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Minimum Redundancy for ISl Free FIR
Filterbank Transceivers
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Abstract—There has been great interest in the design of filter-
bank transceivers. Usually, with proper time domain equalization,
the channel is modeled as an FIR filter. It is known that for
FIR channels, the introduction of certain redundancy allows
the receiver to cancel intersymbol interference (ISI) completely,
and channel equalization is performed implicitly using FIR : H
transceivers. This scheme allows us to trade bandwidth for ISI xM_.(w 3.
cancellation. In this paper, we will derive the minimum redun- M—l()
dancy required for the existence of FIR transceivers for a given
channel. We will see that the minimum redundancy is directly Fig. 1. M-band DMT transceiver over a chann@(z) with additive noise
related to the zeros of the channel and to the Smith form of an €(™)-
appropriately defined channel matrix.

filterbank transceiver, it is possible to cancel ISI completely
|. INTRODUCTION with appropriate redundandy. In a typical system model, the
channel is an FIR filtetP(z) of order L upon time domain

HE connection between af/-band filterbank and an - .
M-band DMT (discrete multitone) or filterbank trans_equallzatlon. In the DFT-based transceiver system [9] or the

ceiver is well known [1]-[3]. When the analysis and synthesveCtor coding system [10], zero ISl is achieved using redun-

banks of a perfect truction filterbank are interchangetr /% = L-
anks of a pertect reconstruction filterbank are interchanged, reducing redundancy leads to better bandwidth efficiency,

the new strU(_:ture_ becomes a filterbanktransceiver (see Fig'(}’ésigns with smaller redundancy has been of great research
thaizztrerm.';;ws.zif gf;?égtev\;ﬁgl]aifg éﬁ‘i?; é\;[ ' ang: interest. Advances to the more general FIR overinterpolated
! Nl y interp (2) | system have been made in [11] and [12] for ISI cancellation

?rzlr?g(’:g? érlqseﬁsl’l ;?:er?'tnr:g‘sg?'rgegzzlité?&tﬁggnflgtﬁ;gaZkrf using precoding. It has been shown that FIR transceivers exist
Ver | ' ponding f P redundancyK < L under very general conditions. In

reconstruction [1]. The ISI-free property means that there S

) . . . particular, for a given number of bandd and interpolation
no intraband or interband ISI. The discrete wavelet mUIt'torfgtio N, the condition for the existence of FIR transceivers can

(DWMT) system [4] is obtained by interchanging perfeckge given in terms of the zeros of the chanf¥k). Let S be
reconstruction analysis and synthesis banks. However, wr} n '

. . . e set that contains the zerosifz): S = {a1, a2,...,ar},
the chapnel is not ideal, the perfect reconstruction prope th P(«,) = 0. The necessary and sufficient condition for the
of the filterbank no longer translates to I1SI-free property of . L
. . ) ) xistence of FIR transceiver is [12]
filterbank transceivers. The resulting ISI can seriously degrage
the system performance [5], [6]. Additional interband and (S S s ): 1
intraband equalization can be used to reduce ISI [4], [7]. ﬂ “ U “ U U w)=¢ D

When the interpolation ratidé > A, the filterbank trans-
ceiver is calledoverinterpolatedon average, everyV output Where
samples of the transmitter contdih= ~N — M redundant sam-
ples. The cyclic prefix in DFT-based transceiver system [8], [9]

and zero padding in vector coding transceiver system [10] 4(f[13], time-varying systems are employed for designing FIR
examples of such redundant samples. Using an overinterpolatetisceivers. Suppose the channel is of orHewith distinct

roots and that the interpolation ratid and number of bands
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are integers, it is shown that the FIR receiver does not exist i *o(?_,] | Jo(m)

N — M < p. However, for a given interpolation ratio, there has vin)

been no method that computes explicitly the minimum redun-**®—» renaiting o oo 0

dancy or, equivalently, the maximum number of bands thatcar ¢ bank bank H

be used for ISI-free transmission. i) | cmg:mal _’QM_I(n)
In this paper, we will derive a new necessary and sufficient

condition for the existence of FIR transceivers. Given the zeros (CY

of the channelP(z) and interpolation ratiav, we will be able ., %on)

to determine exactly the minimum redundancy for which FIR o —

transceivers with the ISI-free property exist. Furthermore, so-xi)_,| DMT DMT | 3

lutions of FIR ISI-free transceivers with minimum redundancy 3 | ™pme 8 ’e;‘f;:ki“g .

will be provided. There are cases where minimum redundanc,,, equalized 'QM_M)

= L. The condition for such cases will be given. Moreover, channel model —

we will consider minimum redundancy for the class of block- (b)

based DMT systems, in WhICh case, the transmltter and rece'}-‘%'.r 2. (@) Block diagram of the DMT transceiver, including a discrete-time

of the filterbank transceiver are characterized by constant m@iannel model and an equalizéi(=). (b) Block diagram of the DMT

trices. The block-based system is the most widely used of tifinsceiver with an equalized channel model.

transceivers [9], [10], [13]-[15]; the DFT based system and

the vector coding systems are both examples of block-base(:)/B(z). The equalizel’(z) is usually designed to cancel

transceivers. We will show that the minimum redundancy fehe poles of(z), and the resulting overall transfer function be-

the block-based transceivers is given fdy/2]. Furthermore, comes the FIR filte?’(»), as shown in Fig. 2(b). Suppo$¥ »)

when ISI-free block-based transceivers with minimum reduis of orderZ and that

dancyK = [L/2] exist, the solutions of the transceivers will

be parameterized. P(z)=po+piz '+ +przt.
The sections are organized as follows: In Section I, we i ) ]

introduce the polyphase representation of the transmitter ahee €dualized impulse response of the channel is thus short-

receiver, which will be the framework throughout this paper. IRN€d toL. Each input sample of the channel will be spread to

the polyphase framework, the channel is formulated as a pse@@-ration of lengttl, + 1 as a result. The noisgn) shown in

circulant matrix [16]. The minimally interpolated filterbankFig- 2(b) is obtained by feeding the original nois:) to the

transceivers will be considered in Section Ill. In Section NgaualizerI’(z). The equalized channel model in Fig. 2(b) will

minimum redundancy for the existence of FIR transceivers 3§ used throughout this paper; the channel refers to the equal-

presented. The block-based system is considered in Sectiof?§d channeP(z); and the channel noise refers to the equalized
Some properties of pseudo circulant matrices that are useful iisec(n) in this paper.

our discussion are given in the Appendix.
[I. POLYPHASE REPRESENTATION OFFILTERBANK

A. Notations and Preliminaries TRANSCEIVERS

» Boldfaced lowercase letters are used to represent vectorsc,:OnSIder Fig. 1, where afd-band filterbank transceiver is

and boldfaced uppercase letters are reserved for matric%%own‘ The channelisrepresented by an FIR fiter) with ad-

The notationsA” and AT represent the transpose Af Ive noisec(n), as explained in Section I-8. The filtefg (=)
and transpose-conjugate Af and H,(») are called transmitting and receiving filters, respec-

- ForanN x M transfer matrixA(z), the notationf&(z) tively. It is not necessary for the interpolation_ rafibto be_: the_
denotesAf(1/z*). For transfer matrices with real coeffi-S&Me as the number of banits TV\{O cases W'”.be studied: '?.
cients A(7) Z AT(zY) WhenN = M, we say the system is minimally interpolated; ii)

« The notatiorly is used to represent the x N identity whenN > M, we say it is overinterpolated, and redundancy

matrix. The subscript is omitted whenever the size is clekﬁ'mmdl“'c_ed n this case. The (_:asel‘vbf< M.'S of no interest
from the context. In our application because in this case, the input data) can

« Unimodular Matrices:An N x N matrix A(z) is called never be fully recovered, no matter what the channel is.
unimodular if detA(z) = ¢, which is a nonzero constant Using polyphase decqmposition, We can decomposéte
[17]. A causal unimodular FIR matriA(z) has the prop- transmitting filter F,(z) with respect to the integé¥ [17]

erty thatA—!(z) is also causal and FIR. N-1

Fir(z) =Y Gup(zN)z" )
B. Channel Models n=0

Fig. 2(a) shows the block diagram of a filterbank transceiveiriting the polyphase representation for all thietransmitting
The discrete time channel is modeled as an LTI filtét) with ~ filters, we have (3), shown at the bottom of the next page, where
additive noise/(n), as shown in Fig. 2(a). A time domain equalthe N x M matrix G(z) is the polyphase matrix of the trans-
izer (TEQ)T (=) precedes the receiver. Typically, the filiéfz) mitter. Using the noble identity [17], we can interchange the ex-

.

can be further modeled as a rational transfer funcfitiz) = pander anda(z"). The transmitter can be implemented using
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transmitter

Fig. 3. Polyphase representation of the transmitter and receiver in a D}

transceiver.

its polyphase matrix, as shown in Fig. 3. In a similar manner,
we can decompose the receiving filters as

receiver

Fig. 5. Polyphase representation of a DMT transceiver.

where P, (z) is defined in (6). We see that tH€ x N system
from y(n) to y(n) in Fig. 3 is, in fact, an LTI system with
transfer matrixC(z) given by

N-1
Hy(z) = Spn(2V)2". 4
K(2) ;"’( ) ()C(z):
Po(z) 27 'Py_1(2) 27'Pyoa(2) -+ 271Pi(2)
Then, by invoking the noble identity, the receiver can be redrawn Pi(z) Bo(#) ZTHPNa(z) e 2TER(2)
as Fig. 3. The receiving filter&l (=) are related to thé/ x : : : . :
N polyphase matri¥S(z) of the receiver as (5), shown at the \ p,_, (») Prn_o(2) Pya(z) -+ Po(z)
bottom of the page. @)
1) Decomposition of the ChannelJsing polyphase repre-

sentation, we can decompose the channel as Matrices in the above form are known as pseudo circulant ma-

C(z) = Po(zM )+ Pi(z")z7 4+

In order to further simplify Fig. 3, we

trices [16], [17]. A first detailed study of pseudocirculant ma-
Px_1(zN)z=N+1 (6) trices was made in [16]. Many useful properties, as well as ap-
plications of pseudocirculant matrices in QMF banks and block
, _filtering, are given therein. Properties 6f ») that will be used
need to apply an identity, |4er giscussions are given in the Appendix. With the channel

from the multirate theory. It is shown in [17] that the multirate .. C(z), we can redraw Fig. 3 as Fig. 5. As we will see
system in Fig. 4 is, in fact, equivalent to an LTI system WltlI'Elter, the polyphase representation in Fig. 5 will facilitate a sys-

transfer functionA(z), which is given

by tematic study of filterbank transceivers. Many useful theoretical

and practical results can be drawn from such a representation.
Alz) — P,_;(z), fori>j 2) Zero ISI Condition: From the polyphase decomposition
() = 2 Py j(2), fori<j in Fig. 5, we see that even though multirate building blocks are
Go,o(zf) GO,l(zf) T GO,J\l—l(zf)
. Gy o(zY) Gia(ZN)y o Grm1(ZY)
[Fo(z) Fi(z) -+ Fua(x]=0 2zt ... 2] : : .. : 3)
. Gno10(zY) Gno11(ZY) -+ Grnoim1(ZY)
GG)
Ho(z) 5070(21\:) 5071(21\:) SO7N_1(ZA:)
Hl(z) 5170(21\) 5171(21\) Sle_l(ZA) z
: - : ©)
Hj\lfl(z) o 51\4—1,0(ZN) 51\4—1,1(ZN) SM—1,N—1(ZN) 2Nt

SGY)
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used in a filterbank transceiver, it is, in fact, an L¥-input whereU(z) andV (=) are causal FIR unimodular matrices, and
M-output system. The transfer matrik(z) of the overall I'(z) is a causal FIR diagonal matrix. Note tHe&t*(z) and

system can be expressed as V~1(z) are also causal FIR unimodular matrices asldgt)
and detV(z) are constants. Therefore, if we choose the trans-
T(2) = 8(2)C(2)G(2). ) mitter and receiver as
The overall system is free from interband ISITY >) is a di- G(2) =V~ Yz and S(z)=U1()

agonal matrix. It is free from intraband ISI when the diagonal

elements ofI'(z) are merely delays. If it is free from both in-then'I'(z) = I'(z). Thus, using FIR nonorthogonal filterbank
terband and intraband ISI, we say that the filterbank transceijegnsceivers, we can achieve interband ISI free. Although
is ISl free; in the absence of channel noise, the outputs of éerband ISl is canceled, intraband ISI cannot be removed
ISI-free filterbank transceiver are identical to the inputs excef@mpletely; in the minimally interpolated case, there is no FIR
delays and scalars. Without much loss of generality, we can d&gnsceiver that can achieves zero ISI for nonideal channels.

the ISI-free condition To see this, we can consider the determinant of the overall
system ddfl(z)) = detS(z)G(z))def{C(z)). As P(z) is
S(2)C(2)G(z) = In. (9) FIR, detC(2)) is FIR, and deftC(z)) is a delay if and only if

P(z) is a delay. If the transceiver is FIR, then (&t:)G(z))
is FIR, and it follows that d¢fl'(»)) is also FIR. When there is
zero ISI, defT(z)) is a delay, i.e., déB(2)G(z))def(C(z))

The filterbank transceiver in Fig. 1 is called minimally inis a delay. Therefore, dgd(z)G(z)) cannot be FIR unless
terpolated if the interpolation rati¥ = M and if there is no detC(z) is a delay. Therefore, it is not possible to achieve zero
redundancy. In this section, we consider the solutions for sugg using FIR transmitters and receivers for a nonideal channel.
systems [18]. Anumber of properties of such systems willbe de-3) IR Transceivers:If we are allowed to use IIR filters,
rived. In particular, we will show thato practical orthogonal one possible ISI-free solution &(z) = V~1(z) andS(z) =
system can yield inter-band IS| free solutiomess the channel 1 (»)U~1(z). Caution must be taken in doing so. The term
P(z) is a pure delay. Using FIR nonorthogonal transceivers, vfe-*(z) may not be stable. In fact, if the chanrié{z) does not

can achieve only zero interband ISI but not zero ISI. Moreovéfave minimum phase, there exists no ISI-free transceiver that is
for nonminimum phase channel, there does not exist an ISI-figgth causalandstable

Il. FILTERBANK TRANSCEIVERSWITH NO REDUNDANCY

transceiver that isausal and stable Lemma 3.1: There exists a causal and stable ISI-free mini-
1) Orthogonal Transmitters and ReceiverSuppose that mally interpolated filterbank transceiver if and onlyA¥ z) is
the transceiver is orthogonal, that is a minimum-phase filter. Furthermore, FIR transceivers with the
i oy ISI-free property can be obtained onlyiif z) is a delay.
GH()G(F) =1, forallw (10) Proof—Sufficiency  of Minimuﬂ( )PhaseP(z): As
and S(¢’*) = Gf(e/*). In the z-transform domain, this U(») and V(z) are unimodular matrices, we have
becomesS(z) = G(z), and orthogonality translates todetC(z) = p{detl'(z) = p{I (). Using the
G(2)G(z) = T for all 2. From (9), the condition for zero second property of pseudo circulant matrices derived in the
interband 1SI becomes Appendix, we know that de&t(z) has zeros at) if P(z) has
. zeros atay for £ = 1,2,..., L. It follows that the zeros of
G(2)C(2)G(2) = A(2), (1) (z) aready. If P(z ) has minimum phase, the zeros satisfy
where A(z) is a diagonal matrix. Premultiplying the abovd¢l < 1. The zerosy;’ of y(z) are also inside the unit circle.
equation byG(z), we have For a causal and stable transceiver solution, we can choose

G(2) =V 7Hz), andS(z) =T"1(2)U ().

Whenever there exists a causal and stable transceiver pair
(G(2),8(=)), we can use

C(2)G(z) = G(2)A(2). (12)

That is to say, the diagonal entries Afz) contain the eigen-
values ofC(z), and the columns o (z) are the eigenvectors
of C(z). However, from the property of pseudocirculant ma- (G(2)O(2), 0 (2)S(2))

trices given in (32), we see that the eigenvectors of the pseudo
circulant matrixC(z) are the column vectors (= 1/M)W to obtain a new causal and stable transceiver pair, w&¢ro
which consist of a fraction of a delay [17] and cannot be rés any causal and stable transfer matrix with a causal and stable

erse.

alized as rational transfer functions. Therefore, zero interbal®t . . .
ISI property of orthogonal filterbank transceivers over nonidea é‘\lecessny of Minimum Phas®(z). When the filterbank
éFansceNer is ISl free, we have

channels cannot be achieved with finite cost. However, int
band ISI-free property is possible if the transmitter and receiver det(S(2)C(2)G(2)) = ez~
are not constrained to be orthogonal, as we will see next. ) )

2) FIR Nonorthogonal TransceiverThe matrixC(z) is a for some constanrt and integem,. As detC(z) contains the

causal FIR matrix and can be decomposed using the Smith for‘?‘ﬁtorh1 ; el th?\ref_olre I;ai]tjher z‘s(z) or S\etG(z? con-
decomposition described in the Appendix tains the acton/(l Y )- (2) does not have minimum
phase, thefy,| > 1, and thus|a?Y| > 1 for some’. Therefore,

C(z) =UR)I'(2)V(2) (13) S(z) andG(z) cannot both be stable. In other words Hfz)
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does not have minimum phase, there exists no causal and stal#ecan see that the smallest rankiffz) is N — p(N). This
ISI-free transceiver. A happens when = z, is a zero ofyy _,(v)(2). A

For the minimally interpolated filterbank transceiver, the ex- Theorem 4.1:Consider the filterbank transceiver in
istence of a causal and stable transceiver depends on the rRig- 1. Let C(z) have the Smith-form decomposition
imum-phase property of the given chand&l). The stability C(z) = U(2)I'(x)V(z), and let the Smith-fornT'(z) be
problem also explains why nonminimum phase channels are @& given in (14). Then, there exist FI&(z) and S(z) such
ficult to equalize for minimally interpolated filterbank transthat the transceiver is ISl free if and only if the redundancy
ceivers. However, as we will see later, this is not the casehf > p(V), wherep(V) is as given in Definition 1. When an
a certain redundancy is allowed, i.e., the filterbank transceiVelR transceiver exists, the solution is not unique. One choice of
is overinterpolated. In fact, if the added redundancy is larg8l-free FIR transceiver is

enough, there always exist FIR ISI-free filterbank transceivers. I
Remarks: For single input single output (SISO) system, it is G(z) = V7H(2) < N”(N)>
well known that the inverse of an FIR system is always IIR. The o
lIR inverse is i) causal and stable if the original system has min- S(z) = (In—pvy 0)U *(z). (15)

imum phase and ii) stable and possibly noncausal if the Originﬂ%e minimum redundancy for FIR transceiver solutions is
system has no zero on the unit circle. The result in Lemma 3

for the minimally interpolated systems can be viewed as a gen-
eralization of the SISO case.

Proof:

Sufficiency:Consider that the choice of FIR transmitter

IV. FIR TRANSCEIVERSWITH MINIMUM REDUNDANCY G(z) is given in (15). Then
We say a filterbank transceiver is overinterpolated ifthe inter-  C(2)G(z) = U(2)I'(2)V(2)V(2) <IN67<N) )

polation ratio/V is greater than the number of bands In this

case, there are more samples at the output of the transmitter than = U(z) <IN—p(N) ) )

the input. There ar& = N — M redundant samples in eveiy 0

samples of the transmitter output. By introducing proper redun-

dancy to the transmitter output, the channel can be equalized

perfectly to achieve ISI-free property using FIR transceivers.

For example, in the DFT-based system, redundancy is intro-

duced by adding cyclic prefix. The transmitting and receiving

filters are FIR of lengthV and 4, respectively. In this section,

we will consider general FIR transceivers. For a given interpo-

lation ratio NV, we will derive the minimum redundancy for the

existence of FIR transceivers. The minimum redundancy can be and that there exist FIR(z) andS (=) such that the system

determined from the location of the zeros of the chad?el). - . :
. " is ISI free, i.e.,S(z)C(2)G(z) = In. UsingC(z) =
It can also be related to the Smith form decomposition of the U(2)T(2)V(z), we have

channel matrixC(z).

Therefore, if we choose the receiver as in (15), the trans-
ceiver is FIR and S| free. The unimodular matridééz)

and V(z) are not unique in the Smith-form decomposi-
tion; therefore,G(z) andS(z) are not unique. In partic-
ular, if (G(z), S(»)) is a pair of FIR ISI-free solutions, then
(U'(2)G(2),S(2)U'"1(2)) is also a pair of FIR ISI-free
solutions for any choice of unimodular matiiX ().
NecessitySuppose that the added redundahty p(N)

With the number of banda/ and interpolation ratiaV, the (S(UNL(2)(V(2)G(2)) = L. (16)
transmitterG(z) andS(z) are, respectively, of dimensia¥ x o
M andM x N. The channel matri€( =) is of dimensionVx N. As y.(z) divides vi41(z), the zeros ofy.(z) are also

Definition 1: For a givenN and channel matrix;(z) with zeros Ofyx41(z). The lastp(/V) nonidentity terms have a
Smith formT'(z), the notationp(N) denotes the number of ~ common factoryy_,v)(z). If vv—,(v)(z0) = 0, then
nonunity terms in the diagonal of the Smith form. . L —0

The numbep(N) depends only on the given channel and the YN-p(N)(20) = YN—p(v)+1(20) = - -+ = yn-1(20) = 0.
interpolation ratiaV. We can expresF(z) as It follows thatI'(zo) has rankV — p(V), and the left-hand

. side of (16) at = zo has at mostran — p( V). However,
I(z)=diag(l 1 -+ 1 v_pm(2) -+ wv-1(2) (14) the rank of the right-hand side of (16) is always equal to

M = N — K, which is greater thatv — p(XN) when
K < p(N). Therefore, we have a contradiction in this
case. A

The necessary and sufficient condition given in the above the-

wherep(N) is an integer satisfying(~N) < min(L, N). The
following lemma gives the smallest rank @¥(z), which in
terms will give the condition for the existence of FIR trans-

ceivers.
Lemma 4.1: The smallest rank of(z) is N — p(V), where ©Or€m can be replaced as
p(N) is the number of nonidentity terms on the diagonal of the ranKC(z)] > M, forall 2. (17)

Smith formI'(z), as given in (14).

Proof: The determinants of the two unimodular matriceg/e can see this by using the result in Lemma 4.1 that the
U(2) andV(z) in the Smith form decomposition are nonzeremallest rank ofC(z) is N — p(N). As K = N — M, the
constants. The rank @2(>) is the same as the rank of the SmitlconditionX” > p(N) holds if and only ifN — p(N) > M, i.e.,
form I'(z). We can consider the rank bYz). Observing (14), min, rankC(z)) > M. Therefore, we have (17). It turns out
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that the smallest rank &F( =) can be determined by the numbe©One set of choices dJ(~) andV (z) is
of congruous zerosf the channelP(z) to be defined below.
Definition 2—Congruous Zeros: A set of zeros{ay,, U() = <1 + 27t 1) and
Q- - - g, } Of P(2) are congruous with respect 16 if T 2 0
) oy s Oy s - - - g, are distinct; 1 0514271
i) ol =l == al. V<Z>:<o e )>'
Definition 3: The notatior.(NV) denotes the cardinal of the
largest set of congruous zeros with respecv¥tdf there are no We can choos&(z) andS(z) according to (15):
congruous zeros, we defing N) = 1.

The zeros that are congruous are distinct, but their magnitudes Gl = V-1 1y _[1
are the same, and their angles differ by an integer multiple of () = (2) 0/ \0
2r[N. Thatis S(z)=(1 0)U2)=(0 05).
|y | = lawy | = -+ = |, |

and Example 2: Consider the channdP(z) = 1 4 >~ with
 jtma2m/N L = 3. The channel has zeros at= ¢/™/?, ¢=7™/3, and—1.
Ok, [k, = € , wherel <y <N - 1. Let M =1 andK = 1. In this case)N = 2. The polyphases of

The numberu(V) represents the largest number of distincP(z) with respect taV = 2 are Py(z) = 1andPi(z) = = .
zeros that have the same magnitude, and their differencesl fie channel matrix is given by
angles are integer multiples 8f /N .

Lemma 4.2:For the N x N channel matrixC(z) given in C(z) = < 1 2_2> .
(7), we havep(N) = p(N), wherep(N) andp (V) are as in
Definition 1 and 3.

Proof: Consider the decomposition in (32). BeAstherearenocongruous zeros with respeétte: 2, we have

cause W and D(z) are unitary matrices, the rank ofp(2) = 1. The nonunity diagonal element is
C(») is the same as the rank oB(z). Recall that
3(z) = diagP(z) P(zW 1) .. PEW - N-D)) The ~i(2) = (1—2™/3:71)(1 - 792/3,71)
number of terms on the diagonal &f(z) that have common x(1— (=122 Y =1-273
zeros determines the smallest rankdif).

Observe that the zeros ¢f(zW ~*) are those ofP(z) r0-  The Smith form ofC() is
tated by2kn /N. If P(z) and P(xW~*) have a common zero
a, then botha andae??*~/N are zeros ofP(z); the two zeros 1 0
« and ae??*7/N are congruous. The largest number of terms I'= <0 1— z3> .
on the diagonal oB(z) that have common zeros is the same

as the largest number of congruous zerod’). Therefore, the Therefore, the choic& — 1 ensures the existence of FIR trans-
smallest rank oB3(z) is IV — u(IV). By Lemma 4.1, we Know ceivers. In this example, we also see that the interpolation ratio
the smallest rank o€(z) is N — p(IV). Therefore, we have y can be smaller than the channel ordeNow, suppose we in-

p(N) = N(N)_- A crease redundancy 6 = 2, and/N becomes 3. The polyphases
By combining Theorem 4.1 and Lemma 4.2, we can relate tggp(z) with respecttaV = 3arePy(z) = 1+2~1, Pi(z) = 0

existence of FIR transceivers to the zeros of the chaR(e). andPy(z) = 0. The channel matri€(z) is given by
Theorem 4.2:Consider the filterbank transceiver in Fig. 1

with interpolation ratiaV, number of banda/, and redundancy 14271 0 0
K = N — M. Then, FIR transceivers exist if and onlyAf > C(z) = 0 1421 0
w(N), whereu(N) is the largest number of congruous zeros, as 0 0 1421

given in Definition 3.
Example 1: Consider the second-order chanfigh) =1+ i already in Smith form; the Smith forfi(z) = C(z). The

-1 —2
227" + z~°. The channel has double zeroszat= 1. The mper of nonidentity terms(3) on the diagonal of(z) is 3.

number of zeros on the unit circle is 2, but the number of distingh,ig resylt is also consistent with the fact that the three zeros
zeros is one. In this casp(/N) = 1 for all N. For instance, , _ ,ix/3 ,—ix/3 and—1 are congruous with respect 6 —

M =1,andK = 1;we haveN = 2. The polyphases aP(z) 3 £R transceiver solutions do not exist in this case.

H _ _ —1 —_
with respect taV = 2 arePy(z) = 1+ 27" andPi(z) = 2 Example 3: Consider the second-order chanfték) = 1 +
The channel matriXC(z) is given by 2sin ezt + 2—2. The zeros are’(*/2+¢) ande—3(*/2+) et

cino (1T 27t 2271 N = 2. For smalk, the zeros are almost congruous with respect
(2) = 2 1+27 ) to N = 2. Thatis, whenV = 2, the two zeros of ddE(z) are

. . istin I red. The channel matrix is given
The Smith form'(z) of C(2) is distinct but clustered. The channel matrix is given by

(1 0 . 1421 2sinez1
I'(z) = <0 1—2/:*1—1—/:*2)' C(z)-( 2sine 14271 )
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Whensin ¢ = 0, the Smith form ofC(z) is the same a€(»),
and FIR transceivers do not exist. Whein ¢ # 0, it has the
following Smith-form decomposition:

_(1+21 —1/2sine
Clz) = < 2sin e 0 )
1 0
0 1+2cos2ez" 4272

1

2sine

1
0

1+

(

If sine =~ 0, we haveC(—1) = 0. However, ranI'(—1)) > 1,

as long assine # 0. We can see that the unimodular ma-
trices U(—1) and V(—1) reduce the rank oI'(—1). There-
fore, U(—1) or V(—1) is an ill-conditioned matrix, although

1(1—}—2_1))'
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they are unimodular and have constant determinants. To be migge 6. (Top) Magnitude response of the chani®lz). (Bottom) Power

specific, one can compute the condition number. FoVax
N matrix A, the condition number is defined d&||[|A~Y|,
where]| - || denotes matrix norm. Let us use the matrix norm de-
fined as the maximum of the absolute column sum, fj.A}| =
max; ot |[Al; ;] We can verify that the condition number
of V(—1) is one, whereas for smaiin ¢, the condition number
of U(—1) is |1/(2sin¢)|?. The condition number otJ(—1)
goes to infinity asin e approaches zero.
Remarks:
1) The numbep(XV) is the largest number afistinctzeros
of P(z) that have the same magnitude but differs in an-
gles by integer multiples dfx/N. Zeros of multiplicity

spectrum of the additive nois€n).

if and only if P(>) has distinct zeros and these zeros lie
on the same circle with angles difference that are integer
multiples of27 /N,

4) When P(z) has distinct zeros, the numbes(NV)
can be determined from the multiplicities of the
zeros of defC(z)). Suppose dé€C(z)) hasq distinct
roots f31,03.,...,3; with multiplicities, respectively,
£1, 02, - -, Pq- Then, it can be verified that( V) is equal
to the maximum of the multiplicities, i.e.,

p(N) = Inax{plap?a <. 'apq}'

greater than one count as one. This is demonstrated in Ex-

ample 1. The channd?(z) has double roots at = —1,

but p(2) = 1.

Whenp(N) = 1, we only need to use redundangy= 1,
which is the lowest redundancy possible for any nonideal
channel when the transceiver is FIR. The cag¥) = 1
occurs when degE(z) has distinct zeros. We know that
detC(z) has roots atv)', whereay for £ = 1,2,...,L

are theL roots of the channdP(z). The roots of de€(z)

are distinct if and only iftv, have the property that

2)

ZF o (2m7/N - \wherem is any integer in the range
o

1<m<N-1 (18)

That means that if two roots;, and, are of the same
magnitude, their phase difference can not be a multiple
of 2z /N. This condition is similar to that given in [11].
However, de€C(z) having distinct zeros is not necessary
for p(N) = 1 asP(z) can have multiple zeros. For prac-
tical channels, the probability that the roots®fz) sat- of
isfy (18) is almost one. Therefore, redundancyof= 1

5) Suppose solutions of FIR transceivers exist for a given
K. FIR solutions do not necessarily exist if we increase
redundancy fromk to K + 1 and keep)M fixed. The
channel in Example 2 demonstrates that wiién= 1,

K =1,andN = 2, we havep(2) = 1; FIR solutions
exist for the case. However, when we incredsdo 2,
keepingM = 1,i.e.,N = 3, we havep(3) = 3; there are

no FIR solutions in this case.

Since the order of channel is finite, we can always find
such thap.(V) = 1, and redundanc§l = 1 can be used.
For a givenM/ and NV, the condition in (1) provides a test
for the existence of FIR transceivers [11]. If the condition
is not satisfied, FIR transceivers do not exist for the given
pair of (N, M). It does not provide a permissible pair of
solution. On the other hand, for a givéf, Theorem 4.1
gives the minimum redundancy or the maximuaththat
ensures the existence of FIR transceivers.

Example 4: Consider the channé!(z) and power spectrum
the colored noise(n) shown in Fig. 6. The coefficient of the

6)

7

channep(n)is (0.1659 0.3045 —0.1159 —0.0733 —0.0015).

is sufficient for the existence of FIR ISI-free transceiver$he channeP(x) has ordee= 4. The channel and channel noise
for most practical cases. However, when @¢t) has are drawn from an ADSL environment. F&f = 5, the min-

3)

distinct but clustered zeros, the condition number of thenum redundancy is one, and we chodse= 1 andM = 4.
transmitter or receiver are very large, as demonstratedlihe FIR transmitter and receiver is as given in (15). The inputs
Example 3. are BPSK symbols, rendering a bit rate of 0.8 bits/sample. The
When isp(N) equal to L? The minimum redundancy transmission power is the variance of the sigt{al), as indi-
required for FIR transceivers falls into the range< cated in Fig. 1. The plot of bit error rate versus transmission
p(N) < L. The minimum redundangy(N) = L ifand power is given in Fig. 7. For comparison, we also plot the bit
only if all the zeros ofP(z) are congruous. This happenerror rate performance of DFT-based system with the same bit
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10

= DFT transmitters and leading-zero receivers. In the DFT-based DMT

—+ minimum redundancy  systems [9], redundancy is in the form of cyclic prefix of length
L. The prefix is discarded at the receiving end; the receiver is
of the form (leading zeros)

107} SLZ = (0 S/) (19)

where S’ is of dimensionsi/ x M. Another commonly used
form of redundancy is zero padding. Zero padding of lerigth
are used in [10], [13], [15]. In this case, the transmitters of
the form (trailing zeros)

Bit Error Rate

10

G/
Grz = < 0 ) (20)
0 , , ) whereG’ is of dimensionsV/ x M.
10 15 20 25 30 2) Useful Special Case of BDMT Transceivers With Reduced

Transmission Power (48) Redundancy:Let us consider a subclass of BDMT system with

Fig. 7. Bit error rate for the DMT system with minimum redundancy aneduced redundancy. Suppose the transmitter is in the form of
DFT-based system with the usual redundancy. trailing zeros (20). Assume that the redundanc i@ < K <
L and that the receiver is in the form of leading zef®s—

rate and relative redundancy, i.e., sakigN or samekK /M. (0 '), whereS’isanM x (M + 2K — L) matrix. Unlike the

We chooséVf = 16, K = 4. The system with minimum redun- conventional Ieading-zero receiver, it has only the flrst K

dancy requires a much less transmission power for the samedgitimns equal to zeros. In this case, the ISI-free condition in (8)

error rate. becomes
Remarks: In the above example, the minimum redundancy

is one, whereas the usual redundancy is 4. In most cases, the

minimum redundancy is less than the usual redunddncit \yhereB is the bottom lef{ A/ + 2K — L) x L submatrix of

the same relative redundancy, the system with minimum redL@(z)_ The matrixB is Toeplitz, given by

dancy has a smallé¥/, i.e., a shorter block length. For the same

bit error rate, the system with minimum redundancy enjoys B =

SC()G = S'BG’ =1 (1)

smaller transmission power. However, as the system is not DF'(pL—K P00 e 0
based, the transceiver solution has more channel-dependent pI- : '
ements in the design and implementation phases. DK
V. BLOCK-BASED TRANSCEIVERS : - - Po (22)

The M -band filterbank transceiver shown in Fig. 3 is called| P&
block based if the transmitter and the receiver are constant mg- o Pr_K
trices, i.e.,G(z) = G andS(») = S. The encoding at the .
transmitter side and the decoding at the receiver end can Qe - .
performed blockwise. Typically, in block-based DMT (BDMT) 0 0 pr - Pr/ (nyrk-Dyx

systems, the redundandy is chosen to be the order of theThe necessary and sufficient condition for the existence of the
channelL for ISI cancellation. In this section, we will consider|s|-free transceiver is that the matidixhas a left inverse. When
BDMT transceiver with redundandy < L. Moreover, we will - g — 1 /2 (1 even caseB is M by M, and the inverse is unique
derive minimum redundancy for BDMT systems. When ISI-freghen it exists. I > L/2, the leftinverse of3, when it exists,
solutions of the BDMT system with minimum redundancy exisfs not unique. For a give@’, we can choos8’ as

complete parameterization of the transmitter and receiver will ) y
be given. S'=G"7"Q (23)

_ ) whereQ is any left inverse oB. For most of the practical chan-
A. Block-Based Transceivers With Reduced Redundancy nelsP(z) in our experiments, the matri has a left inverse.

The block-based DMT (BDMT) system can be seen as aExample 5—Comparison of ISI-Free DCT Transceivers With
special case of FIR transceivers, where the transmitting filtebsfferent RedundancyConsider the channdP(z) and noise
and receiving filters have lengtd the interpolation ratiadV. power spectrum (Fig. 6) used in Example 4. Let us consider
The BDMT transceivers have been studied by a number loibck-based DCT transceivers with two different cases of re-
researchers [10], [13]-[15]. For a given FIR chanRét) with  dundancy: reduced redundangy= 3 and conventional length
order L, redundancy of lengttk’ = L is sufficient for the ofredundancyy = L = 4. The transmitter used in this example
existence of BDMT transceivers. is in trailing zero form (20), an€’' is anM x A DCT matrix.

1) Two Widely Used BDMT Transceiverdlost of the From (21), we know, for an ISI-free solution, that we can choose
BDMT transceivers fall into the categories of trailing-zer® = (0 G'~1Q), whereQ = (BTB)~!B is an left inverse of
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-
D

— P(MK=4) Proof: The matrixC; is Toeplitz, and it has rank aspr,

— PMK=3) s assumed to be nonzero. In additi&js full rank of dimen-
sionsN x (N — K); the nullity or the dimension of the null
space oiG7 is K. We have

-
[54)

-
»

rankC,G) > L — K. (25)

Transmission power (dB)
B

The equality holds if and only if the null space & is con-
tained in the row space @&, . Similarly, the nullity ofS is K;
we have

1

20 410 sjo 8v0 160 120
Number of bands M rankKSC,G) > rankC,G) — K > L — 2K. (26)

Fig. 8. Transmission power of the DCT transceiver with reduced redundanithe first inequality becomes an equality if and only if the null
K = 3 and with conventional length of redundanky = 4 for transmission space ofisin the range space €1, G. The second inequality

bit rate R, = 3 bits/sample and symbol error rate10~°. is due to (25). When the system is IBI free, ré8ic, G) —

0, and from (26), we can see that this is true onlykif >
B. The bits are allocated optimally as in [15]. For a fixed proba, /2, AAA
bl“ty OferrorPe and transmission bit ra@b, the required trans- Remarks: For a givenN, we can Compute the minimum re-
mission powe™ (M, K') is afunction of the numberof band$  qundancy.(V) for the existence of FIR transceivers, as in Sec-
and redundancy’. With transmission raté;, = 3 bits/sample tion |V. Whenu(N) > L/2, FIR solutions do not exist, let alone
and symbol error rate- 10~ Fig. 8 shows the required trans-jock-based solutions. The condition in Lemma 5.1 gives only
mission powerP(M, K = 3) andP(M, K = 4) for different  the necessary condition for the existence of IBI-free block-based
values ofM. We can see that the required transmission powghnsceivers. It does not guarantee existence. The problem of

decreases as the number of baddsincreases. For the samefinding the minimum redundancy sufficient for the existence of
M, the DMT system with reduced redundani€y= 3 requires |B|-free block-based DMT transceivers is still open.

less power than the one with the usual redundaiicy: 4. On
the other hand, we can also compare these two systems withBheParameterization of Block-Based DMT Systems With
same relative redundandy/N or sameK /M. For the same Minimum Redundancy

relative redundancy, the DMT system with = L has a larger  \ynen |s|-free block-based DMT systems with minimum re-
M, and the performance is comparable. For example, the f&,qancy exist, we can parameterize the solutions. We will as-

quired powerP(M = 60, K = 3) andP(M =80, K = 4) are sume thatl. is even and thak’ = I./2. Let the top rightl x L
about the same. The DMT system with reduced redundancy @bmatrix ofC, be Cx: then

achieve the same performance with a smaller number of bands.

3) Minimum Redundancy of BDMT Transceivets: what C, = <0 CA) )
follows, we will consider more general BDMT systems that are 0 0
not restricted to the leading-zeros form in (19) or trailing-zergpe matrixCa is nonsingular agr, # 0. Let
form in (20). The transmitte€s is a generalV x A matrix,
and the receive$ is a generall/ x N matrix. AssumingV > S=(Sy, S1), G= <Go>
L, the channel matrix is causal, FIR, of first order, as in (34). Gy

The overall transfer functio’(z) is also causal, of first order, \yhares,, andS; are of dimensiona/ x L andM x (M—L/2)
T(z) = To + 2 1Ty, whereTo = SCoG, andT; = SC1G.  regpectively, an€o andG, are of dimensionéM — I./2) x M
The BDMT is ISl-free if andL x M, respectively. Then, condition ii) of (24) becomes

SCoyG =1, (conditioni) and SC1G =85,CaGy =0.

SC.G =0, (condition i) (24) Lemma5.2: Consider the block-based DMT transceiver with

. . dundancyK = L/2, whereL is even. a) The DMT system is
where Cy and C; are as defined in (34). When the seconE%I free only if rankSo) — rankGy) = L/2. b) The trans-

condition holds, the system has zero interblock interference. tisfving th K giti ; fthe f
(IBI). This condition is necessary for blockwise encoding angF'vers sa isfying these rank conditions in a) are of the form

decoding. In [15], it is shown that an IBI-free condition can S_s P I P, 0

be achieved with redundandy = [L/2]. The transceiver “PMio M 0 Iy_r,

considered therein has a transmitter in the form of trailing Ty_z;2 O T

zeros (20) and a receiver in the form of leading zeros (19). The G= a G (27)

. . . 0 Pqs 0 &,

following lemma will show that the redundanéy = [L/2] is _ _

also the minimum redundancy for an IBI-free property. where®s and® areL/2 by L/2 arbitrary matrices, ani s
Lemma 5.1: Consider the DMT transceiver in Fig. 3 withandP¢ areL x L permutation matrices.

interpolation ratioN and redundancy<. Suppose it is block Proof:
based withG(z) = G andS(z) = S. The DMT systemis IBI  a) The column space &?' is orthogonal to that o€ A G.
free, i.e.,.SC;G = 0 only if redundancyK satisfie2K > L. As C, has full rank, the rank o€ A G is the same as
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the rank of G;. The conditionSyCAG; = 0 implies Equation (30) can be satisfieddf,, is nonsingular. In this case,
that rankS,) +rank G;) < L. On the other hand, notice S, = G}/ Cy;/-

that condition i) of (24) requires th&t andS be full rank. The design procedure can be summarized as follows. Con-
The matrixGyg is (M — L/2) by M and has rank at most sider the case when the transmitter is given. Chd@sg ®,

M — L/2. It follows that andP; for the transmitter in (27) and also chodBg for the
receiver. The matrixG,, is an arbitraryM x M nonsingular

M =ranKG) < rank Go) + rank G ) matrix, andP andP g are arbitrary permutation matrices. We
<M —L/2+rank Gy). can solve fo® s according to (31). Form the matrX,; in (30),

. o and computéS,; = G,;C;;}. For the case when the receiver
This means that rarfks;) > L /2. Similarly, for S to be s given, the design procedure is similar.

full rank, it is necessary to have raf¥) > L/2. Com-  |n the parameterization, no additional assumption has been
bining these with the condition ra(®,) + rankG1) < made on the transmitter matrix and the receiver matrix, except
L, we can conclude rari8,) = rank(G) = L/2. that they achieve zero ISI. Therefore, whenever BDMT with

b) We first consider the case where the fitg2 columns of - redundancy = L/2 exists, it can be parameterized as in this
So are linear combinations of the laky2 columns, i.e., section. The parameterization is useful in cases where ISI-free
So = So(®, I./2), where®, is of dimensions./2 by BDMT solutions exist but there are no 1SI-free solutions with

L/2,andS} is M x L/2. Then, we have trailing-zero and leading-zero constraints. One such example is
given below.
S=(So S1) Example 6: Consider the FIR channé?(z) = (1 — 272)3
— (8, Si) <‘1’s 0 ) with orderL = 6. Let M = 5andK = 3; then, we have
0 0 Iy_z, N = M + K = 8. We can verify that in this case, the matrix

Su B given in (22) is singular. There are no ISI-free solutions for

where the matrixS; is M x M. More genera$ can be BDMT with trailing-zero and leading-zero constraints. On the
obtained by introducing a permutation matk for So,  Other hand, let us choose
as given in (27). In a similar manner, we can obtGiras
in (27). 100
P:=]10 0 O
AAA 00 0
Note that the matriceS,; andG,; areM by A, and they
are nonsingular becauSeandG are full rank. Using (27), con- We can verify that the matriA g9 + Ao @ is nonsingular and
dition ii) in (24) becomes that the matrixC ; in (30) is also nonsingular. We can obtain the
I solution of &5 from (31) andSy; = Gy, Cy; for arbitrarily
(®s I.,2)PsCaPq < £/2> =0. (28) chosen nonsingula ;.
@ Remarks:
Let 1) In the parameterization, no additional assumption has
been made on the transmitter matrix and the receiver
PsCaPq = <200 201> . matrix, except that they achieve zero ISI. Therefore,
10 &1 whenever block-based DMT with redundanky= L/2
Then, (28) can be rewritten as exists, it can be parameterized as in this section.
2) The parameterization presented in this section is for even
FAgy+ PsAPe + Ao+ A1 P =0. (29) L. Using similar techniques, we can obtain solutions for
odd L.
Using G andS in (27), condition i) in (24) becomes

VI. CONCLUSION
SwCuGy =1, where

P P, 0 In this paper we show that for a given interpolation ratio
Cy = < 0 IM) < 0 IM_L/2> C the minimum redundancy or the maximum number of bands
I 0 % usable for FIR transceivers can be determined exactly. It is di-

X < MBL/Q PG) < OG IM> . (30) rectly related to the number @bngruous zerosf the channel

P(z) defined in the paper. In particular, the minimum redun-
Using (27), we have converted the two conditions jdancy that ensures the existence of FIR ISI-free DMT systems is

(24)—(30). From (29) and (30), we can solve for the receivgflual to the maximum number of congruous zeros with respect
when the transmitter is given, and Simi|ar|y' we can SOl\;@ N. This number, in almost all cases, is less than the usual
for the transmitter when the receiver is given. For examplegdundancy used in most systems. However, like all non-DFT-
suppose the transmitter is given, thatds; andG, are given. based systems, transceiver design is more channel dependent.

We can solve fofB s in (29). In particular, ifAg + Aq @ is  The transceiver solutions depend on the channel, and the perfor-
nonsingular, we have mance depends on the accuracy of channel estimation. We also

demonstrate, through examples, that minimum redundancy may
Ps=—(A10+A11P5)(Ag + A01§>G)_1. (31) lead to transceiver solutions that contain matrices with large
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condition numbers. This happens when the zeros are almost con-
gruous, i.e., de€(z) have distinct but clustered zeros.

In this paper, we have also shown that for the block-based
DMT transceivers, the minimum redundancy|&/2], where
L is the order of the FIR channel. When a block-based DMT
system with redundandy’ /2] has ISI-free solutions, the solu-
tions are parameterized. The free parameters can be useful for
optimizing the transceiver for minimizing output noise or min-
imizing transmission power for a given probability of error and
transmission bit rate. However, the redundancy of lefdtf2]
does not guarantee the existence of ISI-free solutions. The de-
termination of the minimum redundancy that guarantees the ex-
istence of ISI-free block-based DMT transceiver is still an open
problem.

APPENDIX
PROPERTIES OF THECHANNEL MATRIX

In this Appendix, we give a collection of the properties of the
channel matrix in (7) that is useful for our discussion. Some of
these properties are known and can be found in text books, e.g.,
[17]. Some have not been shown explicitly before and will be
derived.

1) A pseudo circulant matriXC(z) of the form in (7) is
shown in [16] to assume the decomposition

C(z") = D(x)WE(-)W'D(="") (32)
where
D(z) =diagl 27! PR
3(z) = diag P(z) P(W1) P(zW—NFLy),
The matrixW is the N x N DFT matrix given by 4)
1
Wi = ——=W* " with
W =e72/N foro<k, n<N-1.

2) When the channdP(») is a causal FIR filter of ordek,
detC(z) is also a causal FIR filter of orddr. Further-
more, suppos#’(z) has a zero at; then, delC(z) has a

zero ata™v
Proof: Using (32), we can obtain
N—-1
detC(z") = de(=(2) H P(W~

It follows that detC(a’) = Q‘;} PlaW— ‘) = 0. As P(z)

is of orderL, the product f||te|1'[k 0 ' P(zW %) is an FIR filter

of order NL. We know that de€(z) is an FIR filter as the

polyphases of?(z) are FIR. We can conclude that d&fz) is

of order L.

3)  Smith-Form DecompositiomPAn N x N polynomial

matrix A(z) in z=! can be represented using the
Smith-form decomposition [17]

A(z) = UG ()V(2) (33)

where all three matrices in the decomposition are
matrix polynomials in the variable~!. The matrices

U(») and V(z) are unimodular matrices, the def-
inition of which is given in Section I-AT'(z) is a
diagonal matrix

SN

0 1\2 0
re-| . o

0 0 e awa)

Moreover, the unimodular matricdd(z) and V(z)
can be so chosen that the polynomial$é~) are monic
(i.e., highest power has unity coefficient), ang(z)

is a factor ofyxy1(2), i.e., vi(2) dividesvy41(z) for

0 < k < N — 2. The matrixI'(z), which is called
the Smith form ofA(z), is unique. AlthougHl'(z) is
unique, the unimodular matricdd(~) and V(=) are
not. As defU(z) and detV(z) are both constants, we
have

detA(z) = cdetl'(z) = cIl_vi(z)

wherec = defU(z)detV(z).
The Smith form ofs(z) :
composition ofC(z) be

: Let the Smith-form de-

C(2) = U (2)V(2).

Note that deC(z) = cII} 'y (). The polynomials
w(z),fork =0,1,..., N—1,inthe diagonal oI'(z)
have the property thatk( %) dIVIdeS’yH_l( ). On the
other hand, from Property 2, we know that (&%) is
an FIR filter with orderL. This implies that there are
at mostL nonunity terms amongyx(z)}.
In many applications [8], [9], [13], the interpolation
ratio V is chosen to be larger than the ordeof P(>).
In this case, theéV polyphases of’(z) are constants,
and the lasfV — L — 1 polyphases are zero. The matrix
C(z) is causal, and of order one

C(Z) =Cy+ Z_lcl
where
Do 0 0
P11 Do 0
Co=\|prr pra and
0 pL
0 0 Do
0 0 pr. pr—1 - M
0 0 0 oL o D2
C = oL |- (34)
0
0 --- 0 0 0 .0

The matrice€Cy andC; are bothV x N and Toeplitz;
C, is lower triangular, and’; is upper triangular.
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