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Prediction-Based Lower Triangular Transform

See-May PhoongMember, IEEEand Yuan-Pei LinMember, IEEE

Abstract—in this paper, a new nonunitary transform called the the encoder uses a collection of transform/bit allocation pairs.
prediction-based lower triangular transform (PLT) is introduced  Very good coding performance is demonstrated.

for signal compression. The new transform has the same decorre- Thet f d b idered to b bel f
lation property as the Kahurnen—Loeve transform (KLT), but its € transform coders can be consiaered to be a subclass of or-

implementational cost is less than one half of KLT. Compared with thonormal subband coders, which have the advantage of having
the KLT, the design cost of anM x M PLT is much lower and  unity noise gain. The orthonormal subband coders have coding
is only of the order of O(AZ?). Moreover, the PLT can be factor-  gain >1 for any input statistics. Recently, there has been great
ized into simple building blocks. Using two different factorizations, interest in designing orthonormal subband coders that maxi-

we introduce two minimum noise structures that have roughly the . . - . - o
same complexity as the direct implementation of PLT. These min- mize the coding gain for given input statistics [6]-{10]. The

imum noise structures have the following properties: 1) Its noise Problem of ideal optimal orthonormal coder has recently been
gain is unity even though the transform is nonunitary; 2) perfect solved. Itis shown [6] that the optimal orthonormal filter bank is
reconstruction is structurally guaranteed; 3) it can be used for both ~ closely related to the principle component filter bank [7], [10].
lossy/lossless compression. We will show that the coding gain of oy jgeal orthonormal coder is optimal if and only if it satisfies

PLT implemented using the minimum noise structure is the same th orizati dd lati ties [6]. The FIR
as that of KLT. Furthermore, universal transform coders using e majorization and decorrelation properties [6]. The case

PLT are derived. For AR(1) process, theM x M PLT has aclosed IS studied in [8] and [9].

form and needs only(M — 1) multiplications and additions. In many applications, it is desired that a lossy coding system
Index Terms—Compression, Karhunen—-Loeve transform becomes lossless when a sufficient bit rate is available. Sev-
(KLT), subband coding, transform coding, wavelet coding. eral lossy/lossless coding systems have been proposed recently.
In [11] and [12], the ladder structure is applied to high-fidelity
I. INTRODUCTION compression of medical images. In [13], the authors introduce a

new transform called the-SP transform. It is demonstrated that
T RANSFORM coding has played an important role ify, the application of both lossy and lossless image coding, the
various areas of signal processing and communicatian p transform produces excellent compression results. In [14],
[1]-{3]. It has been widely applied to data compression. fhe optimal predictor with certain zero constraint is used, and
is well known that given the input statistics, the optimahe fiiter is obtained through the optimization of Bernstein poly-
unitary transform that yields the maximum coding gain is thgomial. In [15], the authors propose an integer-to-integer trans-
Karhunen—Loeve transform (KLT) or Hotelling transform. Thgorm pased on the ladder structure for lossless coding of im-
KLT is a unitary matrix that consists of the eigenvectors ofyes. Image coding using a two-dimensional (2-D) four-channel
input autocorrelation matrix. Due to its signal dependence apgder structure is studied in [16]. However, like most biorthog-
computational cost, the KLT is often only used as a benchmagkg| coders, none of these coders has the unity noise gain prop-
for performance comparison. In many applications, suboptin@lty. Therefore, in the case of lossy compression, the coding
but signal independent transforms like the discrete cosiagin of these proposed coders is not guaranteed to be greater
transform (DCT) are often used. than unity. In [17], we introduce a minimum noise structure
Recently, universal transform coding schemes using Klghy two-channel ladder-based filter banks. The minimum noise
have been developed. In [4], the authors consider the problemyg{,cture ensures that the noise gain is unity, even though the

quantized data. No side information is needed because bgfh|ler than unity.

encoder and decoder can access the quantized data. Promisipg this paper, a new transform called the prediction-based

experimental results are demonstrated. In [S], the authors intfgwer triangular transform (PLT) is introduced. The PLT is a

duce a classification-based method using the KLT. The signgdnal-dependent nonunitary transform. It has the same decor-

space is divided into a number of classes, and a fixed transfo,r@pation property as the KLT, and its coding gain is the same as

is designed for each class. In the proposed two-stage algorithp KLT. The elements of the PLT matrix are the coefficients

of prediction polynomials of different orders. In addition to its

Manuscript received November 24, 1998; revised December 1, 19@80ding performances, the PLT has many other merits.
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Fig. 1. Transform coder. A. Transform Coders and the KLT

Consider the transform coding system in Fig. 1. Such a
4) Its elements can be adapted as frequently as we likgding system has been studied in detail [1][3]. In a transform
without affecting the PR condition. A universal transgoder, the polyphase matrig is a constant matrix. Using the
form coder without the need to send any side informatiqsy|yphase representation, the transform coder can be redrawn
can be implemented using the proposed PLT structuregs then/-channel filter bank structure as in Fig. 2. The analysis
5) The same structures of PLT can be used for both lossy &q)grs Hi(z) and synthesis filtersFy,(z) are, respectively,

lossless data compression. related to the polyphase matrices as
6) For AR(1) input, PLT has a simple closed-form expres-
sion and can be found by inspection. Its implementation Ho(z) S~ M+1
needs only{ M — 1) multiplications and additions. Thus, Hi(z) S~ M+2
its complexity is lower than the DCT, which has a com- ) =T
plexity of O(M log M). Moreover, the PLT is optimal :
for all AR(1) processes, unlike DCT, which is optimal Hy—1(2) 1
only when the correlation coefficient approaches 1. (Fo(z) Fi(z) -+ Fu-1(2))
Paper Outline: The paper is presented as follows. Section |l = (zM_l M2 1) T 1)
briefly reviews the theory of transform coding and linear pre-
diction coding (LPC). The PLT is derived in Section Ill. In Sec- Letz(n) = [z(Mn—M+1) - z(Mn—1) z(Mn)]T

tion IV, two minimum noise structures are introduced, and Wse the input vector. Then, its autocorrelation matrix is given by
will show how to implement universal tranform coders from the

proposed structures. The application of PLT to lossless coding g {x(n)xT(n)}

is discussed in Section V. In Section VI, generalization of PLT

is studied. In Section VII, we consider PLT for AR(1) inputs. = Ro(M)
Some partial results and a different approach for the derivation r(0) (1) e (M —1)
of PLT have been reported in [18], [19]. _ (1) r(0) - (M =-2)
Notations: Vectors and matrices will, respectively, be de- : : . :
noted by boldfaced lowercase and uppercase letterd/ A\ r(M—1) r(M—=2) - (0)
diagonal matrix with diagonal elemeniswill be expressed as
D = diag(do, di, -, dar—1). whereM indicates the dimension of the autocorrelation matrix.

Many properties of autocorrelation matrix can be found in [2]

and [3]. In this paper, we will assume th&f, (M) is positive

definite. This is, in general, true, except for the rare cases of line
In this section, we will first state the noise model of this papespectral processes. The autocorrelation matrix of the subband

Then, we will briefly review various properties of the KLT andvectory(n) is given by

LPC. Their connection will be mentioned without proofs. Most

of these results can be found in [1]-[3] and [20]. R,
Signal and Quantizer Modelstn this paper, we assume that

the inputz(n) is a zero-mean real-valued wide-sense stationagy compare the performance of different transforms, one of the

process and that itsth autocorrelation coefficients are denotegommomy used measure is the coding gain. The coding gain of

asr(k). The quantizere) are scalar quantizers and can be mod; ansform coder is defined as ratio of the mean square error
eled as an additive noise source. We assume thabibitguan- i pyise coded modulation (PCM) over that in the transform

tizer, the variance of the quantization eryén) satisfies coder. For unitary transforms, the coding gain under optimal bit
allocation is given by [1]

Il. PRELIMINARIES AND REVIEWS

(M) = TR, (M)T". 2

03 =c- 2_2bai
0_2
wherec? is the variance of(n), which is the input to the quan- CG=g
tizer. The quantity: is a constant that depends only on the sta- H [U; ]1/M
tistics of z(n). v
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wheres? andoji are, respectively, the variances:fn) and In a closed-loop differential pulse code modulation (DPCM)
yi(n). Itis well known that the unitary matrix that maximizessystem, the coding gain is given by the prediction gajjiV).
the coding gain is the KLT. The maximized coding gain is
o2 I1l. PREDICTION-BASED LOWER TRIANGULAR TRANSFORM
x 3 PLT
[det R, (M)]/M ®) (PLD)

o ] ] In this section, we will show how to construct the PLT from a
where M indicates the dimension of the transform. The KLyien autocorrelation matrix. Before the derivation of the PLT,
is the unitary matrix that diagonalize, (M). The columns e will make some definition and state a matrix decomposition
of the KLT matrix consist of the eigenvectors &, (M). It

- 2 lemma from the matrix theory.
can be shown thatGxrr(M) > 1 with equality if and only

; . ' A Definition [21]: Given anN x N matrix A, its principle
if the autocorrelation matrid2,(M) = o;I. Note that the ¢, ,pmatrix of dimensiod’ (whereK < N)is ak by K matrix

coding gain of KLT is a nondecreasing function of the dimenAK with its element§Ay]i; = [A]; for 0 < 4, j < K — 1.
sion M. MoreoverCGx (M) = CGxrr(M — 1) if and only For’example ! ! ==

COxrr(M) =

if COkrr(M) =CGxrr(M —1)=---=CGxrr(1) = 1[1].
It was shown in [6] that under the assumption of high bit rate 1 2 3 4
noise model, it is not a loss of generality to assume that the A=| > 6 7 8
transform is a unitary transform. In other words, the coding gain 9 10 11 12
of any transform (including nonunitary and unitary transforms) 13 14 15 16
cannot be higher than that of the KLT. Then, the principle submatrices df of dimension 1, 2, 3 are,
. - . respectivel
B. Linear Prediction Coding (LPC) pectively
The LPC theory has been studied for decades, and excellent 1 2 1 2 3
introduction to LPC can be found in [2], [3], and [20]. In an LPC 1=1 A= 5 6/’ Ay = ; 160 171

problem, for a given WSS input(n), we want to find a filter

of the formPy (z) = 14 p(1)z~" +---+p(N)z~" suchthat | emma 1—LU Decomposition of Matrices [21Let A be
its outputen (n) has a minimum variance. The filtéty (z) i an N by & nonsingular matrix. Suppose that all of its principle

is the prediction error. The optimal prediction filt% (~) can

be obtained by solving the following normal equation: A=LDU
1 EL(N) in which L (respectivelylJ) is a lower (respectively, upper) tri-
p(1) 0 angular matrix with all diagonal entries equal to 1, @ a di-
R.(N) : = : y (4) agonal matrix. Moreover, the matricésU, andD are unique.
p(N) 0 In particular,D is determined by
The above normal equation can be solved by the det[Dg] =det[Ak], K=1,---,N.
Levinson-Durbin fast algorithm in®(N?). The predic-
tion error variance,, (V) is A PLT

N Consider the transform coder shown in Fig. 1. At the encoder,
Ep(N) =7(0) - Z p(i)r(d). the autocorrelation matrices of the input vecidr.) and the
=1 output vectory(n) are related as (2). Sindg, (M) is positive
The indexX indicates the order of prediction error filter. Thedefinite, all of its principle submatrices are positive definite as
prediction error is a nonincreasing function’éf[2]. Moreover, Wwell and, therefore, nonsingular [21]. Thus, applying the LU
the prediction error variancg, (k) is related talet[R,(M)] as decomposition lemma, the matik, (M) can be expressed as

dot [Ro(M)] = E,(0)&,(1)--E,(M ~1).  (5) R.(M) = LDU ®)

Furthermore, it can be shown by using the orthogonalityith the matriced,, U, and D defined in Lemma 1. Moreover,
principle [3], [20] that the corresponding prediction errorsinceR,. (M) is symmetric, we can take the transpose of (8) and

en, opt(n) satisfy the following property: obtain
E{ei opt(n)ej, opt(n —k)} =0 R.(M)=U"DL". 9)
for1 <k <|i—j|, foralln. (6)

The matriced/” andL” are, respectively, lower and upper tri-
In LPC, the prediction gain is a commonly used quantity tangular. Therefore, (9) is also an LU decompositio#of A1 ).
describe the effectiveness of a predictor and it is defined as From Lemma 1, we know that the LU decomposition is unique.
) Thus, we conclude that
O—ac

Gp(N) = . (7)

U=1L". (10)
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Substituting (10) into (8) and simplifying the results, we cais the kth-order optimal prediction error filter, then the corre-
conclude that there exists a unique lower triangular madtrix  sponding matrixP in (12) is the unique lower triangular ma-
L™ such that trix. We will refer to such a matrix as the PLT. The optimal
_ T Py(z) can be obtained by solving the normal equation in (4).
D =diag(do, di, -+, dy-1) = PRo(M)P". (11) Using the Levinson—Durbin fast algorithm, the PLT matrix can
The diagonal matrixD is uniquely determined by be computed iO(M?). Summarizing the results, we have the
following theorem.
Theorem 2: Consider the transform coder in Fig. 1. Given
H di = det [R.(K)]. any wide sense stationary inpt(tn), there exists a unique lower
‘ triangular matrix P of the form in (12) such that the trans-
Using the fact thadet[R,(K)] = £,(0)E,(1)---E(K — 1), form coefficientsy, (n) are uncorrelated. The unique lower tri-
we get angular transform can be obtained by choosiyg>) = 1 +
Ph k=12 L+ pr w—22 2+ -+ + pi 02~ * as thekth-order op-
d; = Ep(i). timal prediction error filter. Moreover, the autocorrelation ma-

Theith entry of D is the prediction error variance of ét-order trix of the subband vectay(n) is

optimal predictor! Comparing the results in (2) and (11), the R, (M) = diag(&,(0), £,(1), -+, E,(M — 1))
input autocorrelation matri, (M) can be diagonalized by ] o ]
taking the transforr” as the unique lower triangular matdx ~ Where&,,(k) is the prediction error variance ().

Finding the Unique Lower Triangular Transfor#: Letthe ~ Complexity of the PLT:-The PLT and its inverse are
lower triangular matrix® be expressed as both lower triangular with unity diagonal elements, and the

complexity of the tranform (or its inverse) is therefore only

1 0 0 e 0 0.5M(M — 1) multiplications and additions. Compared
P10 1 0 0 with the case of KLT, which need8Z? multiplications and
P= P20 P21 1 0 (12) M(M — 1) additions, the complexity is less than one half of

: the KLT. In the special case of AR(1), the complexity of the

1 PLT further reduces td/ — 1 multiplications and additions.
Variations of the PLT:In the previous discussion, we have

Sincedet[P] = 1, the inverse transfornP~! always exists derived the PLT for the vector input(n) = [z(Mn — M +

and is also lower triangular with unity diagonal elements. Lat ... z(An)]T. That means that the polyphase components

Pyv-1,0 PM-1,1 PM-1,2

S denote the inverse transforf—* xz(Mn — i) are arranged in an ascending order. We can also per-
1 0 0 e 0 mute these polyphase components so that the new input vector
S10 1 0 e 0 z'(n) = Pz(n), whereP is a permutation matrix. In this case,
S_pt_ $2.0 S21 1 e 0 we can design PLT for the new autocorrelation matrix
R, (M) = PR.(M)P. (16)

SM-1,0 SM-1,1 SM-1,2 (13) In this case, the optimal transform (PLT) can be obtained by

Using (1), (12) and (13), we can write the analysis and synthed&ng the orthogonality principle. As we will show in the next

filters in Fig. 2, respectively, as section, the coding gains of the new PLT for all permutation ma-
tricesP are identical. Although their coding performance is the
Hy(z) =z M1tk same, some permutation matrices can result in PLT with lower
(14 prr12 Fprk22 2+ -+ pr oz F)  implementational cost. If the permutation matrix is chosen ju-
— MLk D () (14) diciously, some of the coefficients can be made symmetric. To
M k1 ’ M ko M3 explain this, takél/ = 3. If the input vector is taken a8 (n) =
Fi(z) == TSk, 1% T Skt2, k7 [(3n —2) z(3n) z(3n — 1)]7, then the corresponding PLT will
+ ot SM—1, ke (15) have the form
From (14),P,(z) can be viewed as/th-order prediction error 1 0 0
polynomial, and the output of thith analysis filterHy(z) is P=|la 1 0
the corresponding prediction error delayed % — & — 1) s B 1

samples. IfF,(z) is optimal, then the output d(z) will be _ , o
er,opt(n — M + k + 1), and its variance i, (k). Since the for somex andg. To implement?”’, we need only two multipli-

decimator does not change the variance, we héve: E(k). cations instead of three. Using the orthogonality principle, one
Using the property in (6), we can see ttiafc; tk(ﬁ _ f\/[ 4+ can verify that the transform coefficients are uncorrelated. That
’ C, O

E+ 1ejopp(n — M +j+ 1)} = 0,fork # j. In other s, Ry (M) = E{y' (n)y'" (n)} = dia@(aig’ T 05’,\/,,1)'
words, the autocorrelation matri, (A1) will be the diagonal _ _
matrix diag€,(0), &,(1), ---, £,(M — 1)). From Lemma 1 B. Implementation of PLT Using Ladder Structures
P » P ? e 4 . ’
we know that the lower triangular matrix with such a decorre- The PLT has a structurally PR implementation using the
lation property is unique. Therefore, we conclude thatif>) ladder structure. In such an implementation, the filter bank
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nonminimum noise structure for the PLT. To understand why the

4 noise gain is larger than one, let us consider Fig. 3. The inputs

z to the multipliersp; ; at the encoder are the unquantized data,
whereas the inputs to the multipliess ; at the decoder are the
quantized data. This means that the predictors at the encoder use
- unquantized data as their observations, whereas the predictors
2 X®  at the decoder use the quantized data. It is this mismatch that
causes the noise amplification.

Coding Gain for Non Minimum Noise Structuréising the

noise model defined in Section Il and applying the optimal bit

continues to have PR even when all the multipliers in trllocation, one can show that the coding gain of the PLT is

Fig. 3. Ladder-based implementation of the PLT coder.

struct_ure are guantized to a finite precision. In the following, CGpir, non(M)
we will derive the ladder structure for PLT. 1 52
N h I i I R of the f 12 = z
ote that any lower triangular matri® of the form (12) can Y X et RO
be decomposed as H [HFkHQ]l/J\l
c 112
PIP1P2~~~P1\4,1 =0 .
k M—k—1xk 211/ M
Fy,
Py = | pr,0 - Prk—1 10--- 0. (17 E) [l £3llz]
Orxnr—r—1 Iy g1

. - Since all||F%]|3 > 1, we conclude tha€Gprr, non(M) <

:)—he elifmgnt?ry mit;ﬁk hzs onlygnﬁ nontnvw:cl.lzow_l;%rmled CGkrr(M) with equality if and only ifR,(M) = +21. Due

y coe Klefr? S0 | —tor er prte_ Iction error Tilter. | € |r(11- to the noise amplification, the quanti@Grr.r, non(M) is not
Verses of these elementary matrices are very simple an %ﬁ%ranteed to be greater than unity. In the rest of this section,

bgtfqung Ey ms;IJec_nont.hTo betmqrtla plremse, thg |n1v7ersgtﬁan & will derive two minimum noise structures that have the unity
obtained by replacing the nontrivial elemepis; in (17) wi noise gain property.

—Pk, i That is
I, 0N b 1xk A. MINLAB(I) Structure for PLT
Plr=|-pro- —para 10---0 |. (18) Note that the inverse transforfin (13) is also lower trian-
Orspr—r—1 ¥ SV gular. Thus, we can factoriz& as
From (17) and (18), we see that both the transfétand inverse S=8.8--Sn_1
transformP~! can be factorized intoM — 1) ladder sections.
. . 4 where
The implementation based on these factorized forms are shown I. O+ ‘
in Fig. 3 for M = 4. The ladder-based implementation has _ » Mok Lxk
. . . . Sk=|sko - Skk-1 10---0 |. (19)
the same complexity as direct implementationfbfBoth the ’ ’
Orxv—k—1 Tngp1

encoder and decoder have the same set of multipliers. Therefore, _ _
even when these multipliers are implemented in finite precisiodsing the above equation, the transfaftan be factorized as

PR is still preserved. P=S83 Sy, 87! (20)

IV. MINIMUM NOISE STRUCTURES FORPLT wher.eS,j1 can be obtained by simply replacing the multipliers

Recall that the PLT is a nonunitary matrix, and so is its i é:kdijm é19) 33,' _‘T’” Fror_n (1? a.n%'ngO), Wf Ca?:.Ob;a'g a h
verse. Hence, the PLT coder does not have the energy presa r_dedr- ased imp erqlenltatlznt atisd ltlarent rt())mb|gr.] h ue
vation property. In general, the quantization noise generatedama er structure will also be structurally PR, but both the en-

the subbands will be amplified at the decoder. To study how tﬁ(e)der and decoder havg the same set of mulitphgrs Pro-
S o o . vided thats; ; are quantized to the same value at the encoder
noise is amplified, we assume that the quantization npiée) ’

in different subband is uncorrelated. That is, we assume tﬁé}j dpcoder, vr\:e cc.>n_t|nue to have the PR ]Propr)]erty. f
F{qu(n)gesi(n)} = R, = diage? , 02, ---, 62 ). Under Jsing (20),t e minimum nqse_ftructure for the transform can
A ) qo7 "1 am—1 . peimplemented as Fig. 4. Sinsg - has the identity matri¥
this assumption, we can show that the average output noise vari-. L
ance is given by on |ts_t0p-left corner, the output vector of the enco_d_er in F|g._4
contains only quantized values. To see why the minimum noise
) | ML ) 5 structure has the unity noise gain property, we tike= 4. The
Pqoue = 3 Z 1% 20, minimum noise structure ferx 4 PLT is shown in Fig. 5. From
k=0 the figure, it is not difficult to verify that
where ||F}.||3 is the two norm of the synthesis filtdr,(z) in
(15), and it is given byjFi[|3 = 1+ 3 15, s? .. Therefore,
the noise gain is always greater than one, unless the ntritor i = 0, 1, 2, 3. The noise gain for the PLT is unity even
is the identity matrix. We will call the structure in Fig. 3 thethough the transform is nonunitary. Note that we do not make

wi(n) — zi(n) = ¢i(n)
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Fig. 4. MINLAB(I) structure forAf x M PLT coder. g
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z
A -1
ot 2 S 5 % h
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Y (Y, a7l 5aY i A Y D3y Y2y YDy,
Q]
Y5 s,y
] —
x(n) x(n) -.E @_»
Fig. 5.  Minimum noise structure MINLAB(!) fod x 4 PLT coder. Fig. 6. Encoder for PLT MINLAB(II) structure. The decoder is the same as
Fig. 3.

any assumptions on the quantization nojgg:). This unity _ _ _ .
noise gain property holds even whetin) noises are correlated D. Coding Gain of PLT Using MINLAB Implementations

and colored. In general, one can show that the minimum noiserhe two MINLAB structures have the unity noise gain prop-
structure in Fig. 4 foi] x M PLT has the same unity noise gairerty. Therefore, for a fixed average bit rate- 1/M 224:51 bre,

property. In the rest of this paper, we will refer to Fig. 4 as thge average output variance can be expressed as

MINLAB(I) structure for PLT. Mt

1
2 _ 2
B. MINLAB(II) for PLT i Z g
k=0
We can also modify the ladder implementation based on fac- | M-l
torization ofP in (17) to obtain a different minimum noise struc- = Z 272 (k)
ture. To avoid the mismatch of observations in the ladder-based M =0

structure in Fig. 3, one can modify the structure so that the Mhere we have used the fact that #hi& subband signal vari-

puts to the multipliersy ; at the encoder are quantized data : . . . .
instead of the original unquantized values. The encoder of t%re]ce is€, (k). Applying the arithmetic mean geometric mean

modified structure folM = 4 case is shown in Fig. 6, and themequahty to the above equation, we get

decoder is the same as Fig. 3. From the figure, one can verify , M—1 ey
that the structure has the unity noise gain property. For the same op. 22 [] &l
reasoning as in MINLAB(I) case, this property holds even for =0

correlated and colored quantization noise. The implementati@ith equality if and only if the bits are allocated as
in Fig. 6 will be refered to as MINLAB(II) structure for PLT. M1
_ E a0 1 N/ M
C. Complexity of the MINLAB Structures bie = b+ 0.5 logy &,(k) — 0.5 log, H [Ex@
=0

For MINLAB(I) in Fig. 4, the structure has the same number he ab derivati hat th .
of multiplications and additions as the nonminimum noise struE—ro.m t € above .er|va_t|on, we see that the average OUtI.OUt noise
ture in Fig. 3. However, since all the multipliers arg; (not variance is minimized if all quantizers have the same noise vari-

Pk, i), we need to invert the lower triangular mat#kto obtain ance. Tr:jgrefore, Lhe eql‘éal steps%e rl#e is also opftlmal, and en-
these parameters. If Gaussian elimination method is used, Py coding can be used to encode the outputg,

needM (M + 1)(M + 2)/6 multiplications and additions to S_Ompared fvgtf_l_t.he _errorbvariance in a PCM system, the
invert anM x M lower triangular matrix. On the other hang t0dINg gain o IS given by

the MINLAB(II) structure requires an extrgM — 1) adders o2
compare to the nonminimum noise structure. The multipliers in CGprrmin(M) =
MINLAB(II) are py ;, and thus, no matrix inversion is needed. H [gp(i)]l/M
Although the two MINLAB structures have the same coding i=0

gain, their complexities are not the same. For an input of len
L, the MINLAB(]) structure has an overheadef(M +1)(M+

2)/6 multiplications and additions, whereas the MINLAB(II)
structure has an extd/ — 1)L /M additions. Therefore, when

qmwere the subscrigb L1, M IN indicates that the coding gain
is for the minimum noise structures of PLT. Using (3) and (5),
we conclude that the coding gain of PLT is

L >> M, MINLAB(]) is preferred; otherwise, MINLAB(lI) is _ o2 _
preferred. CGprr, miN(M) = et R, (MM COxrr(M). (21)
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Therefore, the PLT coders with minimum noise structures hay ST P P T T s »ha
the same coding gain as KLT. Using (5) and (7), one can expre | @E » . @?0 \&
the coding gain of PLT in terms of the prediction gain Ny iy e s s Ny
Z_] | 21 31 31 Zl -
-1
CGprr, min(M) = [Gp(M —1)--- Gp(l)Gp(O)]l/M- —lye] ) S22 53 e
2 2 3 y2
Remark: As we have mentioned at the end of Sec iy = BN 2 va .
tion IlI-A, we can also derive PLT for the input vector *® A(@)

z'(n) = Pla(Mn — M + 1) -+ z(Mn)]¥. In this case, the
autocorrelation matriR, (M) for z'(n) is related toR,.(M)
as (16). Sincd [, " 02, = det Ry (M) = det Ry (M) =
det R, (M), we conclude from (21) that for all permutation One can also use adaptive algorithms such as the least mean
matricesP, the coding gain is the same. square (LMS) method to update th&/ —1) different predictors.
Comparison with DPCM:The DPCM is also a prediction- In this case, there is no need to estimate the statistics, and the
based coding system. For a closed loop DPCM with a predictioamplexity will be O(A?).
filter of order(M — 1), the coding gain is given by the prediction
gainG,(M —1). Since the prediction gain is an increasing func-
tion of the filter order (except for AR processes where the gain

Fig. 7. Lossy/lossless PLT coder.

V. PLT FORLOSSLESSDATA COMPRESSION

saturates), we can conclude from (22) #@t pons (M —1) > In many applications, it is desired that a lossy coding system
CGprrr, min(M). Eventhough the coding gain of a PLT is leshecomes lossless when a sufficient bit rate is available. Since
than that of a DPCM, it has other advantages. the multipliers of KLT are real numbers, in practice, they have

to be quantized. In general, the KLT with quantized multipliers

1) Unlike DPC.M’ the PLT involves only FIR filtering in t_he will not have the PR property. Therefore, the KLT, in general,
reconstruction process. Therefore, any error occuring i | o+ be used for lossless coding

the transmission or storage will not be propagated.

2) In PLT, the relationship of;(») in different channels can
be exploited for further compression, e.g., zerotree alg
rithm [22].

On the other hand, the two MINLAB structures introduced in
revious section can be implemented for both lossy and lossless
oding after some minor modifications. To see this, assume that

. . . the input values:(n) are integers. Take the MINLAB(l) struc-
3) The computational complexityThe PLT requires ture in Fig. 5 as an example. If a quantizgy is cascaded after

0'5(M| - :]) multlﬁllcgtéogfﬂ and gddltlor:js p%r mp;Jt Il of the predictors as shown in Fig. 7 and its stepsize is set as
sample, whereas the encoder (or deco e_r_) ort 9}, = 1, then the PR property continues to hold. The quantizer
same order need3/ — 1) multiplications and additions

. | @, in Fig. 7 can be roundoff, truncation, or ceiling quantizer.
per input sample. Recall that the PLT coder is optimal when the equal stepsize

Effect of Quantization on the Prediction Gairt very low ule is applied. Therefore , we can set the stepsizeof quan-
bit rate coding, the quantized dafiz(n)] = z(n) + ¢(n) can 11Z€rQy to the same value, and entropy coding can be used to
be very different fromz(n). If the SNR decreases, the accurac§ncode the quantized subband signals. Ifall=» > 1, then
of the estimate by using these quantized data will decrease. F¥have a lossy PLT coder. If all;, = 1, then the PLT coder
prediction gain will decrease. Therefore, like other predictiofecomes lossless. Therefore, we can implement both lossy and
based coding methods, the coding gain of PLT will decreal@ssless coding with the same PLT coder by simply adjusting
when the SNR decreases. the stepsizeg\,. Similarly, one can modify the MINLAB(II)

Universal Transform Coder:Since the MINLAB structures Structure in Fig. 6 to obtain a lossy/lossless coder.
are structurally PR, we can adapt the multipliers as frequently
without affecting the PR property. The statistics of the input can
be adaptively estimated from the quantized data, and this infor-
mation can be used to update the prediction error polynomials.The transform coder has a constant polyphase m#trikis
Since the estimation is based on the quantized data, there igspecial class of subband coding, where the polyphase matrix is
need to send any side information to the decoder. Given adpolynomial matrix. Since the polyphase matrix is constant, the
input signal, we can initialize the PLT d4¥” = I. After each PLT discussed in an earlier section can only exploit the correla-
input vectorz(n) is encoded withP(™, the statistics can be up-tion of data within each input vector. Therefore, its performance
dated, and the transfor®®"*') can be computed i®(}/2) is limited by its transform sizé1. In order to exploit the corre-
using the Levinson—Durbin fast algorithm. After a few iteralation among input vectors, one can replace the enggieswith
tions, if the statistics of the input do not vary too fast, the ratee more general FIR filterg;. ;(z)
of adaptation can be reduced. In addition, the transform can be
updated only after a number of input vectors are encoded. FoP%(z) = 1 + pr, k—1(z™)z 7t + -+ + pr,o(z")z7*.  (23)
the implementation of universal coder, MINLAB(II) structure
is preferred because MINLAB(I) structure needs to ind&ft)  For this generalized PLT, the ladder-based structure in Fig. 3
for eachn. continues to be structurally PR. Moreover, the two MINLAB

VI. GENERALIZED PLT
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structures continue to enjoy the unity noisegainproperty.Theré ¢ o e * o © o ¢ ¢ 0 @ * o © o o

fore, the average output noise variance after optimal bit alloca-
tion is Fig. 8. Eight-channel hint coder partitions the input into four grosips, o,
ande.

2 —2b =3 211/M
g 2 C2 H [ayi]
i=0

Jout —

whereo? is the variance of théth subband signaj;(n). To
maximize the coding gaim. (=) should be chosen such that
the energy of the subband signals is minimized. This is the
well-known linear estimation problem, and the solution can be
obtained using the orthogonality principle. As the estimation
error decreases when more samples are used in the estimation,:
the coding gain increases when the lengttPgfz) increases. If

all pr.,;(») are causal, the system delay is st — 1). There-
fore, we would have a coder with better performance without
increasing the system delay.

Coding Gain

A. Generalized PLT with Interpolation

If the px_;(z) in (23) is taken as a noncausal polynomial, that
is, i i(z) = 3.0 a(n)z~™, then interpolation (instead of
extrapolation) value is used as the estimate. In a generaliZégl9. Comparison of eight-channel MINLAB HINT, PLT, and DCT coders
PLT, the input is partitioned intd/ nonoverlapped polyphasefor AR(1) with correlationy.
components:(Mn —¢) for0 < ¢ < M — 1. We are estimating
x(Mn — k) from z(Mn — ¢) for ¢ < k. Therefore, noncausal VII. PLT FORAR(1) INPUTS
gstimation can be implemented.'ln this.cgse,.the estimation erof; tne inputis an AR(1) process with correlatipnthen all the
is smaller, and the resulting coding gain is higher than the PLJrediction error polynomial#®,(») in (14) will have the same

One special case of such a noncausal PLT is the hierarchi@h,] (1— pz~1). The PLT in this case has the following closed
interpolation (HINT) coder. The HINT coder has the advantagsrm:

that its complexity is very low. The HINT coder has been applied

2 .
0.85 0.9 0.95

to lossless compression [11], [12]. However, since the encoder r o0 0 -0
uses unquantized data for its estimation while the decoder uses - 10 -0
quantized data for its estimation, the structure used in [11] and p=| 0 —p 1 0 (24)
[12] does not have the unity noise gain property. Therefore, in : s .o
general, the HINT coder does not give a satisfactory result when 0 0 —p 1

applied to lossy compression. To explain how we can geta HINT _ _ _ _
coder with MINLAB structures, let the number of chanél= Oncep is known, we can find? by inspection; no computa-
23. In an eight-channel HINT coder, the input is partitioned int#on is needed. Therefore, the universal optimal PLT coder in-

four groups: troduced in Section V becomes very simple, and we need to
estimate only one parameterThe coding gain in this case be-
o = {.’L’(TL) n= 8](), ke integeﬂ»; comes
*={z(n): n =8k +4, k € integer; 1 (M-1)/M
o={z(n): n =4k + 2, k € integet; CGrrr, Min(M) = L_—pQ} .
e ={x(n):n=2k+1, k € integet}.

As M is large, the above gain approaches the prediction gain of
These groups are shown in Fig. 8. In a MINLAB HINT codera DPCM coder.
the samples in Group are quantized directly. The samples in In addition, note that the transform in (24) is almost in-
Group are first estimated from the two neargsantizedsam- dependent of the input signal. Al x A PLT for AR(1)
ples in Groupo, and then the estimation error is quantizecprocess needs only (M-1) multiplications and additions. Thus,
Similarly samples in other groups are estimated from the tvits complexity is lower than the DCT, which has a complexity
nearest samples previously quantizedroups and the estima- of O(M log M). Moreover, the PLT in (24) is optimal for all
tion error is coded. The complexity of MINLAB HINT is very AR(1) processes, unlike the DCT, which is optimal only when
low. Each estimation takes only one multiplication because pfapproaches 1.
symmetry. To implement the above eight-channel system, theComparison of DCT, PLT, and Generalized PLT Codefs:
encoder needs only seven multiplications for encoding eigtampare the performances of these three coders, we use AR(1)
input samples. In general, for a-channel MINLAB HINT signal as an input. As MINLAB HINT coder has a low com-
coder, the encoder (or decoder) needs gy — 1) /M multi-  plexity, we choose this special case to demonstrate the perfor-
plications per input sample. mance of generalized PLT with interpolation. One can show that
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the coding gain of ad’-channel MINLAB HINT coder is given
by

(12]

. [13]
1+ p?

L
COmnr, min(27) = H 17
k=1 —F

[14]

ForM = 2% = 8 and0.85 < p < 0.95, the coding gains [15]
of these coders are plotted in Fig. 9. One can see that as
approaches 1, the HINT coder is much better than the PLTjg)
whereas the PLT is much better than the DCT.
[17]
VIIl. CONCLUDING REMARKS

In this paper, we have introduced a new nonunitary transforrﬁg
that has the same coding performance as the KLT. The proposed
PLT coder has a lower design and implementational cost. [
addition, the PLT can be applied to implement universal codergy;
and lossy/lossless coders. Moreover, the PLT can be generalized
to the overlapped transform case. The generalized PLT includé&!
HINT coder as a special case. For AR(1) process, both PLT and
HINT coders have much higher coding gain than the DCT. All
these features and merits make the PLT an invaluable tool for
signal compression.
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