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Optimal ISI-Free DMT Transceivers for Distorted
Channels with Colored Noise

Yuan-Pei Lin, Member, IEEE,and See-May Phoong, Member, IEEE

Abstract—The design of optimal DMT transceivers for distorted
channel with colored noise has been of great interest. Of partic-
ular interest is the class of block based DMT, where the transmitter
and the receiver consist of constant matrices. Two types of block-
based DMT transceivers will be considered: the DMT system with
zero padding (ZP-DMT) and the DMT system with general prefix
(GP-DMT). We will derive the bit allocation formula. For a given
channel and channel noise spectrum, we will design the ISI-free op-
timal transceiver that minimizes the transmission power for a given
transmission rate and probability of error. For both ZP-DMT and
GP-DMT systems, the optimal ISI-free transceiver can be given in
closed from. We will see that for both classes, the optimal trans-
ceiver has an orthogonal transmitter. Simulation shows that the op-
timal DMT system can achieve the same transmission rate and the
same probability of error with a much lower transmission power
compared with other existing DMT systems.

I. INTRODUCTION

T HERE has been great interest in the design of DMT sys-
tems recently. Fig. 1 shows an example of an-band

DMT transceiver over channel with additive noise .
The example is the so-calledblock-basedDMT, where the trans-
mitter and the receiver consist of constant matrices. The en-
coding at the transmitter end and the decoding at the receiver
end are done blockwise. When the receiver outputs are iden-
tical to the transmitter inputs in the absence of channel noise,
the transceiver is said to beISI free. The introduction of redun-
dancy is typical of DMT transmitters so that the receiver can
cancel ISI due to the channel. The cyclic prefix and zero padding
(or trailing zeros) are commonly used forms of redundancy. For
example, the cyclic prefix is used in DFT-based DMT systems
[1], and zero padding is considered in [2]–[5].

Block-based DMT transceivers have been studied exten-
sively. In the commonly used DFT-based DMT, the transmitter
and the receiver are DFT matrices [1]. In [2], more general
orthogonal matrices are proposed. It is shown therein that for
additive white Gaussian noise (AWGN) frequency-selective
channels, the optimal orthogonal transmitter consists of eigen-
vectors associated with the channel. In [3], optimal transceivers
that minimize the total output noise power are developed.
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Fig. 1. M -band block-based DMT transceiver over channelC(z) with noise
�(n).

Information rate optimized DMT systems are considered in
[4]. In [5], the authors start from an orthogonal transmitter
with zero padding. The optimal orthogonal transmitter that
minimizes the transmission power for a fixed probability of
error and transmission bit rate is derived.

In this paper, we consider general block-based DMT trans-
ceivers: DMT systems with zero padding (ZP-DMT) and DMT
systems with general prefix (GP-DMT). The transmitters are
general constant matrices that are not limited to the orthogonal
class. The widely used DMT systems with the cyclic prefix fall
into the category of the GP-DMT systems. For these two types
of systems, optimal bit allocation will be derived. Under op-
timal bit allocation, we will develop optimal transceivers that
minimize the transmission power for any given transmission
rate and probability of error. It turns out that for both ZP-DMT
and GP-DMT systems, the optimal transceiver that minimizes
the transmission power has an orthogonal transmitter. That is,
there is no loss of generality in using orthogonal transmitter for
designing optimal block-based DMT systems. Furthermore, for
both ZP-DMT and GP-DMT systems, the optimal transceivers
can be given in closed form in terms of the given channel and
channel noise. We will see that in most cases, the ZP-DMT
system outperforms the GP-DMT system. However, the superi-
ority of the ZP-DMT system is not guaranteed as these are two
different classes of system. We will also see one toy example
where the GP-DMT system performs better.

The sections are organized as follows. Sections II–V are de-
voted to the class of ZP-DMT systems. Section II gives a re-
view of the ISI-free transceiver solutions. The class of ZP-DMT
transceivers with the ISI-free property will be parameterized.
Section III gives the measure of optimality in this paper and
states the problem. For a given transmission bit rate, probability
of error and a given ISI-free transceiver, we derive the optimal
bit allocation in Section IV. Based on the optimal bit alloca-
tion, the optimal ZP-DMT transceiver is presented in Section V.
In Section VI, the GP-DMT systems are studied in steps paral-
leling those of ZP-DMT systems in Sections II–V. Comparisons
of the proposed optimal system and other existing DMT systems
are presented in Section VI. Examples are given in Section VIII.
Concluding remarks are given in Section IX.

1053–587X/01$10.00 © 2001 IEEE
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A. Connection with Subband Coding

The connection between an -band filter bank and an
-band DMT transceiver (or transmultiplexer) has been

well-known [6]–[9]. When the analysis and synthesis banks
of a perfect reconstruction filterbank are interchanged, the
new structure becomes a DMT transceiver. The-band DMT
system is often considered to be the dual of an-band subband
coder; the block-based DMT system can be considered the
dual of the transform coder. In subband coding, we know that
optimal orthogonal transform coder is as good as any biorthog-
onal transform coder [10]. However, the design problem of
subband coders is different from that of DMT transceivers. The
analysis for subband coding does not carry through for DMT
systems in general.

The DMT systems obtained from interchanging the analysis
and synthesis banks have interpolation ratio , and
there is no redundancy in the transmitter output. When the
channel is a delay, the -band DMT transceiver is ISI
free if the corresponding filterbank has perfect reconstruction
[6]. However, when the channel is not a delay, the perfect
reconstruction property of the filterbank no longer translates to
the ISI-free property of DMT transceivers. It has been shown
that with , ISI-free solutions can only be obtained with
IIR transceivers. The IIR filters are unstable if the channel does
not have minimum phase [11].

In practical designs of DMT systems, unlike in transform
coding, the interpolation ratio is larger than to enable
ISI cancellation. For the two classes of block based transceivers
considered in this paper (the GP-DMT and ZP-DMT systems),
we cannot draw an analogy to the design problem of subband
coders. Despite the differences in the designs of optimal sub-
band coders and DMT transceivers, it turns out that the results
we will show in this paper are similar to those of optimal trans-
form coding. For both GP-DMT and ZP-DMT systems, orthog-
onal transmitters are as good as any transmitter.

B. Notations

1) Boldfaced lower-case letters are used to represent vec-
tors, and boldfaced upper-case letters are reserved for ma-
trices. The notation represents the transpose of.

2) The function denotes the expected value of the
random variable .

3) The notation is used to represent the identity
matrix. The subscript is omitted whenever the size is clear
from the context.

4) The notation is used to represent the reversal
matrix. For example, for

II. ISI-FREE BLOCK-BASED DMT WITH

ZERO PADDING [3], [4]

Consider Fig. 1, where an -band block-based DMT system
is shown. Usually, the channel is modeled as an LTI filter
with additive noise . Assume that is a zero-mean wide

sense stationary random process and that is an FIR filter of
order . In some applications, e.g., DSL, where the channel has
a very long impulse response, typically, an equalizer is used to
shorten the impulse response to an FIR filter with a small order.

For block-based DMT systems, the length of redundant sam-
ples is chosen to be so that the receiver can remove ISI due
to , and decoding can be performed blockwise. Therefore,
the interpolation ratio is . In the case of zero
padding (ZP-DMT), the transmitter and receiver are of the form

and

where is of dimensions by , the bottom matrix is of
dimensions by , and is an by constant matrix. The
system is ISI free if , for ,
in the absence of channel noise. Due to the paddedzeros,
there is no overlapping between adjacent blocks. Processing is
performed on a block-by-block basis; the dependence onwill
be omitted.

With the assumption that the channel is an FIR filter of
order , we can write

with nonzero and . The received vector shown in
Fig. 1 can be given in terms of the transmitted vector as

, where denotes the th element
of , and is an by lower triangular Toeplitz matrix
given by

...
...

.. .
...

...
...

. . .
...

...
...

. . .
...

Fig. 1 can be redrawn as Fig. 2 using the matrix representation
of the channel. The vector shown in Fig. 2 is the blocked
version of the scalar noise process .

The ZP-DMT transceivers with an ISI-free property can be
parameterized using the matrix representation. Applying the
singular value decomposition (SVD), we can expressas

(1)

where and are orthonormal matrices of dimensions, re-
spectively, and , and is an diag-
onal matrix. The column vectors of are the eigenvectors of
the matrix , and the column vectors of are
the eigenvectors of the matrix . The diagonal el-
ements of are the eigenvalues of . As has full rank

, the matrix is nonsingular. From Fig. 2, we see that the
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Fig. 2. Matrix representation of DMT systems with zero padding.

overall DMT system is . The ISI-free condition be-
comes . Since is by , the ISI-free condition
implies that is nonsingular. Premultiplying the above equa-
tion by and post-multiplying by , we get .
This means that is a left inverse of , which is of dimen-
sions , and its left inverses are not unique. Therefore, we
can write , where is any left inverse of (i.e.,

). Using the SVD of as in (1), its left inverse
can be expressed as

where is an arbitrary matrix. Summarizing the results,
we have the following theorem.

Theorem 1—Parameterization of ZP-DMT Systems[3],
[4]: The block-based DMT system with zero padding in Fig. 1
is ISI free if and only if the zero-padded transceiver satisfies
the following.

i) is an nonsingular matrix.
ii) , where , for an arbi-

trary matrix . The matrices , , and are as
in the SVD of in (1).

In the above formulation, , , and are determined by the
channel matrix . After the ISI-free condition is imposed, the
parameters left in the transceiver design are the nonsingular ma-
trix and the matrix , which is completely arbitrary.
The development in Sections III–V will be based on the ISI-free
transceiver described in Theorem 1.

III. PROBLEM FORMULATION

In this paper, we assume that the inputsare PAM symbols
of bits. Without much loss of generality, we further assume
that have zero mean and that they are uncorrelated with each
other. That is

This can always be obtained with proper interleaving. The av-
erage bit rate per symbol in this case becomes

The actual transmission rate is bits per sample
due to zero padding.

The transmission power is the average energy of the vector
, as shown in Fig. 1

The summation has only terms as the last elements of
are the padded zeros. As the inputsare uncorrelated and have
zero mean, is given by

Using this expression, we can write the transmission power as

Define as the energy of theth column
of . The transmission power can be written as

(2)

Note that the quantity is the transmission power
due to the th band. Under the ISI-free condition, for a fixed bit
rate and a fixed probability of error , we will find the ZP-DMT
transceiver that minimizes the transmission power. The opti-
mization process involves two steps. We will show in Section IV
that the bits can be optimally allocated to minimize the trans-
mission power for any given transceiver. Under the optimal bit
allocation, the optimal ZP-DMT transceiver will then be derived
in Section V.

IV. OPTIMAL BIT ALLOCATION

For a given transceiver, a fixed probability of error, and
the average bit rate per input symbol, we present the optimal
bit allocation with such that
the transmission power in (2) is minimized.

At the receiver end, the output of theth band is ,
where comes entirely from channel noise as the transceiver
achieves zero ISI. Define the output noise vector as

; then

Assuming the PAM symbols of theth band carry bits, the
probability of error for the th band is given by [12]

where

For a fixed probability of error across all bands, we need to
have . Under the high
bit rate assumption , we can see that and
satisfy
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We can rearrange the above equation as

where (3)

For the fixed probability of error, the transmission power in (2)
becomes

Applying the arithmetic mean-geometric mean inequality, we
obtain

(4)

The equality holds if and only if are the same for
. Notice that depends only on

and , where is determined once the receiver is
known, and is determined once the transmitter is given.
Therefore, when the transceiver is given and average bit rate per
symbol is fixed, is the lower bound of the transmission
power independent of the bit allocation . The lower
bound is achieved if and only if bits are allocated such
that are equalized. Solving for the optimal, we
have

(5)

Remarks:

1) The optimal bit allocation equalizes the terms
. From (3), this means that the trans-

mission power contributed from each band is the same.
2) If the transmitting vectors have equal energy (i.e.,

), then the symbol
variances are also equalized. In this case, we can see
from (3) that more bits are assigned to bands where
is small and fewer bits where is large. This is similar
to the bit allocation in water filling scheme. More bits are
transmitted in less noisy bands.

V. OPTIMAL ZP-DMT TRANSCEIVERS

From the previous derivation, we know that the transceiver in
Theorem 1 renders the received signal ISI free for all possible
choices of nonsingular and an arbitrary matrix .
Under optimal bit allocation, the power lower bound
depends on the choice of the transceiver. Next, we will show
how to choose and so that is minimized. For a
given , we will derive the optimal , based on which is
optimized.

Optimal : We first express the quantity in (4) in
terms of . The energy of the th column of is

. Letting , then . The
autocorrelation matrix of the noise vector is given by

, where is the autocorre-
lation matrix of the vector . The output noise of the th

band is equal to or . Therefore, (4) can
be rewritten as

The Hadamard inequality for an positive definite matrix
states that [13]

with equality if and only if is a diagonal matrix. Using this
inequality, we have

(6)

The equality holds if and only if i) is diagonal and ii)
is diagonal. The lower bound does not

depend on the transmitter , and it is achieved if and only if
satisfy both conditions i) and ii). The first condition means

that is an orthogonal matrix. The second condition means that
decorrelates the noise vector. Let the Schur decomposi-

tion of be

Combining conditions i) and ii), we see thatis an orthogonal
matrix of the form , where is a diagonal nonsingular
matrix. Since achieves the lower bound for any non-
singular , without loss of generality, we can choose ,
and

and

where

(7)

Remark: To understand the effect of nonidentity ,
we let diag . At the transmitting side,

, and at the receiving end, . As
the product remains the same, bit allo-
cation remains the same. It follows from (3) that ;
the transmission power due to the 0th band remains
the same.

Optimal : From (6), we see that given any, the achiev-
able lower bound is .
The matrix should be chosen such that is minimized.
Using the facts that and ,
we get

Since is orthonormal and , we can simplify the
above expression to

(8)
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Fig. 3. Receiver in the form ofS = Q V � [I A]U for the derivation
of an optimalA.

Note that , , and are fixed once the channel and
input noise are given. Thus, the optimal is such that

is minimized. In the following, we
will derive a closed-form expression for such an optimal.

For the convenience of explanation, we draw the receiver in
the form of (7) as in Fig. 3, where and are submatrices
of , as in (1). The vectors and in Fig. 3 are given by

(9)

Define the vectors, , and as

(10)

The vector is as illustrated in Fig. 3. Let , , and be
the autocorrelation matrices of, , and respectively. These
matrices are related as

where . Using (9) and (10), it is not difficult to
see that

Therefore, the optimal should be such that is min-
imized.

Using the Fischer’s inequality for positive definite matrices
and its extension given in the Appendix, we have

with equality if and only if . Using (9) and (10),
we have and

. Using these relations, the above equation can be ex-
pressed as

Note that the lower bound is independent of. Moreover, this
lower bound can be obtained if and only ifis chosen such that

Solving the above equation, the optimalis uniquely given by

(11)

Summarizing the results, we have theorem.
Theorem 2: The optimal that minimizes

is such that , where

and are given in (9). Equivalently, is given uniquely
by (11). Furthermore, the minimum is given by

Remarks:

• Theorem 2 states that should be chosen such that
. This implies that the optimal

solution of is the optimal estimator of , given the
observation of .

• The solution of in (11) minimizes not only
but the total output noise power

given by or as well. To see this,
we consider Fig. 3. Since the vectorsand are related
through the orthonormal matrix , which preserves
traces, we have . On the other
hand, , and minimization of

can be achieved if each term can be
individually minimized. Notice that . Upon
invoking the orthogonality principle, should be chosen
as the optimal estimator of based on the observation

. Therefore, the solution of given in (11) is also
optimal for minimizing the total output noise .

We can summarize our results as follows:
Theorem 3 : Consider the -Band ZP-DMT System in

Fig. 2. Assume that the inputs are PAM symbols ofbits. For
any fixed probability of error and any fixed transmission bit
rate per symbol, the transceiver is ISI free and minimizes the
transmission power in (2) if and only if the following are
true.

i) The matrix is given by
, where is the autocorrelation

matrix of the noise vector , and and are as
defined in (1).

ii) The transmitter , where is the orthonormal
matrix such that is diagonal. The matrix is
given by and ,
where , , and are given in (1).

iii) The receiver is given by .
iv) The bits are allocated as

.
The minimum transmission power is

The theorem indicates that the optimal ZP-DMT transceiver
has an orthogonal transmitter. There is no loss of generality in
using orthogonal transmitters.

VI. OPTIMAL ISI-FREE DMT TRANSCEIVERS WITH

GENERAL PREFIX

In this section, we will consider the case of DMT transceiver
with general prefix (GP-DMT). In this case, the transmitter and
receiver of the DMT system in Fig. 1 are given by
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where , , and are of dimensions by , by ,
and by , respectively. Note that the ZP-DMT system is not
a special case of the GP-DMT system. The firstcolumns of
the receiver in GP-DMT systems are constrained to be zeros,
whereas those of in ZP-DMT systems are not constrained.
Due to the zero columns, the GP-DMT system is also known as
the leading-zeroDMT [3]. In the special case of cyclic prefix,
the first rows of will be the same as its last rows. Using
a technique similar to that given in Section II, Fig. 1 can be
redrawn as Fig. 4, where the matrix is an by upper
triangular Toeplitz matrix given by

...
...

.. .
. . .

. . .
...

Comparing the above equation with the expression ofin (2),
one realizes that the two channel matrices are related by

, where is the by reversal matrix. Therefore,
the SVD of can be expressed as

(12)

where and are unitary matrices of
dimensions by and by , respectively. Notice that
the noise vector , which was obtained by blocking the channel
noise , is of dimensions . Using an approach sim-
ilar to that in Section II, we can get the following theorem for
ISI-free GP-DMT systems.

Theorem 4—Parameterization of ISI-Free GP-DMT Sys-
tems: The block-based DMT system with a general prefix in
Fig. 4 is ISI free if and only if the transmitter and receiver
satisfy the following.

i) is an nonsingular matrix.
ii) , where , for an arbi-

trary matrix .
Using a derivation that is similar to that in Section III, one

will find that the transmission power can be expressed as

(13)

where is the energy of the th column
of . For a given probability of error and average bit rate

, the bits can be optimally allocated to min-
imize the above arithmetic mean. Under the optimal bit alloca-
tion, the transmission power becomes

(14)

where is the variance of the output noise at theth band.
From the above expression, we see that under the optimal bit al-
location, the transmission power depends on the trans-
ceiver. In the ISI-free solutions of Theorem 4, we are free to

Fig. 4. Matrix representation of DMT systems with a general prefix.

choose any matrix and nonsingular matrix .
In the following, these two matrices are optimized to minimize
the transmission power .

Optimal : The transmission power in (14) can be
rewritten as

where is the autocorrelation matrix of the channel
noise in Fig. 1. As both and are positive semidef-
inite, we can apply the Hadamard inequality to obtain

(15)

Note that the lower bound is independent of the re-
ceiver , and it is achieved if and only if the receiversimulta-
neously satisfies the following two conditions.

i) is diagonal.
ii) is diagonal; that is, is diagonal.

To derive such an optimal, we first decompose as

for some unitary matrix and some diagonal matrix with
non-negative entries. To avoid degenerate cases, we assume
is positive definite so that is invertible. Using the above
decomposition, it is not difficult to see that Condition i) is sat-
isfied if has the following form:

where is any by unitary matrix. Substituting the above
expression into Condition ii), one can show that Condition ii)
is satisfied if the unitary matrix diagonalizes the positive
semidefinite matrix

Therefore, we conclude that the lower bound given
in (15) is achievable. Note that once the channel and noise are
given, this bound depends only on, whose only free parameter
is the matrix . In what follows, we will optimize so that this
lower bound is minimized.



2708 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001

Optimal : From the expression of in (15), we
see that the matrix should be chosen such that is
minimized. Using the fact that , where
and are square unitary matrices defined in (12), we have

As is positive semidefinite, it can be verified that

Equality holds if and only if . In this case, the optimal
transmitter is given by

where is the optimal receiver derived in the previous subsec-
tion. Summarizing all the results in this section, we have the
following theorem.

Theorem 5: Consider the -band GP-DMT system in
Fig. 4. Assume that the inputs are PAM symbols ofbits. For
any fixed probability of error and any fixed transmission bit
rate per symbol, the transceiver is ISI free and minimizes the
transmission power in (13) if and only if the following are
true.

i) The matrix , where and are de-
fined in (12).

ii) The receiver is given by , where
is the autocorrelation matrix of the noise
vector , and is the unitary matrix that diagonalizes

.
iii) The transmitter .
iv) The bits are allocated as

.
The minimum transmission power is

Remarks:

1) For the inequality to hold in (15), Conditions i) and ii)
should hold simultaneously. Condition i) means that the
receiver decorrelates the noise vector. Condition ii) im-
plies that the transmitter is orthogonal. Therefore, in
GP-DMT systems, there is no loss of generality in using
orthogonal transmitters.

2) In GP-DMT systems, nonzero prefix samples are
padded at the beginning of every samples. There
is inter-block-interference (IBI) in the received signal
due to the channel. To remove IBI, the receiver retains
only samples of each block. Although the transmitter
sends out samples for each input symbols, the
receiver use only samples for decoding. On the other
hand, in ZP-DMT systems, zeros are padded at the end
of every samples. After passing through the channel,
samples are spread to nonoverlapping blocks of length

. As there is no IBI, all the samples can be used for
decoding. There are more observations than unknowns;

the dimension of the signal subspace is, whereas
the received signal has dimension . The
eigenstructure of the signal subspace can be exploited
to our advantage in ZP-DMT systems. Therefore, the
performance of the ZP-DMT systems is generally better
than that of the GP-DMT system, as we will see later.
However, as ZP-DMT and GP-DMT systems are two dif-
ferent classes of DMT systems, it is possible to construct
toy examples (see Section VIII) such that the GP-DMT
system is better.

Special Case—Cyclic Prefix:In the commonly used case of
cyclic prefix, the transmitter has the form

(16)

where is some by nonsingular matrix. Using (12),
the ISI-free condition becomes

Observe that the matrix is circulant, with the first column
given by . It is known that it can be
diagonalized using a DFT matrix, and the eigenvalues are the

-point DFT of the channel impulse response. It is not guaran-
teed to be nonsingular; it is singular if the channel has zeros at

for some integer . Let us assume that is nonsin-
gular, and let

For any nonsingular , the transmitter that achieves the ISI-free
condition is given by . Note that in the cyclic
prefix case, once the channel is given, the matrix is
fixed. The only free parameter in an ISI-free DMT system with
cyclic prefix is the nonsingular matrix. By repeating the earlier
optimization process, we can obtain the optimal ISI-free DMT
system with cyclic prefix as follows:

Theorem 6: Consider Fig. 4. Suppose that the ISI-free DMT
system with cyclic prefix exists. In this case, its transmitter of
the cyclic prefix DMT system has the form of (16). Assume that
the inputs are PAM symbols of bits. For any fixed probability
of error and any fixed transmission bit rate per symbol, the
transceiver is ISI free and minimizes the transmission power
in (13) if and only if the following are true.

i) The receiver is given by , where is the
autocorrelation matrix of the noise vector, and is the
unitary matrix that diagonalizes .

ii) The transmitter is .
iii) The bits are allocated as

.
The minimum transmission power is

-
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Remarks:

1) As cyclic prefix is a special case of a general one,
we can immediately conclude that the performance

- - . The gain can be substantial,
as will be demonstrated by the example in Section VIII.

2) The conventional DFT-based DMT systems belong to the
class of GP-DMT with cyclic prefix. The receiver is

, where is the DFT matrix.
Because is also circulant, one can verify that

, where is a diagonal matrix. The diagonal en-
tries of are the -point DFT of the channel impulse re-
sponse. As - achieves the minimum transmis-
sion power among the class of DMT systems with a cyclic
prefix, we have - - . In
fact, - can be much smaller than , as we
will see later.

VII. COMPARISON OFDIFFERENT DMT SYSTEMS

WITH ZERO PADDING

The design of optimal transceiver for a given channel with
additive colored noise is considered in [3]. The measure of op-
timality and the problem addressed therein are different from
here. For a given input autocorrelation matrix and transmission
power, the authors derive the optimal transceiver that minimizes
the total output noise power, but bit allocation is not considered,
and the solution is not ISI free. In [4], information rate as a mea-
sure of optimality is considered. The DMT transceiver that max-
imizes the mutual information between the transmitted block
and the received blocked is developed. However, the resulting
transceiver may not be optimal for all encoding schemes. This
is demonstrated in the example shown in [4]; the DFT-based
DMT system with QAM symbols compares favorably with the
information rate maximized DMT system in some cases.

In this section, we will show that the optimal ZP-DMT has a
very nice connection to the systems proposed in [5] and [2]. All
three systems belong to the class of ISI-free DMT systems with
zero padding. We will show that the optimal ZP-DMT trans-
ceiver always outperforms these two systems, except in degen-
erated cases when they have the same performance. We will give
the conditions when the optimal ZP-DMT transceiver reduces to
the system in [5] and the vector coding system in [2].

The DMT systems with orthogonal transmitters in [5] and
the vector coding systems in [2] are both ISI free. According
to Theorem 1, they can be described in terms of the matrices
and . The DMT transceiver proposed in [5] has an orthogonal
transmitter with

and

where is the orthonormal matrix such that is diag-
onal. Under optimal bit allocation, the transmission power
in this case is [5],

The vector coding transceiver proposed in [2] has

and

Under optimal bit allocation, one can verify that the transmis-
sion power of the vector coding transceiver is [2]

Let us compute the ratio -

-

-

The above equation gives the precise connection between
- and , as well as between and .

i) Comparison of - and : The ratio
- with equality if and only if

and are uncorrelated, . To see this,
let us consider the autocorrelation matrix of the vector
defined in (9)

Using Fischer’s inequality (see the Appendix), one can
see that .
Equality holds if and only if . The improve-
ment of - over comes from the exploitation
of the signal subspace or the flexibility in the design of

for the left inverse of .
ii) Comparison of and : Using the Hadamard

inequality, the ratio with equality if
and only if is a diagonal matrix, i.e., elements of
are uncorrelated. The gain is from the decorrelation of the
noise vector . There is no improvement if elements of

are not correlated.
iii) Comparison of - and : The ratio

- with equality if and only if
and are uncorrelated, and is a diagonal matrix.

When the channel noise is additive white Gaussian noise
(AWGN), the elements of the noise vectorare uncorrelated.
The autocorrelation matrix is the identity matrix,
except for a scalar. The vector and are obtained from

through the orthonormal transformation . Therefore,
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Fig. 5. (a) Frequency response of the channeljC(e )j. (b) Power spectrum
of the channel noise�(n).

and are uncorrelated, and moreover, and are diag-
onal. In this case, - , and the op-
timal transceiver reduces to the vector coding solution given in
[2]. Notice that in applications such as DSL, the channel model
of LTI filter plus additive noise in Fig. 1 is usually
obtained after time domain equalization; is the equalized
channel, and is the noise after equalization. Even if the
original channel noise is white, the equalized noise can be
colored.

VIII. E XAMPLES

For the first two examples, the channel and power spec-
trum for the colored noise used are shown in Fig. 5(a) and
(b). These parameters are obtained from a typical ADSL envi-
ronment. The channel in this case is the equivalent channel
after time domain equalization, and has order .
The bit error rate and average bit rate per sample
is .

Example 1—DMT Systems with a Nonzero Prefix:Fig. 6(a)
shows the results of the three prefix DMT systems considered
in Section VI:

1) optimal prefix system - ;
2) system with cyclic prefix - ;
3) DFT-based DMT system with cyclic prefix .

The results are shown for to 50. As a comparison,
the result of - is also shown in the plot. The optimal
GP-DMT systems has approximately 2.5 to 5 dB gain over the
conventional DFT-based systems; the gain of - over

(a)

(b)

Fig. 6. (a) Performance comparison of DMT systems with a prefix. (b)
Performance comparison of DMT systems with zero padding.

- is approximately 1 dB for . In both cases,
the gain is larger for small . In addition, we can see that the
zero-padding ZP-DMT system performs better than the general-
prefix system.

Example 2—DMT Systems with Zero Padding:Fig. 6(b)
compares the three zero-padding DMT systems:

1) - ;
2)
3) .

- is also shown in the plot for comparison. Note that
- is approximately 5 dB smaller than , and
is 4–5 dB smaller than . The transmission power
- is 0.5–2 dB less than , depending on . The

gain of over comes from the decorrelation of the
noise vector. The gain of - over comes from the
exploitation of the eigenstructure of the signal subspace. The
improvement is more significant for small number of bands.
When is large, the gap becomes smaller. This is because, for
large , the dimension of signal subspace is almost as large
as the dimension of the received signal.
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Fig. 7. Toy example. Performance comparison ofP - , P - ,
P , andP .

In most cases, the ZP-DMT system outperforms theGP-DMT
system as in the above example, and the curve- is
very close to the curve . However, the ZP-DMT system is
not always better than the GP-DMT system; the two curves

- and are not necessarily close. Consider the fol-
lowing toy example.

Example 3—Toy Example:Consider the channel
and the channel noise with power spec-

trum . The results of - and the
three zero-padding systems - , , and are
shown in Fig. 7. In this toy example, - is better than

- and significantly better than and . The
three zero-padding system have - ,
as expected from the results shown in Section VII.

IX. CONCLUDING REMARKS

In this paper, we consider two classes of block-based DMT
transceivers: the DMT system with a general prefix (GP-DMT)
and the system with zero padding (ZP-DMT). We have shown
that for these two classes, the optimal transceivers that minimize
the transmission power for a given bit rate and probability of
error can be given in closed form. Furthermore, we demonstrate
that for both classes, the optimal transceiver has an orthogonal
transmitter; there is no loss of generality in using orthogonal
transmitters.

APPENDIX

FISCHER’S INEQUALITY FOR MATRICES AND ITSEXTENSION

Lemma 1 (Fischer’s Inequality [13]):Suppose that

is a positive definite matrix that is partitioned so thatand
are square and nonempty. Then

(17)

Proof: The proof can be found in [13]. We will repeat it
here as the proof will be used in later part of the paper. Letting

, we have

Note that the matrix is positive definite as is
positive definite. Using this and the facts that bothand are
positive definite, it is not difficult to show that

Lemma 2: Let be the positive definite matrix defined in
Lemma 1. Then, if and only if

.
Proof: From the proof of Lemma 1, we know that proving

Lemma 2 is equivalent to proving the following statement:

(18)

if and only if . The if part is clear. To show theonly
if part, we first decompose and
for some positive definite matrices and . This can always
be done as both and are positive definite. Using these
decompositions, we can rewrite (18) as

(19)

Note that the matrix can be diagonalized by
some unitary matrix. Consider its diagonalized form, and let
the corresponding diagonal matrix that consists of all the eigen-
values be diag . Then, we can rewrite
(19) as

(20)

As the matrix is positive definite and
is positive semi definite, the eigenvalues

must satisfy . Using this, we conclude that (20)
holds if and only if for all . In other words, (19) holds
if and only if . Since and are positive definite
matrices, we have if and only if .
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