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Optimal I1SI-Free DMT Transceivers for Distorted
Channels with Colored Noise

Yuan-Pei Lin Member, IEEEand See-May Phoond/lember, IEEE

Abstract—The design of optimal DMT transceivers for distorted
channel with colored noise has been of great interest. Of partic-
ular interest is the class of block based DMT, where the transmitter
and the receiver consist of constant matrices. Two types of block-
based DMT transceivers will be considered: the DMT system with
zero padding (ZP-DMT) and the DMT system with general prefix
(GP-DMT). We will derive the bit allocation formula. For a given transmitter = receiver ”
channel and channel noise spectrum, we will design the ISI-free op- ] ] ]
timal transceiver that minimizes the transmission power for agiven Fig- 1. AZ-band block-based DMT transceiver over charfigt) with noise
transmission rate and probability of error. For both ZP-DMT and ~ ¥{")-

GP-DMT systems, the optimal ISI-free transceiver can be given in Inf fi t timized DMT t idered i
closed from. We will see that for both classes, the optimal trans- niormaton rate optimize systems are considered in

ceiver has an orthogonal transmitter. Simulation shows thatthe op- [4]. In [5], the authors start from an orthogonal transmitter
timal DMT system can achieve the same transmission rate and the with zero padding. The optimal orthogonal transmitter that
same probability of error with a much lower transmission power minimizes the transmission power for a fixed probability of
compared with other existing DMT systems. error and transmission bit rate is derived.
In this paper, we consider general block-based DMT trans-
. INTRODUCTION ceivers: DMT systems with zero padding (ZP-DMT) and DMT
HERE has been great interest in the design of DMT Sy§ystems with generaliprefix (GP—DMT).. The transmitters are
T tems recently. Fig. 1 shows an example of &hband general cons_tant matrices that are not Il_mlted to th_e orth_ogonal
DMT transceiver over channél(z) with additive noise-(n). F:Iass. The widely used DMT systems with the cyclic prefix fall
The example is the so-calltbck-basedMT, where the trans- N0 the category of the GP-DMT systems. For these two types
mitter and the receiver consist of constant matrices. The &}-Systems, optimal bit allocation will be derived. Under op-
coding at the transmitter end and the decoding at the receif@#a! bit allocation, we will develop optimal transceivers that
end are done blockwise. When the receiver outputs are id&nimize the transmission power for any given transmission
tical to the transmitter inputs in the absence of channel noi§@t€ and probability of error. It turns out that for both ZP-DMT
the transceiver is said to b8l free The introduction of redun- @nd GP-DMT systems, the optimal transceiver that minimizes
dancy is typical of DMT transmitters so that the receiver cdf€ transmission power has an orthogonal transmitter. That is,
cancel ISI due to the channel. The cyclic prefix and zero paddiHif"® IS no loss of generality in using orthogonal transmitter for
(or trailing zeros) are commonly used forms of redundancy. Fgg&gnlng optimal block-based DMT systems._ Furthermor_e, for
example, the cyclic prefix is used in DFT-based DMT systen9th ZP-DMT and GP-DMT systems, the optimal transceivers
[1], and zero padding is considered in [2]-[5]. can be given in closeq formin ter.ms of the given channel and
Block-based DMT transceivers have been studied extdfiannel noise. We will see that in most cases, the ZP-DMT

sively. In the commonly used DFT-based DMT, the transmittéy,Stem outperiorms the GP_.DMT system. However, the superi-
pty of the ZP-DMT system is not guaranteed as these are two

and the receiver are DFT matrices [1]. In [2], more gener% | : We wil al |
orthogonal matrices are proposed. It is shown therein that Eerent classes of system. We will also see one toy example
ere the GP-DMT system performs better.

additive white Gaussian noise (AWGN) frequency—selecti\% Th " ized as foll Secti Ry d
channels, the optimal orthogonal transmitter consists of eigen- € seclions are organize€d as 1ollows. Sections 1=V are de-

: : : = voted to the class of ZP-DMT systems. Section Il gives a re-
vectors associated with the channel. In [3], optimal transcelveyl.% . :
[3], op ew of the ISI-free transceiver solutions. The class of ZP-DMT

that minimize the total output noise power are developed X . . .
P P P transceivers with the ISI-free property will be parameterized.
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A. Connection with Subband Coding sense stationary random process anddtay is an FIR filter of
The connection between am/-band filter bank and an ©rderL.Insome applications, e.g., DSL, where the channel has

M-band DMT transceiver (or transmultiplexer) has beef ey long impulse response, typically, an equalizer is used to

well-known [6]-[9]. When the analysis and synthesis baniehorten the impulse response to an FIR filter with a small order.

of a perfect reconstruction filterbank are interchanged, theFor block-based DMT systems, the length of redundant sam-

new structure becomes a DMT transceiver. Tieband DMT Pl€s is chosen to bé so that the receiver can remove ISI due

system is often considered to be the dual ofsband subband 0 €' (%), and decoding can be performed blockwise. Therefore,

coder; the block-based DMT system can be considered {f€ interpolation ratiaV is N' = M + L. In the case of zero

dual of the transform coder. In subband coding, we know thgdding (ZP-DMT), the transmitter and receiver are of the form

optimal orthogonal transform coder is as good as any biorthog- G

onal transform coder [10]. However, the design problem of Go = <0 ) , and So=S8

subband coders is different from that of DMT transceivers. The

analysis for subband coding does not carry through for DMdhereG is of dimensionsM by M, the bottom matri0 is of

systems in general. dimensionsl by M, andS is anM by N constant matrix. The
The DMT systems obtained from interchanging the analysigstem is ISl free ife},(n) = zx(n), fork =0, 1, ... M — 1,

and synthesis banks have interpolation raWio = A4, and in the absence of channel noise. Due to the paddemtros,

there is no redundancy in the transmitter output. When thieere is no overlapping between adjacent blocks. Processing is

channelP(z) is a delay, theM-band DMT transceiver is ISI performed on a block-by-block basis; the dependence wiil

free if the corresponding filterbank has perfect reconstructitye omitted.

[6]. However, when the channel is not a delay, the perfectWwith the assumption that the chanii&(z) is an FIR filter of

reconstruction property of the filterbank no longer translates ¢oder L, we can write

the ISI-free property of DMT transceivers. It has been shown

that with N = M, ISI-free solutions can only be obtained with Clz)=co+crz™t +-+erz™

lIR transceivers. The IIR filters are unstable if the channel does ) )
not have minimum phase [11]. with nonzerocg and c¢r. The received vector shown in

In practical designs of DMT systems, unlike in transforfiid- 1 can be given in terms of the transmitted vector as
coding, the interpolation ratidv is larger thanM to enable T = C(to v1 -+ yn—1)", wherey,, denotes théth element
ISI cancellation. For the two classes of block based transceiv8fsy> and C is an V- by M lower triangular Toeplitz matrix
considered in this paper (the GP-DMT and ZP-DMT system&jiven by
we cannot draw an analogy to the design problem of subband
coders. Despite the differences in the designs of optimal sub- .
band coders and DMT transceivers, it turns out that the results €1 Co : 0
we will show in this paper are similar to those of optimal trans- : :

form coding. For both GP-DMT and ZP-DMT systems, orthog-

L

co 0 - 0 0

X i Cr, Cr—1 0

onal transmitters are as good as any transmitter. C= 0 er 0
B. Notations :

0 0 cr, 0 C

1) Boldfaced lower-case letters are used to represent vec-
tors, and boldfaced upper-case letters are reserved for ma- : : .o
trices. The notatioA” represents the transposeAf 0 0 0 - cp

2) The function&[y] denotes the expected value of the . . ) ,
random variabley. Fig. 1 can be redrawn as Fig. 2 using the matrix representation

3) The notatior, is used to represent the x M identity ofthe channel. Thé&/ x 1 vectorv shown in Fig. 2 is the blocked

matrix. The subscriptis omitted whenever the size is cle}frsion of the scalar noi_se progea(m).
from the context. The ZP-DMT transceivers with an ISI-free property can be

4) The notationd ,, is used to represent the x M reversal parameterized using the matrix representation. Applying the
matrix. For example, foh/ = 3 singular value decomposition (SVD), we can expresss

C:(UOUU1)<‘3>V:U<'3>V 1)

whereU andV are orthonormal matrices of dimensions, re-

spectively,N x N andM x M, andA is anM x M diag-

onal matrix. The column vectors &f are the eigenvectors of

the N x N matrix CC?, and the column vectors &% are
Consider Fig. 1, where ali-band block-based DMT systemthe eigenvectors of th&/ x M matrix CT'C. The diagonal el-

is shown. Usually, the channel is modeled as an LTI fit¢z) ements ofA are the eigenvalues &#*'C. As C has full rank

with additive noise/(n). Assume that () is a zero-mean wide M, the matrixA is nonsingular. From Fig. 2, we see that the

0 0 1
J3=10 1 0
1 0 0

Il. ISI-FREE BLOCK-BASED DMT WITH
ZERO PADDING [3], [4]



2704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001

M N N Y M The summation has only/ terms as the last elements ofy
le G C S Z x'=x+e are the padded zeros. As the inpuisare uncorrelated and have
zero meang?, is given by

M-1
T o5 = > [Glol,.

n=0

A
A 4

Fig. 2. Matrix representation of DMT systems with zero padding.

Using this expression, we can write the transmission power as
overall DMT system idl' = SCG. The ISI-free condition be- M1 -
comesSCG = I,. SinceG is M by M, the ISI-free condition p— 1 Z o2 Z [G]Q
implies thatG is nonsingular. Premultiplying the above equa- N r T k)
tion by G and post-multiplying bya !, we get(GS)C = I;. B
T_hls means thaG_S isa _Ieft inverse ofC, WhICh is of dimen- pefine g2 = é\ial [G]2, as the energy of thth column
sionsN x M, and its leftinverses are not unique. Therefore, W&t ¢ The transmission power can be written as
can writeS = G~'B, whereB is any left inverse oC (i.e.,

BC = I,,). Using the SVD ofC as in (1), its left inverséB ] M=t
can be expressed as P= N Z o2 g3 (2
k=0

k=0

B=VIATAUT
Note that the quantity? ||gx||3 is the transmission power
whereA is an arbitraryl/ x L matrix. Summarizing the results, dye to thekth band. Under the ISI-free condition, for a fixed bit
we have the following theorem. rate and a fixed probability of errd?., we will find the ZP-DMT
Theorem 1—Parameterization of ZP-DMT Systems[3fansceiver that minimizes the transmission power. The opti-
[4]: The block-based DMT system with zero padding in Fig. fization process involves two steps. We will show in Section IV
is ISI free if and only if the zero-padded transceiver satisfigRat the bitd,, can be optimally allocated to minimize the trans-
the following. mission power for any given transceiver. Under the optimal bit
i) GisanM x M nonsingular matrix. allocation, the optimal ZP-DMT transceiver will then be derived
i) S =GB, whereB = VIA~II AJU7Z, for an arbi- in Section V.
trary M x L matrix A. The matricedJ, V, andA are as
in the SVD of C in (1). IV. OPTIMAL BIT ALLOCATION
In the above formulatioJ, V, andA are determined by the
channel matrixC. After the ISI-free condition is imposed, the
parameters left in the transceiver design are the nonsingular ma- ; M—1 _ M—1
trix G and theM x L matrix A, which is completely arbitrary. i aIIocatlc_)n{_bk}kzo with b = (VM). k=0 br Such that
The development in Sections IlI-V will be based on the ISI-freté1e transmission power in (2) is minimized.
Atthe receiver end, the output of theh band ist}, = =y +ex,

transceiver described in Theorem 1. - . .
wheree;, comes entirely from channel noise as the transceiver

achieves zero ISI. Define the x 1 output noise vector as—=

(60 ey .- 6]\4_1)T; then

For a given transceiver, a fixed probability of erBr, and
the average bit rate per input symidople present the optimal

Ill. PROBLEM FORMULATION

In this paper, we assume that the inputsare PAM symbols
of b bits. Without much loss of generality, we further assume e=Sv=G 'Bwv.
thatz; have zero mean and that they are uncorrelated with each
other. That is Assuming the PAM symbols of theh band carry, bits, the

probability of error for thekth band is given by [12]
g[xern] = Uzké(k — m)

2
This can always be obtained with proper interleaving. The av- P.(k) =2(1-2"")Q L
] . ) e (22bk _ 1)02
erage bit rate per symbol in this case becomes ex

where
M-—1

1 1 oo 2
b= — by T)=— c_t/th, 7>0.
v = [ >

The actual transmission ratef% = (M/N) b bits per sample For a fixed probability of erro. across all bands, we need to
due to zero padding. haveP.(0) = P.(1) = --- = P.(M —1) = P.. Under the high

The transmission powe? is the average energy of the vectopit rate assumptiod” — 1 ~ 2", we can see that?, ando?,
vy =(yoy - ynv—1)¥, as shown in Fig. 1 satisfy

2

1 9 30z,
P:N Z Dy 2Q< 221;,‘,0% ) =F..
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We can rearrange the above equation as band is equal tfR. ] or [G™*R,G~];,. Therefore, (4) can
) be rewritten as
O’ik = c22bkafk, where c:% (Q_I{PG/Z}) )] Mol 1M
oM o2 T -1 -T
For the fixed probability of error, the transmission power in (Zf‘”’t’b” N 2 <k1i[0 (67 G, [67R,G hk) '
becomes -
The Hadamard inequality for ail x M positive definite matrix

M-1
c P states that [13]
P=+ Y 2% 02 |lglf3
k=0

M-1
Applying the arithmetic mean-geometric mean inequality, we k=0
obtain with equality if and only ifP is a diagonal matrix. Using this
M—1 inequality, we have
cM 1/M A
P> —=2% (o2, llgll3) = Popt,vit- (4)
- e opt, be M
N kl;[o ' Popt, i = e 2% (det (GT'G) det (G 'R,G 1))

The equality holds if and only #2** 02 ||gy |3 are the same for

k=0,1,..., M — 1. Notice thatF,,, »;; depends only on
bando; [|g.l3, whereor, is determined once the receiver isrpo g aiity holds if and only if iG7G is diagonal and i)

known, and||gz||3 is determined once the transmitter is givena 1R G-Tis diagonal. The lower boun®, . 1, ¢ does not
Therefore, when the transceiver is given and average bit rate ngené on the transmitt€®. and it is achieCédz it and only if

Symbolbis fixed, Pope, vi¢ is the lower bound of the transmissiong, satisfy both conditions i) and ii). The first condition means

M
= thatG is an orthogonal matrix. The second condition means that

power independent of the bit allocatidi; }2-*. The lower
boundF,p, i is achieved if and only if bits are allocated suchyy—1 yocorrelates the noise vectgrLet the Schur decomposi-
tion of R, be

M )
= CN 22b (det Rq)l/]w é Popt, bit, G- (6)

that2?** 52 ||gx||3 are equalized. Solving for the optintal, we
have

R, = QzQ”.

M-1
1
b = b —logy (0c,[lgll2) + 57 log, < II O'ec||gé||2> - () combining conditions i) and ii), we see thitis an orthogonal
=0 matrix of the formG = QD, whereD is a diagonal nonsingular
matrix. SinceG = QD achieves the lower bound for any non-

Remarks: . ) .
1) The optimal bit allocation equalizes the termg"nQU|arD' without loss of generality, we can choake= 1,

2202 ||gkl3. From (3), this means that the trans-

mission power contributed from each band is the same. G=Q, and S=Q'B
2) If the transmitting vectorg; have equal energy (i.e., h
lgoll> = llgill> = - = llgar1]l2), then the symbol "'
B=VTA I AJUT. 7

variances2, are also equalized. In this case, we can see

from (3) that more bits are assigned to bands Whé[e Remark: To understand the effect of nonidentit]D,

is small and fewer bits Whemﬁk is large. This is similar o ot/ — diag(do 1 1). At the transmitting side,
to the bit allocation in water filling scheme. More bits areﬂg@”% = d2||go|12, and at the receiving end?, = o2 /d2. As
- ! e/ T e '

transmitted in less noisy bands. . 0 .
y the producte? ||g||3 = o2, ||gol|3 remains the same, bit allo-
0
cation remains the same. It follows from (3) thdt = o2, /dZ;
3

_ o _the transmission powelg}||302, due to the Oth band remains
From the previous derivation, we know that the transceiver jje same. o
Theorem 1 renders the received signal ISI free for all possibleoptimmA: From (6), we see that given ady, the achiev-
choices of nonsingula& and an arbitraryl/ x L matrix A.  gple lower bound i pit,c = c(M/N)2%(det Rq)l/]\l_
Under optimal bit allocation, the power lower boum,;,si+  The matrixA should be chosen such thiat,(R,,) is minimized.

depends on the choice of the transceiver. Next, we will shqysing the facts thak,, = BR, BT andB = VI A~1[I AU,
how to chooseG and A so thatF,;, ,;+ is minimized. For a ¢ get !

given A, we will derive the optimalG, based on whiclA is
optimized. _ _ _ det(Ry,) = det <VTA1[I AJUTR,U < IT> A1V> .
Optimal G:  We first express the quantit, .+ »;: in (4) in A
terms of G. The energy of théith column of G is ||gx||3 =
[GTG]yx- Lettingq = By, thene = G™1q. The M x M
autocorrelation matrix®.. of the noise vectoe is given by
R. = SR,ST = G'R,G T, whereR, is the autocorre-
lation matrix of the vector;. The output noisergk of the kth

V. OPTIMAL ZP-DMT TRANSCEIVERS

SinceV is orthonormal andet(V) = 1, we can simplify the
above expression to

det(R,) = det(A~?) det <[I AJUTR,U < AIT )) . (8)
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Fig. 3. Receiverinthe form @ = Q7 VTA~[I AJUT for the derivation
of an optimalA..

Note that A, U, and R, are fixed once the channel and

input noise are given. Thus, the optim&l is such that
det([I AJUTR,U[I A]T) is minimized. In the following, we
will derive a closed-form expression for such an optirAal

For the convenience of explanation, we draw the receiver in
the form of (7) as in Fig. 3, wher®/, andU; are submatrices

of U, asin (1). The vectorg, andg, in Fig. 3 are given by

Uly
— (P = 0 =U%wp.
w= () = (o)

Define the vectord, 6,, andé@; as

_ (0 _(In A\ /(p Bo + Ap
o= (0)= (5 ) ()= (") e

The vecto#, is as illustrated in Fig. 3. LéRs, Rg,, andRs, be

©)

the autocorrelation matrices 8f6,, andé; respectively. These

matrices are related as

Ry = < R90 R901 )
Rg:n Rel
whereRy,, = £[6,07 ]. Using (9) and (10), it is not difficult to
see that

Ry, = [T AJUTR,UT A]*.

Therefore, the optimah should be such thalket(R., ) is min-
imized.

Using the Fischer’s inequality for positive definite matrices

and its extension given in the Appendix, we have

> det(Rg)
- det(Rgl)

with equality if and only ifRg,, = 0. Using (9) and (10),
we havedet(Rg) = det(R,) = det(R,) anddet(Re,) =

det(Rgo )

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001

1o andp, are given in (9). EquivalentlyA is given uniquely
by (11). Furthermore, the minimum is given by

det(R,)/det(UTR,U)).

Remarks:

» Theorem 2 states thaA should be chosen such that
E[(py + Apy)pf] = 0. This implies that the optimal
solution of A is the optimal estimator of,, given the
observation of-p,.

* The solution of A in (11) minimizes not only
det(R,) = det(R.) but the total output noise power
given by "2t 62 or trace(R.) as well. To see this,
we consider Fig. 3. Since the vecterand+ are related
through the orthonormal matri®? V7, which preserves
traces, we haverace(R,) = trace(R.). On the other
hand, [R.]xx = [Re,lrx/[AlZ;, and minimization of
trace(R ;) can be achieved if each terfRy, |1 can be
individually minimized. Notice thafl = py + A, . Upon
invoking the orthogonality principleA should be chosen
as the optimal estimator @i, based on the observation
i, - Therefore, the solution oA given in (11) is also
optimal for minimizing the total output noigeace(R.).

We can summarize our results as follows:

Theorem 3 :Consider theA/-Band ZP-DMT System in

Fig. 2. Assume that the inputs are PAM symbol$obits. For

any fixed probability of errof’, and any fixed transmission bit

rate per symbob, the transceiver is ISl free and minimizes the
transmission poweP in (2) if and only if the following are
true

i) The matrix A is given by A -UI'R,U;
(UT'R,U;)"!, where R, is the autocorrelation
matrix of the noise vector, and Uy and U; are as
defined in (1).

i) The transmitterG = Q, whereQ is the orthonormal
matrix such thaQ? R, Q is diagonal. The matriR, is
given byR, = BR,B? andB = VTA~L[T AJUY,
whereU, V, andA are given in (1).

iii)y The receiver is given bys = Q¥ B.

iv) The bitsb; are allocated a8, = b — log, (o, ||gk]|2)
+(1/M) loga(IT125 " oe.llgell=)-

The minimum transmission power is

det(R,,, ). Using these relations, the above equation can be ex-

pressed as

S det(R,)
- det(Rm)

Note that the lower bound is independent&f Moreover, this

det(Rgo )

lower bound can be obtained if and onhAifis chosen such that

Ry, =€ [(II’O + Ap’l)p’?] =0.
Solving the above equation, the optinalis uniquely given by
A = -UIR,U; (UTR,U;) . (11)

Summarizing the results, we have theorem.
Theorem 2:The optimal A that minimizes det([IA]
UTR,U[I A]") is such that€[(p, + Au,)pl] = 0, where

1/M
det(R,)

-2 et S C A
AeHA ™) Gt (UTR, U)

M
Pzp_pur=c QQbN

The theorem indicates that the optimal ZP-DMT transceiver
has an orthogonal transmitter. There is no loss of generality in
using orthogonal transmitters.

VI. OPTIMAL ISI-FREE DMT TRANSCEIVERS WITH
GENERAL PREFIX

In this section, we will consider the case of DMT transceiver

with general prefix (GP-DMT). In this case, the transmitter and

receiver of the DMT system in Fig. 1 are given by

Go=G, So=[0 S]
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whereG, 0, andS are of dimensioné\M + L) by M, M by L, M N M
andM by M, respectively. Note that the ZP-DMT system is not W /f :L_V S _L;C'=x+e
a special case of the GP-DMT system. The fitstolumns of

the receiveSy in GP-DMT systems are constrained to be zeros, .

whereas those d8, in ZP-DMT systems are not constrained. h T
Due to the zero columns, the GP-DMT system is also known as

theleading-zeraDMT [3]. In the special case of cyclic prefix, Fig. 4. Matrix representation of DMT systems with a general prefix.
the first L rows of G will be the same as its lagt rows. Using

a technique similar to that given in Section Il, Fig. 1 can behoose any. x M matrix A andM x M nonsingular matris.
redrawn as Fig. 4, where the mati is an M by N upper In the following, these two matrices are optimized to minimize

triangular Toeplitz matrix given by the transmission power, ,; yi:- }
Optimal S: The transmission power,,; i: in (14) can be

cc cg-r - 6 0 -0 rewritten as
~ 0 Cr, cr—1 - Co e 0
©= ' -lf)opt,bit
0 0 e cra co M M-l o 1/M
Comparing the above equation with the expressio@ afi (2), N 2% <k1—[0 [S_TBTBS_I} Kk [SR,,ST} kk)

one realizes that the two channel matrices are relate@ by
JuCT Iy, whereJy, is thek by k reversal matrix. Therefore

N rwhereR,, is the M x M autocorrelation matrix of the channel
the SVD of C can be expressed as

noiser(n) in Fig. 1. As botiR,, andB” B are positive semidef-
L Vo inite, we can apply the Hadamard inequality to obtain
C=U[A 0] < ) (12)
1

~ Py 2 25 [det [§7 B B8] detfsR, §7])

v

R . 1/M
whereU = J,, VT andV = UTJ are unitary matrices of 262%% [det [BTB} det [RVH /
dimensionsM by M and N by N, respectively. Notice that A
the noise vecto®, which was obtained by blocking the channel =P, it s (15)
noiser(n), is of dimensions\/ x 1. Using an approach sim-
ilar to that in Section II, we can get the following theorem foNote that the lower bound, , ,., & is independent of the re-
ISI-free GP-DMT systems. ceiverS, and it is achieved if and only if the receiv@isimulta-
Theorem 4—Parameterization of ISI-Free GP-DMT Syseously satisfies the following two conditions.
tems: The block-based DMT system with a general prefix in ) SR, ST is diagonal.
Fig. 4 is ISI free if and only if the transmitter and receiver jj S-TBTBS-! is diagonal; that is(37 G is diagonal.
satisfy the following.
i) SisanM x M nonsingular matrix.
i) G = BS!, whereB = VI'(1)A1U?, foran arbi- R, = TDT? = (TDl/QTT) (TDl/QTT) — RY/2RY/?
trary L x M matrix A..
Using a derivation that is similar to that in Section Ill, ondor some unitary matrixI' and some diagonal matrild with
will find that the transmission power can be expressed as  non-negative entries. To avoid degenerate cases, we afsyme
is positive definite so thaR:/? is invertible. Using the above
-2 decomposition, it is not difficult to see that Condition i) is sat-
N Z lI8x ]2 (13) isfied if S has the following form:

To derive such an optim&, we first decompos®,, as

M-1

& _ AB—1/2
where[|g[3 = 305" [GIZ, is the energy of théth column S=QR,

of G. For alg|venhpr8.babll|ty oLerror .and”aveilr age b(;t rate \ihereQ) is anyM by M unitary matrix. Substituting the above
1/M 3 j—o bx, the bitsh, can be optimally allocated to min- o, resion into Condition ii), one can show that Condition ii)

imize the above arithmetic mean. Under the optimal bit aIIoc% satisfied if the unitary matrix) diagonalizes the positive
tion, the transmission power becomes semidefinite matrix

M-1
1 M S 1/2RTRRL/2
Poptpin = 22" H 2 el3) (14) R,*B'BR,/".

Therefore, we conclude that the lower bouﬂgﬁybmg given
Wherea2 is the variance of the output noise at thidn band. in (15) is achievable. Note that once the channel and noise are
From the above expression, we see that under the optimal bitgilsen, this bound depends only By whose only free parameter
location, the transmission powé’gptj v+ depends on the trans-is the matrixA.. In what follows, we will optlmlzeA so that this
ceiver. In the ISI-free solutions of Theorem 4, we are free tower bound is minimized.
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Optimal A: From the expression dFopt,bit,é in (15), we the dimension of the signal subspacefis, whereas
see that the matriA should be chosen such thats[BY B is the received signal has dimensioh = M + L. The
minimized. Using the fact thd8 = VT(Ig)A—lﬁT, whereU eigenstructure of the signal subspace can be exploited
andV are square unitary matrices defined in (12), we have to our advantage in ZP-DMT systems. Therefore, the

performance of the ZP-DMT systems is generally better
det [BTB} = det[A™?] det [I + ATA} ) than that of the GP-DMT system, as we will see later.

However, as ZP-DMT and GP-DMT systems are two dif-
ferent classes of DMT systems, it is possible to construct
toy examples (see Section VIII) such that the GP-DMT
det [BTB} > det[A™2]. S){stem is better._ _

Special Case—Cyclic Prefixtn the commonly used case of
cyclic prefix, the transmitter has the form

As AT A is positive semidefinite, it can be verified that

Equality holds if and only ifA = 0. In this case, the optimal
transmitter is given by <0 IL)

G—:

I Gy (16)
M

G = VIAIUTS

whereS is the optimal receiver derived in the previous subse@heréG s is somelM by M nonsingular matrix. Using (12),

tion. Summarizing all the results in this section, we have i ISI-free condition becomes

following theorem. - (0 I\ =
Theorem 5:Consider theA-band GP-DMT system in SC< ) Gy =L

Fig. 4. Assume that the inputs are PAM symbol$obits. For

any fixed probability of erroi’, and any fixed transmission bit Ceye

rate per symbob, the transceiver is ISl free and minimizes the ~

transmission poweP in (13) if and only if the following are Observe that the matri&.... is circulant, with the first column

Iy

true. given by(cop ¢1 --- ¢, 0 --- 0)T. It is known that it can be
i) The matrixB = VIA~1UT, whereU andV are de- diagonalized using a DFT matrix, and the eigenvalues are the
fined in (12). M -point DFT of the channel impulse response. It is not guaran-

i) The receiver is given byS = Qf{;lﬁ where R, teed to be nonsingular; it is singular if the channel has zeros at
is the M x M autocorrelation matrix of the noise® " for some integek. Let us assume th&.,. is nonsin-

vectorr, andQ is the unitary matrix that diagonalizesgular, and let

(R/°B'BR.%). ) 0 I\ .
i) The transmitterG = BS—!. B.,. = < . L) C,,-.
iv) The bitsb;, are allocated a8, = b — log,(G., ||gx||2) M

+(1/M) logy (117250 Ge,lI&ell2)-

o =L . For any nonsingulafB, the transmitter that achieves the ISI-free
The minimum transmission power is ~ s

condition is given byG = chcé—l. Note that in the cyclic

M R 1M prefix case, once the chann@! is given, the matrichyc is
Pep-pur = cZQbN [det(A_2) det (Ru)} . fixed. The only free parameter in an I1SI-free DMT system with
cyclic prefix is the nonsingular matrik. By repeating the earlier
Remarks: optimization process, we can obtain the optimal 1SI-free DMT

1) For the inequality to hold in (15), Conditions i) and ii)system with cyclic prefix as follows:
should hold simultaneously. Condition i) means that the Theorem 6: Consider Fig. 4. Suppose that the ISI-free DMT
receiverS decorrelates the noise vector. Condition ii) imsystem with cyclic prefix exists. In this case, its transmitter of
plies that the transmitte& is orthogonal. Therefore, in the cyclic prefix DMT system has the form of (16). Assume that
GP-DMT systems, there is no loss of generality in usinie inputs are PAM symbols 6f, bits. For any fixed probability
orthogonal transmitters. of error P. and any fixed transmission bit rate per symbahe

2) In GP-DMT systems, nonzero prefix samples argansceiver is ISl free and minimizes the transmission pawer
padded at the beginning of eved samples. There in (13) if and only if the following are true.

is inter-block-interference (IBl) in the received signal i) The receiver is given b = Qf{;l/Q, whereR,, is the

due to the channel. To remove IBI, the receiver retains autocorrelation matrix of the noise VecﬁqrandQ is the
only M samples of each block. Although the transmitter unitary matrix that diagonalize(fi,l/QBT chcf{}/?)_

sends outN samples for each input/ symbols, the i) The transmitter isG = B, .S~ e
receiver use only// samples for decoding. On the other iy The bits b, are a||ocated“gék = b — logy(
hand, in ZP-DMT systems, zeros are padded at the end = (1 /77) logs (TT2 5% 6. l|&cl2)-

of every M samples. After passing through the channe‘,he minimum transmis_sion power is

samples are spread to nonoverlapping blocks of length

N. As there is no IBI, all theV samples can be used for M . . 171/M
decoding. There are more observations than unknownsfcyc-pyr = C22bﬁ [det [nychyc} det [RVH :

Gerll8k|l2)
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Remarks: Under optimal bit allocation, one can verify that the transmis-

1) As cyclic prefix is a special case of a general on&ion powerPy.c (o) of the vector coding transceiver is [2]
we can immediately conclude that the performance

Pap-pur < Peye-pur. The gain can be substantial, M L M-1 /M
as will be demonstrated by the example in Section VIII. Py, = 2 N det(A™7) H R )ik
2) The conventional DFT-based DMT systems belong to the k=0
class of GP-DMT with cyclic prefix. The receivé is i B
S = WC;L, whereW is the M x M DFT matrix. Let us compute the ratbz p-par /Py, 2
BecauseC}, is also circulant, one can verify that = /M
3 ~'W, whereX is a diagonal matrix. The diagonal en-
tries of X are thed -point DFT of the channel impulse re- Pzp-pyur det(R,)
sponse. A¥cy c-parr achieves the minimum transmis- Pyc - M—1
sion power among the class of DMT systems with a cyclic det (R,,,) H R0 lin
prefix, we havePep-pyr < FPoye-pur < Pprr-In k=0
fact, Py c-payr can be much smaller thats g7, as we 1M
will see later. = < det(R,) )
det (RHO ) det (R/h)
VIlI. COMPARISON OFDIFFERENT DMT SYSTEMS PZP-D};T/p[S]
WITH ZERO PADDING 1M
The design of optimal transceiver for a given channel with

additive colored noise is considered in [3]. The measure of op- det (R,,,)

timality and the problem addressed therein are different from B A

here. For a given input autocorrelation matrix and transmission H R0 ]ir

power, the authors derive the optimal transceiver that minimizes b0

the total output noise power, but bit allocation is not considered, P[S]/I‘;V o

and the solution is not ISI free. In [4], information rate as a mea-
sure of optimality is considered. The DMT transceiver that ma¥he above equation gives the precise connection between
imizes the mutual information between the transmitted blogk, ,_,,, . and P, as well as betweeR;5; and Pyc (3.

and the received blocked is developed. However, the resulting i) Comparison of Pyp-pyr and Ps: The ratio
transceiver may not be optimal for all encoding schemes. This Pup-pur/Ps < 1 with equality if and only if

is demonstrated in the example shown in [4]; the DFT-based py

and g, are uncorrelate Tl = 0. To see this,
DMT system with QAM symbols compares favorably with the Mo - o |

let us consider the autocorrelation matrix of the vegtor

information rate maximized DMT system in some cases. defined in (9)
In this section, we will show that the optimal ZP-DMT has a
very nice connection to the systems proposed in [5] and [2]. All R, Elmont]
three systems belong to the class of ISI-free DMT systems with R, = e [ T] T R .
Holy (7

zero padding. We will show that the optimal ZP-DMT trans-
ceiver always outperforms these two systems, except in degen- Using Fischer’s inequality (see the Appendix), one can
erated cases when they have the same performance. We willgive  goq thatdet(R,) = det(R,) < det(R,,)det(R,,).

the conditions when the optimal ZP-DMT transceiver reduces to Equality holds if and only iéb[uo_uf] _ O.M'Orhe imprgl\/e-
the system in [5] and the vector coding system in [2]. ment of P p- p sz Over P comes from the exploitation

The DMT systems with orthogonal transmitters in [5] and of the signal subspace or the flexibility in the design of
the vector coding systems in [2] are both ISI free. According A for the left inverse ofC.

to Theorem 1, they can be described in terms of the matices iy comparison ofPj5; and Py, [): Using the Hadamard
andG. The DMT transceiver proposed in [5] has an orthogonal inequality, the ratioP[;,]/PVé 2 < 1 with equality if

transmitter with and only ifR,,, is a diagonal matrix, i.e., elementsmaf
are uncorrelated. The gain is from the decorrelation of the
A=0, and G=Q : ; ) _
noise vectog,. There is no improvement if elements of
[ are not correlated.
iy Comparison of Pzp-pyr and Pyc o0 The ratio
Pyp-pyur/Pye, 27 < 1 with equality if and only ify
andg, are uncorrelated, arld,,, is a diagonal matrix.

whereQ is the orthonormal matrix such th@* R, Q is diag-
onal. Under optimal bit allocation, the transmission powgy
in this case is [5],

Py = CQQbM [det (A™2)det(Ry, )] UM When the channel nois€n) is additive white Gaussian noise
N (AWGN), the elements of the noise vectemare uncorrelated.
The vector coding transceiver proposed in [2] has The autocorrelation matriR,, = o2I,, is the identity matrix,

except for a scalar. The vectpy, and ; are obtained from
A=0, and G=VT, v through the orthonormal transformati®h’ . Therefore u,
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Fig. 5. (a) Frequency response of the charf@&k«)|. (b) Power spectrum
of the channel noise(n).

andp, are uncorrelated, and moreovRy,,, andR,,, are diag-
onal. In this caselzp-pvr = Pis) = Pyc, 2, and the op-

timal transceiver reduces to the vector coding solution given
[2]. Notice that in applications such as DSL, the channel mod..

of LTI filter C(z) plus additive noise/(n) in Fig. 1 is usually
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obtained after time domain equalizatidiXz) is the equalized Fig. 6. (a) Performance comparison of DMT systems with a prefix. (b)
channel, and-(n) is the noise after equalization. Even if the>erformance comparison of DMT systems with zero padding.

original channel noise is white, the equalized noige) can be
colored.

VIIl. EXAMPLES

For the first two examples, the chanidg]z) and power spec-

Poyce-pur is approximately 1 dB fodd = 10. In both cases,
the gain is larger for small/. In addition, we can see that the
zero-padding ZP-DMT system performs better than the general-
prefix system.

trum for the colored noise(n) used are shown in Fig. 5(a) and Example 2—DMT Systems with Zero Paddirigg. 6(b)
(b). These parameters are obtained from a typical ADSL en#ompares the three zero-padding DMT systems:

ronment. The channél(z) in this case is the equivalent channel

after time domain equalization, ar@(z) has orderL = 4.

1) Pzp-pur,
2) Prj;

The bit error rateP. = 107¢ and average bit rate per sample 3) Py« [2]-

is Ry = (M/N)b = 2.

Example 1—DMT Systems with a Nonzero Prefiig. 6(a) Pyp-pur is approximately 5 dB smaller thaf,
shows the results of the three prefix DMT systems considergd

in Section VI:
1) optimal prefix systenPgp-purr;
2) system with cyclic prefidPcy c-pyr;
3) DFT-based DMT system with cyclic prefip 1.
The results are shown fav/ = 10 to 50. As a comparison,

FPgp-pur is also shown in the plot for comparison. Note that
<, 2] and

1] IS 4-5 dB smaller thay ¢ [2;. The transmission power
Pzp-pur is 0.5-2 dB less tha#;;, depending onV/. The
gain of 5 over Py ¢ 27 comes from the decorrelation of the
noise vector. The gain aPzp-pas over Pz comes from the
exploitation of the eigenstructure of the signal subspace. The
improvement is more significant for small number of badds

the result of Pz p-pasr is also shown in the plot. The optimalWhenA is large, the gap becomes smaller. This is because, for
GP-DMT systems has approximately 2.5 to 5 dB gain over tharge !, the dimension\/ of signal subspace is almost as large
conventional DFT-based systems; the gainfafp-pas Over as the dimensioVv of the received signal.
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6 ' y i " ' " b ' Proof: The proof can be found in [13]. We will repeat it
5| ___' PVCJ21 | here as the proof will be used in later part of the paper. Letting
b X = —-A~!B, we have
4l - PZP—DMT ]
GP-DMT I o0 A B I X
| wrma(E (& (Y

A 0
= det < 0 C- BTA—1B>

= det(A)det (C—BTA™'B).

transmission power (dBm)

Note that the matrixC — BT A~1B is positive definite a® is
positive definite. Using this and the facts that béttandC are
positive definite, it is not difficult to show that

det (C — BTA'B) < det(C).

Fig. 7. Toy example. Performance comparisonRefp-parr, Pz p-paTs Lemma 2: Let P be the positive definite matrix defined in
P, andPyc, 3. Lemma 1. Thendet(P) = det(A) det(C) if and only if B =
0.

Proof: From the proof of Lemma 1, we know that proving

Inmost cases, the ZP-DMT system outperforms3ReDMT Lemma 2 is equivalent to proving the following statement:

system as in the above example, and the cUlfy¥@-par IS
very close to the curvéy;. However, the ZP-DMT system is det (C _ BTA—lB) = det(C) (18)
not always better than the GP-DMT system; the two curves

Fep-pur and P are not necessarily close. Consider the folf and only if B = 0. Theif part is clear. To show thenly

lowing toy example. if part, we first decompos€ = E-7E~! andA~! = FIF
Example 3—Toy ExampleConsider the channel’(z) = for some positive definite matricés and F. This can always

1+ 22 + 2z7% and the channel noise(n) with power spec- pe done as botit! and A ! are positive definite. Using these

trum S, (¢/*) = |C(e/¥)|?. The results ofPzp-par and the  decompositions, we can rewrite (18) as

three zero-padding systent%; p-pasr, Pi5), and Py¢[2) are

shown in Fig. 7. In this toy exampléX; p-p s is better than det (I— (FBE)"(FBE)) = det(I) = 1. (19)

Pzp-pur and significantly better thads; and Py-¢, (o). The ' _ _

three zero-padding system hae p-parr < Ps) < Py, ), Note that the matriX FBE)? (FBE) can be diagonalized by

as expected from the results shown in Section VII. some unitary matrix. Consider its diagonalized form, and let
the corresponding diagonal matrix that consists of all the eigen-
values beA = diag o, A1, ..., An—1). Then, we can rewrite

IX. CONCLUDING REMARKS
(19) as

In this paper, we consider two classes of block-based DMT

transceivers: the DMT system with a general prefix (GP-DMT) nl
and the system with zero padding (ZP-DMT). We have shown det(I—A) = H(l —A) =1 (20)
1=0

that for these two classes, the optimal transceivers that minimize

the transmission power for a given bit rate and probability gfs the matrixI — (FBE)”(FBE) is positive definite and

error can be given in closed form. Furthermore, we demonstraieBE)” (FBE) is positive semi definite, the eigenvaluas

that for both classes, the optimal transceiver has an orthogogg|st satisfy0 < A; < 1. Using this, we conclude that (20)

transmitter; there is no loss of generality in using orthogongbds if and only if\; = 0 for all 7. In other words, (19) holds

transmitters. if and only if (FBE) = 0. SinceF andE are positive definite
matrices, we havéFBE) = 0 if and only if B = 0.
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