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Abstract. It is known that a continuous time
signal z(t) with Fourier transform X(v) band-limited
to |v| < ©/2 can be reconstructed from its samples
2(Ton) with Tp = 2x%/0©. In the case that X(») consists
of two bands and is band-limited to »p < |v| < 1+©/2,
successful reconstruction of z(¢) from z(Tpn) requires
that these two bands be located properly. When the
two bands are not located properly, Kohlenberg showed
that we can use a Periodically Nonuniform Sampling
(PNS) scheme to recover z(t). In this paper, we show
that PNS scheme can be generalized and applied to a
wider class. Further generalizations will be made to
two-dimensional case and discrete-time case.

1. INTRODUCTION

It is well-known that successful reconstruction of a
continuous-time bandpass signal z(¢) (Fig. 1) from
samples z(nTy), where T = 2#/0O, depends on the
relative positions of these two bands [1]. A necessary
and sufficient condition is that, the band edge v must
be an integer multiple of ©/2. It can be shown that a
much wider class of signals with total bandwidth © can
be recovered from samples at nTy. To be more specific,
define the support of X(v) (denoted by Supp{X(v)})
to be the set of frequencies for which X(¢) # 0. Then
z(t) can be obtained from z(nTp) if and only if no two
frequencies in Supp{X(v)} overlap under modulo &
operation [2]. Such signals are called aliasfree(Tp) and
their supports are referred to as aliasfree(Tp) zones.

When the two bands of X(v) (Fig. 1) are not prop-
erly located, Kohlenberg [3] proposed a periodically
nonuniform sampling approach to recover z(t)(Fig. 2
with L = 2). In this scheme two sets of samples,
z(nT) and z(nT 4 d,), where T = 2T, as shown in
Fig. 3, are used. The average sampling rate is still ©.
Then z(t) can be reconstructed by properly choosing
dy and the synthesis filters fo(t) and f(¢) [3]. This
is called periodically nonuniform sampling of second
order (PNS(2)), [4], for there are two sets of uniform
samples involved. Recently, general Lth order peri-
odically nonuniform sampling (PNS(L)) for such two
bands signals has been considered in [5].

In discrete time case, sampling is replaced by dec-
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imation. PNS(L) sampling retains L sets of samples,
z(Mn + do), z(Mn + dy), ---, 2(Mn + dg_.y) or the
doth, dith, ..., dp_ith polyphase components [6].
In [7], PNS(L) sampling and reconstruction has been
considered for a subclass of L-band signals. The
subclass addressed therein are those whose frequency
supports are the union of L bands, each band with
bandwidth 27/M and band edges at integer multiples
of 2r/M. Such a L-band sequence z(n) can be
reconstructed from its first L polyphase components,
ie., z(Mn), z(Mn+1), ---, z(Mn+ L - 1) [7].

In this paper, we will generalize the results in [3]
and {7] to a wider class of signals in terms of frequency
supports. We will show that from PNS(L) samples we
can reconstruct signals in the class U(T, L), which is
the collection of signals whose supports are the union of
L non overlapping aliasfree(T) sets [8].} The discrete-
time version of these will also be addressed. We
will see that 1D discrete-time U(M, L) sequences can
always be reconstructed from their first L polyphase
components. However, in 2D discrete-time case only
a subclass of U(M, L) signals allows reconstrucsion from L
polyphase components. ‘ :

Notations

1. The support of X(v) (denoted by Supp{X(v)}) is -
defined as the set of frequencies for whick X(v) # 0.

‘2. A set S is called an aliasfree(T") zone if no two

frequencies in S overlap under modulo 2% /T operation.
When Supp{X(v)} is an aliasfree(T’) zone, z(t) is called -
aliasfree(T). ,

3. The notation U(T, L) represents the collection of
signals whose frequency supports are the union of L
non overlapping aliasfree(T’) sets.

2. PERIODICALLY NONUNIFORM SAMPLING
OF LTH ORDER—CONTINUOUS TIME

In this section, we consider periodically nonuniform
sampling of Lth order (PNS(L)) for the class U(T, L).
In PNS(L) sampling of z(t), there are L sets of samples,
z(nT), z(nT 4+ dy), -+, z(nT + dr_1). Referring to
Fig. 2, the sampling rate is o = 27 /T in each channel

3 Throughout this paper, we will assume that aliasfree(T) sets

contain only finitely many intervals.
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and the average sampling rate is Lo, which is the total
bandwidth of z(tf). We will show that these L sets of
uniform samples can be used to reconstruct z(t).

In the fth channel, y,(t) contains the samples
z(nT +dy); Ye(v) consists of shifted versions of X(v),
Yi(v) = %;X(V — ko)emikdeo,

Because the total bandwidth of #(¢) is Lo and the
sampling rate is o in each channel, serious aliasing
occurs in y(t). To be more quantitative, we first
partition the support of X(v) into L non overlapping
aliasfree(T) sets, {Si}}=;}. Define X;(v) to be the part

of X(v) on §;, ie, X;(v) = ())((V), :tﬁef:viée.

the set S;, Yu(v) contains X;(v) and L — 1 shifted
copies, one from each X,,(v), m # i. Suppose the
shifted amounts are respectively 1(v)e, B2(v)o, ...,
Br-1(v)o. Because X;(v) are non overlapping, it can
be verified that for » € Supp{X(v)},

i=1

. -1
Y;,(V) (X )+ Z X(w - ﬁ.(u)a)e“’ﬂ (")d‘”) .

Notice that §;(v) thus defined are piecewise constant
because Supp{X(v)} is the union of finitely many
intervals. :
Lemma 1 [8]. A U(T,L) signal z(t) can be
‘recovered from its PNS(L) samples if and only if the
equation below has a solution f(v) for every v €
Supp{X(v)}-
ER AW)(v) =Teo 1)
where A(v) is

[A@oe =[AW)]e0 =1,
[A(”)]“ . e"iﬂi(v)dw’

f(v) = [Fo(v) FI(T) ..Fr_1(»)]T and the vector
egisfl 0 ... &

A nonsingular A(v) will yield unique solutions for
the synthesis filters Fy(v). If we choose dy = £d;, A(v)
becomes a Vandermonde matrix; the nonsingularity
condition becomes much more tractable.

Theorem 1 [8]. Consider a U(T, L) signal z(t).
There always exist comstant dy, 0 < ¢ < L and
synthesxs filters Fy(v), 0 < £ < L such that a:(t)
Yty z(nT + dp) fo(t — nT) (with do = 0 in this
expression). In particular, the choice

0<e<L—1
1<i<L-1

dy=t¢d, €=1,2,---,L—1,

leads to a Vandermonde A(v), which is nonsingular if

nT

nd . an :
“5e) ™ Y Go Aoy

10 z;ém
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for all integer n. The existence of such d; is guaranteed.
In this case, £(v) = [Fo(v) ... Fr-1(¥)]T is given by

£(v) = {TA(U) eg, - v € Supp{X(v)},

otherwise,

whereep={1 0 ... 0]%. ]

Remark. The synthesis filters thus obtained are
functions of B;(v) and can be verified to be piecewise
constant [8].

Two-dimensional (2D) case. The aliasfree(T') prop-
erty and aliasfree(T) zones can be defined as in 1D
case. But now the sampling period T is a 2 x 2 nonsin-
gular matrix and the samples are located on the lattice
defined by T, i.e., located at Tn for all integer vec-
tors n. It can be shown that 2D U(T, L) signals can
be recovered from PNS(L) samples, Tn, Tn+4-dy, ...,
Tn+dg_;. A result similar to that presented in The-

orem 1 can be derived.

3. ONE-DIMENSIONAL DISCRETE-TIME
PERIODICALLY NONUNIFORM SAMPLING

In discrete-time PNS(L) sampling (Fig. 4) the to-
tal amount of data after decimation is L/M times
the original input; the nonuniform sampling scheme
makes sense only for L < M, which will be assumed
throughout this paper. In 1D continuous-time case, we
saw that the class U(T, L) allows reconstruction from
PNS(L) samples. In this section, a parallel theorem for

‘1D discrete-time U(M, L) signals will be developed.

The signal y,(n) is the polyphase component
z(nM + dp) and Yz(w) can be expressed in terms of
shifts of X(w),

Yy (w) = =i FFkde,

1 M o

The U(M, L) nature of X (w) implies that only L terms
in the above summation are nonzero. In particular, on
the support of X{w), X(w) and L — 1 shifted copies of
X(w) are nonzero. Let us ‘denote these shifted copies
by X(w — 2%g;(w)),i=1,2,---,L— L.

Lemma2. A 1D discrete-time U(M, L) signal z(n)
can be recovered from L of its polyphase components
if and only if the equation to follow has a solution for
every v € Supp{X(w)}.

AWIAW AW ... B =Tey @)

Proc. 1996 IEEE Digital Signal Processing Workshop



where e = {1 0 0] and the matrix A(w) is
given by
AWl ={AW)l=1, 0<£<L-1

A@he = I8 1<ipcr-1  m

Observe that the matrix A(w) is a L x L sub-
matrix of the M x M DFT matrix, Wps given by
[Warlmn = e"v”"‘ 0 < myn < M. Notice that
any L x L sub-matrix of Wy obtained by retaining
the first L columns of Wy and some L rows of Wy
is a nonsingular Vandermonde matrix. So the choice
dg = £, ¢ =1,2,.-.,L -1, leads to a nonsingular
Vandermonde A(w). Unique solutions of {Fy(w)} can
be obtained from (2). The theorem below follows.

Theorem 2 [8]. A 1D discrete-time U(M, L) signal
z(n) can be recovered from its first L polyphase
components, z(Mn), z(Mn+1),...,z(Mn+L~1)m

4. TWO-DIMENSIONAL
SAMPLING AND RECONSTRUCTION

For 2D discrete-time signals, aliasfree(M) property,
aliasfree(M) zone and U(M, L) can be defined in the
same manner, where M is a 2 x 2 nonsingular integer
matrix. Similar to 1D case, a necessary and sufficient
condition for reconstructing 2D U(M, L) signals can be
derived.

Lemma 3. A 2D discrete-time U(M, L) signal z(n)
can be recovered from L of its polyphase components
if and only if the equation to follow has a solution for
every w € Supp{X(w)}.

AWIF@) AW - P =Te, (3)
where the matrix A(w) is given by
[A(W)]oe = [A (@)l =1,

[AW)he = emi2mPT (M

0<e<L-1

1<i<L-1 m

In 1D case, we can always choose d; such that
A(w) is a nonsingular Vandermonde matrix for every
w € Supp{X(w)}. However, it is not always possible to
do so in 2D case. In fact, the above equation may not
have a solution for some w € Supp{X(w)} and hence
z(n) can not be reconstructed from L of its polyphase
components. To explain this, we take a closer look at
A(w).

The matrices A{w)and W(9), 1t can be verified that
A(w)is a L x L sub-matrix of a Jm x Jy, matrix W),
called the generalized DFT matrix (possibly with some
row and column exchanges), where Jy = | det M| The
elements of W(9) are given by

[W(y)]‘.n — e—J2rk?M’1m,.’mn EN(M),ki € N(MT),
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where N (M) denotes the set of integer vectors of the
form Mx, x € [0 1)2. Let A be the Smith form of

M 6], A = [)“)0 ;) ] . It can be shown that when
1

m,, and k; are propérly ordered, W) = W, QW,,,
where W), denotes a A x A DFT matrix and ® denotes
the Kronecker product. The Kronecker product of two
matrices A and B is defined as

ag,0B ag,x-1B

A ®B =
IxK JxL

a7-1,0B ar-1,k-1B

TIXKL

Unlike 1D DFT matrices, W) is not Vander-
monde in general; nor are its L x L sub-matrices ob-
tained by retaining the first L columns and some L
rows. The natural question to ask next is whether a
particular set of {d,} will make A(w) nonsingular for
all w € Supp{X(w)}. In terins of the generalized DFT
matrix W), the question can be recast as follows:
can we find L columns of W9 such that for arbitrar-
ily chosen L rows of W(9), the resulting sub-matrix is
always nonsingular? The answer is unfortunately, no.
Although for every wp € Supp{X(w)}, there always
exist {d,} such that A(wo) is nonsingular, the same
d, may yield a singular A(w; ) for a different frequency
vector w;. To follow is an example which demonstrates
that there are cases when (3) is not solvable with fre-
quency independent {d,}.

Example 1. Consider a discrete-time 2D U(M, 2)
signal z(n), where M = [(2) g] and |det M| = 4. The
four vectors in N(M) are

e o= f e g = ]

Order k; € N(MT ) by letting k; = n;, then Wi is
1 1 1

o
w_11 -1 1 -1

Wo=11 1 a1 2 @)
1

-1 -1 1

The support of X(w), as shown in Fig. 5, consists
of two aliasfree(M) zones, S and S; with S being the
union of three regions R, R;, and Ry. Because L = 2,
we only have one beta function, B(w). Observe that

R (ki, w€Ro
. ﬁ(w):{kg, weR -

ki, w€ Rs.
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So for w € Ry, A(w) is a sub-matrix of W) obtained
by first keeping the Oth-and 1st rows of W and two
columns W{#_ That is, A(w) isa 2 X 2 sub-matrix of

1 1 1 Vv

1 -1 1 1
As to which two columns depends on the choice of d;.
For w € Rp, (3) has a solution only if d; is n; or n3.
If (3) has a solution in each R;, then

obtamed by keepmg two columns.

B OF N3, we€ R
d; {ng or ng, w€ Ry
n; or my, w€ Ry
There is no common solution of d; for the three regions;
(3) does not have a solution for all w in the support of
X(w). Therefore z(n) cannot be reconstructed from
“two of its polyphase components. :

A subclass of U(M, L). ‘Although it is not always
possible to reconstruct a U(M, L) signal from L of its
polyphase components, it is always possible to do so
when the Smith form A of M = UAV is '

S f1 0
Af[o JM]'

In this case the generalized DFT matrix W is
the Ju x Jy DFT matrix Wy,,. Similar to the

reconstruction of 1D U(M,;L) signals, choose d¢ =

€U [0 1]7. Then the matrix A(w) will be nonsingular
for all w € Supp{X(w)} and by (3) we can invert A(w)
to obtam the synthesis filters.
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Fig. 2 Mlustration of Lth order
periodically nonuniform sampling.
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Fig. 3 Reconstruction by using second
order periodically nonuniform sampling.
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Fig. 4 Periodically nonuniform sampling
and reconstruction in discrete-time case.

Fig. 5 —Example 1. A U(M, 2) signal that cannot
be reconstructed from two of its polyphase components.
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