interpolation ratio and if there is no
redundancy. In this section, we consider the solutions for such
systems [18]. A number of properties of such systems will be de-
rived. In particular, we will show thatno practical orthogonal
system can yield inter-band ISI free solutionunless the channel

is a pure delay. Using FIR nonorthogonal transceivers, we
can achieve only zero interband ISI but not zero ISI. Moreover,
for nonminimum phase channel, there does not exist an ISI-free
transceiver that iscausal and stable.

1) Orthogonal Transmitters and Receivers:Suppose that
the transceiver is orthogonal, that is

for all (10)

and . In the -transform domain, this
becomes , and orthogonality translates to

for all . From (9), the condition for zero
interband ISI becomes

(11)

where is a diagonal matrix. Premultiplying the above
equation by , we have

(12)

That is to say, the diagonal entries of contain the eigen-
values of , and the columns of are the eigenvectors
of . However, from the property of pseudocirculant ma-
trices given in (32), we see that the eigenvectors of the pseudo
circulant matrix are the column vectors of ,
which consist of a fraction of a delay [17] and cannot be re-
alized as rational transfer functions. Therefore, zero interband
ISI property of orthogonal filterbank transceivers over nonideal
channels cannot be achieved with finite cost. However, inter-
band ISI-free property is possible if the transmitter and receiver
are not constrained to be orthogonal, as we will see next.

2) FIR Nonorthogonal Transceiver:The matrix is a
causal FIR matrix and can be decomposed using the Smith form
decomposition described in the Appendix

(13)

where and are causal FIR unimodular matrices, and
is a causal FIR diagonal matrix. Note that and

are also causal FIR unimodular matrices as det
and det are constants. Therefore, if we choose the trans-
mitter and receiver as

and

then . Thus, using FIR nonorthogonal filterbank
transceivers, we can achieve interband ISI free. Although
interband ISI is canceled, intraband ISI cannot be removed
completely; in the minimally interpolated case, there is no FIR
transceiver that can achieves zero ISI for nonideal channels.
To see this, we can consider the determinant of the overall
system det det det . As is
FIR, det is FIR, and det is a delay if and only if

is a delay. If the transceiver is FIR, then det
is FIR, and it follows that det is also FIR. When there is
zero ISI, det is a delay, i.e., det det
is a delay. Therefore, det cannot be FIR unless
det is a delay. Therefore, it is not possible to achieve zero
ISI using FIR transmitters and receivers for a nonideal channel.

3) IIR Transceivers:If we are allowed to use IIR filters,
one possible ISI-free solution is and

. Caution must be taken in doing so. The term
may not be stable. In fact, if the channel does not

have minimum phase, there exists no ISI-free transceiver that is
bothcausalandstable.

Lemma 3.1:There exists a causal and stable ISI-free mini-
mally interpolated filterbank transceiver if and only if is
a minimum-phase filter. Furthermore, FIR transceivers with the
ISI-free property can be obtained only if is a delay.

Proof—Sufficiency of Minimum Phase : As
and are unimodular matrices, we have

det det . Using the
second property of pseudo circulant matrices derived in the
Appendix, we know that det has zeros at if has
zeros at for . It follows that the zeros of

are . If has minimum phase, the zeros satisfy
. The zeros of are also inside the unit circle.

For a causal and stable transceiver solution, we can choose

and

Whenever there exists a causal and stable transceiver pair
, we can use

to obtain a new causal and stable transceiver pair, where
is any causal and stable transfer matrix with a causal and stable
inverse.

Necessity of Minimum Phase . When the filterbank
transceiver is ISI free, we have

det

for some constant and integer . As det contains the
factor , therefore, either det or det con-
tains the factor . If does not have minimum
phase, then , and thus, for some . Therefore,

and cannot both be stable. In other words, if
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does not have minimum phase, there exists no causal and stable
ISI-free transceiver.

For the minimally interpolated filterbank transceiver, the ex-
istence of a causal and stable transceiver depends on the min-
imum-phase property of the given channel . The stability
problem also explains why nonminimum phase channels are dif-
ficult to equalize for minimally interpolated filterbank trans-
ceivers. However, as we will see later, this is not the case if
a certain redundancy is allowed, i.e., the filterbank transceiver
is overinterpolated. In fact, if the added redundancy is large
enough, there always exist FIR ISI-free filterbank transceivers.

Remarks: For single input single output (SISO) system, it is
well known that the inverse of an FIR system is always IIR. The
IIR inverse is i) causal and stable if the original system has min-
imum phase and ii) stable and possibly noncausal if the original
system has no zero on the unit circle. The result in Lemma 3.1
for the minimally interpolated systems can be viewed as a gen-
eralization of the SISO case.

IV. FIR TRANSCEIVERSWITH MINIMUM REDUNDANCY

We say a filterbank transceiver is overinterpolated if the inter-
polation ratio is greater than the number of bands. In this
case, there are more samples at the output of the transmitter than
the input. There are redundant samples in every
samples of the transmitter output. By introducing proper redun-
dancy to the transmitter output, the channel can be equalized
perfectly to achieve ISI-free property using FIR transceivers.
For example, in the DFT-based system, redundancy is intro-
duced by adding cyclic prefix. The transmitting and receiving
filters are FIR of length and , respectively. In this section,
we will consider general FIR transceivers. For a given interpo-
lation ratio , we will derive the minimum redundancy for the
existence of FIR transceivers. The minimum redundancy can be
determined from the location of the zeros of the channel .
It can also be related to the Smith form decomposition of the
channel matrix .

With the number of bands and interpolation ratio , the
transmitter and are, respectively, of dimension

and . The channel matrix is of dimension .
Definition 1: For a given and channel matrix with

Smith form , the notation denotes the number of
nonunity terms in the diagonal of the Smith form.

The number depends only on the given channel and the
interpolation ratio . We can express as

diag (14)

where is an integer satisfying . The
following lemma gives the smallest rank of , which in
terms will give the condition for the existence of FIR trans-
ceivers.

Lemma 4.1:The smallest rank of is , where
is the number of nonidentity terms on the diagonal of the

Smith form , as given in (14).
Proof: The determinants of the two unimodular matrices
and in the Smith form decomposition are nonzero

constants. The rank of is the same as the rank of the Smith
form . We can consider the rank of . Observing (14),

we can see that the smallest rank of is . This
happens when is a zero of .

Theorem 4.1:Consider the filterbank transceiver in
Fig. 1. Let have the Smith-form decomposition

, and let the Smith-form be
as given in (14). Then, there exist FIR and such
that the transceiver is ISI free if and only if the redundancy

, where is as given in Definition 1. When an
FIR transceiver exists, the solution is not unique. One choice of
ISI-free FIR transceiver is

(15)

The minimum redundancy for FIR transceiver solutions is
.
Proof:

Sufficiency:Consider that the choice of FIR transmitter
is given in (15). Then

Therefore, if we choose the receiver as in (15), the trans-
ceiver is FIR and ISI free. The unimodular matrices
and are not unique in the Smith-form decomposi-
tion; therefore, and are not unique. In partic-
ular, if is a pair of FIR ISI-free solutions, then

is also a pair of FIR ISI-free
solutions for any choice of unimodular matrix .
Necessity:Suppose that the added redundancy
and that there exist FIR and such that the system
is ISI free, i.e., . Using

, we have

(16)

As divides , the zeros of are also
zeros of . The last nonidentity terms have a
common factor . If , then

It follows that has rank , and the left-hand
side of (16) at has at most rank . However,
the rank of the right-hand side of (16) is always equal to

, which is greater than when
. Therefore, we have a contradiction in this

case.
The necessary and sufficient condition given in the above the-

orem can be replaced as

rank for all (17)

We can see this by using the result in Lemma 4.1 that the
smallest rank of is . As , the
condition holds if and only if , i.e.,

rank . Therefore, we have (17). It turns out
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that the smallest rank of can be determined by the number
of congruous zerosof the channel to be defined below.

Definition 2—Congruous Zeros: A set of zeros
of are congruous with respect to if

i) are distinct;
ii)
Definition 3: The notation denotes the cardinal of the

largest set of congruous zeros with respect to. If there are no
congruous zeros, we define .

The zeros that are congruous are distinct, but their magnitudes
are the same, and their angles differ by an integer multiple of

. That is

and

where

The number represents the largest number of distinct
zeros that have the same magnitude, and their differences in
angles are integer multiples of .

Lemma 4.2:For the channel matrix given in
(7), we have , where and are as in
Definition 1 and 3.

Proof: Consider the decomposition in (32). Be-
cause and are unitary matrices, the rank of

is the same as the rank of . Recall that
diag . The

number of terms on the diagonal of that have common
zeros determines the smallest rank of .

Observe that the zeros of are those of ro-
tated by . If and have a common zero

, then both and are zeros of ; the two zeros
and are congruous. The largest number of terms

on the diagonal of that have common zeros is the same
as the largest number of congruous zeros . Therefore, the
smallest rank of is . By Lemma 4.1, we know
the smallest rank of is . Therefore, we have

.
By combining Theorem 4.1 and Lemma 4.2, we can relate the

existence of FIR transceivers to the zeros of the channel.
Theorem 4.2:Consider the filterbank transceiver in Fig. 1

with interpolation ratio , number of bands , and redundancy
. Then, FIR transceivers exist if and only if

, where is the largest number of congruous zeros, as
given in Definition 3.

Example 1: Consider the second-order channel
. The channel has double zeros at . The

number of zeros on the unit circle is 2, but the number of distinct
zeros is one. In this case, for all . For instance,

, and ; we have . The polyphases of
with respect to are and .
The channel matrix is given by

The Smith form of is

One set of choices of and is

and

We can choose and according to (15):

Example 2: Consider the channel with
. The channel has zeros at , , and .

Let and . In this case, . The polyphases of
with respect to are and .

The channel matrix is given by

As there are no congruous zeros with respect to , we have
. The nonunity diagonal element is

The Smith form of is

Therefore, the choice ensures the existence of FIR trans-
ceivers. In this example, we also see that the interpolation ratio

can be smaller than the channel order. Now, suppose we in-
crease redundancy to , and becomes 3. The polyphases
of with respect to are ,
and . The channel matrix is given by

It is already in Smith form; the Smith form . The
number of nonidentity terms on the diagonal of is 3.
This result is also consistent with the fact that the three zeros

and are congruous with respect to
. FIR transceiver solutions do not exist in this case.
Example 3: Consider the second-order channel

. The zeros are and . Let
. For small , the zeros are almost congruous with respect

to . That is, when , the two zeros of det are
distinct but clustered. The channel matrix is given by
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When , the Smith form of is the same as ,
and FIR transceivers do not exist. When , it has the
following Smith-form decomposition:

If , we have . However, rank ,
as long as . We can see that the unimodular ma-
trices and reduce the rank of . There-
fore, or is an ill-conditioned matrix, although
they are unimodular and have constant determinants. To be more
specific, one can compute the condition number. For an

matrix , the condition number is defined as ,
where denotes matrix norm. Let us use the matrix norm de-
fined as the maximum of the absolute column sum, i.e.,

. We can verify that the condition number
of is one, whereas for small , the condition number
of is . The condition number of
goes to infinity as approaches zero.

Remarks:

1) The number is the largest number ofdistinctzeros
of that have the same magnitude but differs in an-
gles by integer multiples of . Zeros of multiplicity
greater than one count as one. This is demonstrated in Ex-
ample 1. The channel has double roots at ,
but .

2) When , we only need to use redundancy ,
which is the lowest redundancy possible for any nonideal
channel when the transceiver is FIR. The case
occurs when det has distinct zeros. We know that
det has roots at , where for
are the roots of the channel . The roots of det
are distinct if and only if have the property that

where is any integer in the range

(18)

That means that if two roots and are of the same
magnitude, their phase difference can not be a multiple
of . This condition is similar to that given in [11].
However, det having distinct zeros is not necessary
for as can have multiple zeros. For prac-
tical channels, the probability that the roots of sat-
isfy (18) is almost one. Therefore, redundancy of
is sufficient for the existence of FIR ISI-free transceivers
for most practical cases. However, when det has
distinct but clustered zeros, the condition number of the
transmitter or receiver are very large, as demonstrated in
Example 3.

3) When is equal to ? The minimum redundancy
required for FIR transceivers falls into the range

. The minimum redundancy if and
only if all the zeros of are congruous. This happens

Fig. 6. (Top) Magnitude response of the channelP (z). (Bottom) Power
spectrum of the additive noisee(n).

if and only if has distinct zeros and these zeros lie
on the same circle with angles difference that are integer
multiples of ,

4) When has distinct zeros, the number
can be determined from the multiplicities of the
zeros of det . Suppose det has distinct
roots with multiplicities, respectively,

. Then, it can be verified that is equal
to the maximum of the multiplicities, i.e.,

5) Suppose solutions of FIR transceivers exist for a given
. FIR solutions do not necessarily exist if we increase

redundancy from to and keep fixed. The
channel in Example 2 demonstrates that when

and , we have ; FIR solutions
exist for the case. However, when we increaseto 2,
keeping , i.e., , we have ; there are
no FIR solutions in this case.

6) Since the order of channel is finite, we can always find
such that , and redundancy can be used.

7) For a given and , the condition in (1) provides a test
for the existence of FIR transceivers [11]. If the condition
is not satisfied, FIR transceivers do not exist for the given
pair of . It does not provide a permissible pair of
solution. On the other hand, for a given, Theorem 4.1
gives the minimum redundancy or the maximumthat
ensures the existence of FIR transceivers.

Example 4: Consider the channel and power spectrum
of the colored noise shown in Fig. 6. The coefficient of the
channel is .
The channel has order . The channel and channel noise
are drawn from an ADSL environment. For , the min-
imum redundancy is one, and we choose and .
The FIR transmitter and receiver is as given in (15). The inputs
are BPSK symbols, rendering a bit rate of 0.8 bits/sample. The
transmission power is the variance of the signal , as indi-
cated in Fig. 1. The plot of bit error rate versus transmission
power is given in Fig. 7. For comparison, we also plot the bit
error rate performance of DFT-based system with the same bit
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Fig. 7. Bit error rate for the DMT system with minimum redundancy and
DFT-based system with the usual redundancy.

rate and relative redundancy, i.e., same or same .
We choose , . The system with minimum redun-
dancy requires a much less transmission power for the same bit
error rate.

Remarks: In the above example, the minimum redundancy
is one, whereas the usual redundancy is 4. In most cases, the
minimum redundancy is less than the usual redundancy. At
the same relative redundancy, the system with minimum redun-
dancy has a smaller , i.e., a shorter block length. For the same
bit error rate, the system with minimum redundancy enjoys a
smaller transmission power. However, as the system is not DFT
based, the transceiver solution has more channel-dependent el-
ements in the design and implementation phases.

V. BLOCK-BASED TRANSCEIVERS

The -band filterbank transceiver shown in Fig. 3 is called
block based if the transmitter and the receiver are constant ma-
trices, i.e., and . The encoding at the
transmitter side and the decoding at the receiver end can be
performed blockwise. Typically, in block-based DMT (BDMT)
systems, the redundancy is chosen to be the order of the
channel for ISI cancellation. In this section, we will consider
BDMT transceiver with redundancy . Moreover, we will
derive minimum redundancy for BDMT systems. When ISI-free
solutions of the BDMT system with minimum redundancy exist,
complete parameterization of the transmitter and receiver will
be given.

A. Block-Based Transceivers With Reduced Redundancy

The block-based DMT (BDMT) system can be seen as a
special case of FIR transceivers, where the transmitting filters
and receiving filters have length the interpolation ratio .
The BDMT transceivers have been studied by a number of
researchers [10], [13]–[15]. For a given FIR channel with
order , redundancy of length is sufficient for the
existence of BDMT transceivers.

1) Two Widely Used BDMT Transceivers:Most of the
BDMT transceivers fall into the categories of trailing-zero

transmitters and leading-zero receivers. In the DFT-based DMT
systems [9], redundancy is in the form of cyclic prefix of length

. The prefix is discarded at the receiving end; the receiver is
of the form (leading zeros)

(19)

where is of dimensions . Another commonly used
form of redundancy is zero padding. Zero padding of length
are used in [10], [13], [15]. In this case, the transmitteris of
the form (trailing zeros)

(20)

where is of dimensions .
2) Useful Special Case of BDMT Transceivers With Reduced

Redundancy:Let us consider a subclass of BDMT system with
reduced redundancy. Suppose the transmitter is in the form of
trailing zeros (20). Assume that the redundancy is

and that the receiver is in the form of leading zeros
, where is an matrix. Unlike the

conventional leading-zero receiver, it has only the first
columns equal to zeros. In this case, the ISI-free condition in (8)
becomes

(21)

where is the bottom left submatrix of
. The matrix is Toeplitz, given by

...
...

...
. . .

. . .
...

. . .
...

...

(22)

The necessary and sufficient condition for the existence of the
ISI-free transceiver is that the matrixhas a left inverse. When

( even case), is by , and the inverse is unique
when it exists. If , the left inverse of , when it exists,
is not unique. For a given , we can choose as

(23)

where is any left inverse of . For most of the practical chan-
nels in our experiments, the matrix has a left inverse.

Example 5—Comparison of ISI-Free DCT Transceivers With
Different Redundancy:Consider the channel and noise
power spectrum (Fig. 6) used in Example 4. Let us consider
block-based DCT transceivers with two different cases of re-
dundancy: reduced redundancy and conventional length
of redundancy . The transmitter used in this example
is in trailing zero form (20), and is an DCT matrix.
From (21), we know, for an ISI-free solution, that we can choose

, where is an left inverse of
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Fig. 8. Transmission power of the DCT transceiver with reduced redundancy
K = 3 and with conventional length of redundancyK = 4 for transmission
bit rateR = 3 bits/sample and symbol error rate= 10 .

. The bits are allocated optimally as in [15]. For a fixed proba-
bility of error and transmission bit rate , the required trans-
mission power is a function of the number of bands
and redundancy . With transmission rate bits/sample
and symbol error rate , Fig. 8 shows the required trans-
mission power and for different
values of . We can see that the required transmission power
decreases as the number of bandsincreases. For the same

, the DMT system with reduced redundancy requires
less power than the one with the usual redundancy . On
the other hand, we can also compare these two systems with the
same relative redundancy or same . For the same
relative redundancy, the DMT system with has a larger

, and the performance is comparable. For example, the re-
quired power and are
about the same. The DMT system with reduced redundancy can
achieve the same performance with a smaller number of bands.

3) Minimum Redundancy of BDMT Transceivers:In what
follows, we will consider more general BDMT systems that are
not restricted to the leading-zeros form in (19) or trailing-zero
form in (20). The transmitter is a general matrix,
and the receiver is a general matrix. Assuming

, the channel matrix is causal, FIR, of first order, as in (34).
The overall transfer function is also causal, of first order,

, where , and .
The BDMT is ISI-free if

(condition i) and

(condition ii) (24)

where and are as defined in (34). When the second
condition holds, the system has zero interblock interference
(IBI). This condition is necessary for blockwise encoding and
decoding. In [15], it is shown that an IBI-free condition can
be achieved with redundancy . The transceiver
considered therein has a transmitter in the form of trailing
zeros (20) and a receiver in the form of leading zeros (19). The
following lemma will show that the redundancy is
also the minimum redundancy for an IBI-free property.

Lemma 5.1:Consider the DMT transceiver in Fig. 3 with
interpolation ratio and redundancy . Suppose it is block
based with and . The DMT system is IBI
free, i.e., only if redundancy satisfies .

Proof: The matrix is Toeplitz, and it has rank as
is assumed to be nonzero. In addition,is full rank of dimen-
sions ; the nullity or the dimension of the null
space of is . We have

rank (25)

The equality holds if and only if the null space of is con-
tained in the row space of . Similarly, the nullity of is ;
we have

rank rank (26)

The first inequality becomes an equality if and only if the null
space of is in the range space of . The second inequality
is due to (25). When the system is IBI free, rank
, and from (26), we can see that this is true only if

.
Remarks: For a given , we can compute the minimum re-

dundancy for the existence of FIR transceivers, as in Sec-
tion IV. When , FIR solutions do not exist, let alone
block-based solutions. The condition in Lemma 5.1 gives only
the necessary condition for the existence of IBI-free block-based
transceivers. It does not guarantee existence. The problem of
finding the minimum redundancy sufficient for the existence of
IBI-free block-based DMT transceivers is still open.

B. Parameterization of Block-Based DMT Systems With
Minimum Redundancy

When ISI-free block-based DMT systems with minimum re-
dundancy exist, we can parameterize the solutions. We will as-
sume that is even and that . Let the top right
submatrix of be ; then

The matrix is nonsingular as . Let

where and are of dimensions and ,
respectively, and and are of dimensions
and , respectively. Then, condition ii) of (24) becomes

Lemma 5.2:Consider the block-based DMT transceiver with
redundancy , where is even. a) The DMT system is
ISI free only if rank rank . b) The trans-
ceivers satisfying these rank conditions in a) are of the form

(27)

where and are by arbitrary matrices, and
and are permutation matrices.

Proof:

a) The column space of is orthogonal to that of .
As has full rank, the rank of is the same as
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the rank of . The condition implies
that rank rank . On the other hand, notice
that condition i) of (24) requires that and be full rank.
The matrix is by and has rank at most

. It follows that

rank rank rank

rank

This means that rank . Similarly, for to be
full rank, it is necessary to have rank . Com-
bining these with the condition rank rank

, we can conclude rank rank .
b) We first consider the case where the first columns of

are linear combinations of the last columns, i.e.,
, where is of dimensions by

, and is . Then, we have

where the matrix is . More general can be
obtained by introducing a permutation matrix for ,
as given in (27). In a similar manner, we can obtainas
in (27).

Note that the matrices and are by , and they
are nonsingular becauseand are full rank. Using (27), con-
dition ii) in (24) becomes

(28)

Let

Then, (28) can be rewritten as

(29)

Using and in (27), condition i) in (24) becomes

where

(30)

Using (27), we have converted the two conditions in
(24)–(30). From (29) and (30), we can solve for the receiver
when the transmitter is given, and similarly, we can solve
for the transmitter when the receiver is given. For example,
suppose the transmitter is given, that is, and are given.
We can solve for in (29). In particular, if is
nonsingular, we have

(31)

Equation (30) can be satisfied if is nonsingular. In this case,

The design procedure can be summarized as follows. Con-
sider the case when the transmitter is given. Choose
and for the transmitter in (27) and also choose for the
receiver. The matrix is an arbitrary nonsingular
matrix, and and are arbitrary permutation matrices. We
can solve for according to (31). Form the matrix in (30),
and compute . For the case when the receiver
is given, the design procedure is similar.

In the parameterization, no additional assumption has been
made on the transmitter matrix and the receiver matrix, except
that they achieve zero ISI. Therefore, whenever BDMT with
redundancy exists, it can be parameterized as in this
section. The parameterization is useful in cases where ISI-free
BDMT solutions exist but there are no ISI-free solutions with
trailing-zero and leading-zero constraints. One such example is
given below.

Example 6: Consider the FIR channel
with order . Let and ; then, we have

. We can verify that in this case, the matrix
given in (22) is singular. There are no ISI-free solutions for

BDMT with trailing-zero and leading-zero constraints. On the
other hand, let us choose

We can verify that the matrix is nonsingular and
that the matrix in (30) is also nonsingular. We can obtain the
solution of from (31) and for arbitrarily
chosen nonsingular .

Remarks:

1) In the parameterization, no additional assumption has
been made on the transmitter matrix and the receiver
matrix, except that they achieve zero ISI. Therefore,
whenever block-based DMT with redundancy
exists, it can be parameterized as in this section.

2) The parameterization presented in this section is for even
. Using similar techniques, we can obtain solutions for

odd .

VI. CONCLUSION

In this paper we show that for a given interpolation ratio,
the minimum redundancy or the maximum number of bands
usable for FIR transceivers can be determined exactly. It is di-
rectly related to the number ofcongruous zerosof the channel

defined in the paper. In particular, the minimum redun-
dancy that ensures the existence of FIR ISI-free DMT systems is
equal to the maximum number of congruous zeros with respect
to . This number, in almost all cases, is less than the usual
redundancy used in most systems. However, like all non-DFT-
based systems, transceiver design is more channel dependent.
The transceiver solutions depend on the channel, and the perfor-
mance depends on the accuracy of channel estimation. We also
demonstrate, through examples, that minimum redundancy may
lead to transceiver solutions that contain matrices with large
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condition numbers. This happens when the zeros are almost con-
gruous, i.e., det have distinct but clustered zeros.

In this paper, we have also shown that for the block-based
DMT transceivers, the minimum redundancy is , where

is the order of the FIR channel. When a block-based DMT
system with redundancy has ISI-free solutions, the solu-
tions are parameterized. The free parameters can be useful for
optimizing the transceiver for minimizing output noise or min-
imizing transmission power for a given probability of error and
transmission bit rate. However, the redundancy of length
does not guarantee the existence of ISI-free solutions. The de-
termination of the minimum redundancy that guarantees the ex-
istence of ISI-free block-based DMT transceiver is still an open
problem.

APPENDIX

PROPERTIES OF THECHANNEL MATRIX

In this Appendix, we give a collection of the properties of the
channel matrix in (7) that is useful for our discussion. Some of
these properties are known and can be found in text books, e.g.,
[17]. Some have not been shown explicitly before and will be
derived.

1) A pseudo circulant matrix of the form in (7) is
shown in [16] to assume the decomposition

(32)

where

diag

diag

The matrix is the DFT matrix given by

with

for

2) When the channel is a causal FIR filter of order
det is also a causal FIR filter of order. Further-
more, suppose has a zero at ; then, det has a
zero at .

Proof: Using (32), we can obtain

det det

It follows that det . As
is of order , the product filter is an FIR filter
of order . We know that det is an FIR filter as the
polyphases of are FIR. We can conclude that det is
of order .

3) Smith-Form Decomposition:An polynomial
matrix in can be represented using the
Smith-form decomposition [17]

(33)

where all three matrices in the decomposition are
matrix polynomials in the variable . The matrices

and are unimodular matrices, the def-
inition of which is given in Section I-A; is a
diagonal matrix

...
...

Moreover, the unimodular matrices and
can be so chosen that the polynomials are monic
(i.e., highest power has unity coefficient), and
is a factor of , i.e., divides for

. The matrix , which is called
the Smith form of , is unique. Although is
unique, the unimodular matrices and are
not. As det and det are both constants, we
have

det det

where det det .
The Smith form of Let the Smith-form de-

composition of be

Note that det . The polynomials
, for , in the diagonal of

have the property that divides . On the
other hand, from Property 2, we know that det is
an FIR filter with order . This implies that there are
at most nonunity terms among .

4) In many applications [8], [9], [13], the interpolation
ratio is chosen to be larger than the orderof .
In this case, the polyphases of are constants,
and the last polyphases are zero. The matrix

is causal, and of order one

where

...
...

...

...
...

. . .
. . .

...

and

...
...

...
. . .

...

...
...

...
...

...

(34)

The matrices and are both and Toeplitz;
is lower triangular, and is upper triangular.
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