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ABSTRACT

For a time-correlated channel, we consider the differéfgedback
of the geometrical mean decomposition (GMD) precoder, wisc

optimized for error rate. When the terminal speed is low drel t
channel varies slowly, we can expect the optimal GMD precode
of consecutive channel uses to be very close. We define the so-

known to be optimal for a number of criteria. When the channelcalled differential precoder between two consecutivenoatipre-

varies slowly, we can expect the optimal GMD precoders ofeon
utive channel uses to be close. We consider the feedbacle aioth
called differential precoder and show that it lies in a nbigfnood of
the identity matrix using matrix perturbation theory. Fietmore the
radius of the neighborhood is proportional to a time-catieh pa-
rameter. Such a characterization is crucial for efficiersrgization
of the differential precoder. Simulations are given to destrate
that, with a small feedback rate, the performance of the gueg
differential GMD comes close to the case when perfect cHastate
information is available to the transmitter.

Index Terms— MIMO system, precoder, differential feedback,
time-correlated channel, geometrical mean decomposition

1. INTRODUCTION

Multiple-input multiple-output (MIMO) systems with limed feed-
back has been widely studied in recent years [1]-[6]. It hasnb
demonstrated that limited feedback of channel state irdtion

improves the performance significantly. Various feedbatiemes

coders and exploit properties of GMD to characterize thieih-
tial precoder. Using matrix perturbation theory, we shoat tthe
differential precoder lies in a small neighborhood aroumsl iden-
tity matrix for a slowly varying Gauss-Markov channel. Tlaelius
of the neighborhood is quantified and is shown to be propuatito
a time-correlation parameter. The radius can be used ingbig
of codebooks for efficient quantization of the differenpagcoder.
Simulations are given to demonstrate that, with a smallbaek
rate, the performance of the proposed differential GMD iy &5
dB away from the case when the transmitter has full chanriiet-in
mation for a moderate moving speed. The sections are oeganiz
as follows. In Sec. 2, we introduce the system model for tme-i
varying MIMO system. Statistical characterization of tliféedential
precoder is presented in Sec. 3. Simulation examples avensimo
Sec. 4 and a conclusion is given in Sec. 5.

2. SYSTEM MODEL

Consider a MIMO communication system willl; transmit anten-
nas andV, receive antennas. At time, the channel is modeled by

have been proposed. Feedback of precoder has been extensivg, 17« A7, matrix H,, whose entries are independent and iden-

investigated, e.g., [2]-[4]. When there is decision feexttbat the re-
ceiver, the GMD precoder is shown to be optimal for minimgghit

error rate in [4] and codebook design is addressed thererdiFack
of bit loading is considered in [5][6]. The channel consetéin

these works is an independent fading channel, not time leberce

In practical systems, there is substantial temporal caticel be-
tween consecutive channel uses. Exploitation of the cH@onesla-
tion leads to more efficient feedback of channel informafid11].
Channel diagonalizing precoders are parameterized inrid]the
differential changes of the parameters are fed back to émsmnitter.
With the assumption that the channel Gram matrices of corisec
time instants are along a geodesic curve, differentialfaek of the
channel Gram matrix is presented in [8]. The temporallyelated
channel is modeled as a first-order Gauss-Markov proce8§-[t 1]
to further exploit the statistics of the channel. Diffeiahfeedback
of precoder based on rotation matrices is proposed in [9L0h the
difference of consecutive channel matrices is fed baclatusimitter
and differential feedback of bit loading is considered it][ising
predictive quantization.

In this paper, we consider differential quantization of @D
precoder for a time-correlated channel when the receiverdeai-
sion feedback. Differential feedback of precoder has atsntad-
dressed earlier [7]-[9], but the precoder considered theaee not
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tically distributed circularly symmetric complex Gaussiandom
variables with zero mean and unit variance. A useful timestated
channel model is the first-order Gauss-Markov process [12]

Hn+1 =V 1 — Ean + Gwn+17 (1)

where W, 11 is independent ofH, and its entries have the
same statistics as those Bf,,. Using Jake’s model [13]¢ =

1 — (Jo(27 f4Ts))?, whereJy(-) is the zeroth order Bessel func-
tion, fq is the maximum Doppler frequency arfd is the time
interval between consecutive channel uses. ®hex 1 channel
noise vectorq,, is additive white Gaussian with zero mean and
varianceNy. The precodeiF,, is an M; x M matrix, whereM
is the number of substreams witf < min(M,, M,). The in-
put vectors,, is assumed to be uncorrelated, and zero mean with
E[snsl] = P./M1I,;, whereP, is the total transmission power.

s, q,
F, —— H

M M, "M,

Fig. 1. A MIMO communication system.

Let the eigenvalue decomposition #1},H, be V,A, V],
whereV,, is an M; x M, unitary matrix and the diagonal ma-
trix A, contains the eigenvalues in nonincreasing order, i.e.,
A0 = Ana > 00 > An,m,—1. LettheM x M leading principal
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matrix of A, be [A,]ar. Compute the geometric mean decomposi-

tion of [A,.]}, [14],

1/2

[An]M = QanPIL,

@

whereQ,, andP,, are M x M unitary matrices an®., is upper tri-
angular with[R, ] x = ([T}, " An,;)'/*"". When the zero-forcing
decision feedback equalizer is used, the optimal precdgmini-
mizes the mean square error and average error rate havehmzem s

to be [4][5]
Fn = Vn,OPn7 (3)

where V,, o contains the firstM columns ofV,,. The optimal
precoder consists of two part¥,,,, o0 andP,,. The first partV,, o,
formed by the singular vectors d@f,, diagonalizes the channel
while the second pal?,, has the effect of equalizing the subchannel
SNRs [4] and will be termed the SNR equalizer.

3. FEEDBACK OF DIFFERENTIAL GMD PRECODER

When the channel is time correlated, we can expect the optiraa
coder of consecutive channel uses to be correlated as wihouy
loss of generality, the precoder at timet 1 can be expressed as

4

whereE,,, anM; x M semi-unitary matrix satisfying}, E, = I,
will be called the differential precoder. The notatiafi denotes the
transpose conjugate of a matukx. The M, x M, matrix F, , is
given byF, » = [F, Uy,], whereU,, is anM, x (M, — M) matrix
chosen in a deterministic manner frdm, such thaf', ., is unitary.
For example, we can choo¥&, ,, = [F, V1], whereV,, ; is the
matrix that contains the last/; — M columns ofV,. With the
feedback ofE,,, the transmitter can compute the precoder at 1
from the current precoder. From (4), we can wiliig as

Fn+1 = Fa,nEn7

E, = FZAVnFﬂ#'l . (5)

Consider the special ca3#¢,.+: = H,. The differential precoder
matrix E,, in (5) becomesI,; 0]7. When the channel varies slowly,
i.e.,H,11 =~ H,, it can be expected th#,, is in the neighborhood

of [In 0]7. As we will see such a neighborhood can be charac-

terized. To simply the notations, the time index is omittedtie
following discussion and\,,+1, A,, are denoted byi and A, re-
spectively.

Define the average distance betwdand[I; 0]” as

D. = \/E[HE — [Im O}TH??]v ©

where||A||r denotes the Frobenius norm of a matAx The opti-
mal precoder at time depends oV andP. ThusE depends on
V andP as well V andP. From [4], we know thalV andP are
statistically independent. It is reasonable tWaandP (likewise V
andP) are also statistically independent. In the following, veeide
a bound ofD. that will give us some insight on how. is related to
the variation of the channel.

Lemma 1. AssumeP andP are respectively statistically indepen-
dent ofV and'V. The average distanch. satisfies

D. <\/E[Dyo + Doi + D] +2/EDoo]ED,],  (7)
where D, = HV(T)VO —In|%, Dop = HVIVOHiﬁ (8)
and D, = |P'P — Ly|[%. ©
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See Appendix A for a proof. Observe from (8) thatD., o + D1
represents the distance froM'V, to [Ip; 0]7. On the other
hand, /D, is the distance betweeR and the perturbed matrix
P. ThusE[D,] corresponds to the perturbation of SNR equalizer
andE[D,,o + D,,1] corresponds to the perturbation of eigenspace.
In the following two subsections, we quantify the pertuityas of
eigenspace and SNR equalizer for the Gauss-Markov cham(B).i

3.1. Perturbation of eigenspace

Consider the time-correlated channel model given in (1)haxe
HH=HH +evV1—e2Ag + €2A1,

whereA, = H'W + WH andA, = WIW — H'H. When
the time-correlated channel is changing slowly, kés,small, H'H

can be viewed as a perturbation i H. There are many results
in the literature on the perturbation of matrices [15][16}. these
studies,D,,1 = ||\~/IV0||2F is regarded as eigenspace variation and
various bounds have been derived. However there is no discus
onD, 1+ D,, to the best of our knowledge. In the following, we
use a technique similar to that in [15] to derive a boundifgr; +
D,,0. ThenD, o can be bounded in a similar manner.

The column vectors oV correspond to the eigenvectors of
HH and they are not uniquely determined. However we can al-
ways choosé&V, such that{VéVo]jj is a positive real number for
all 5. In this case, we have the following second order approxima-
tion of the perturbation of eigenspace wheis small.

(10

Lemma 2. Assume); # \;jfor0 < i < M; —1and0 < j <
M — 1. A second order approximation &¥, o + D,,,1 is given by

Mi—1 M-—1 _ _
Duo+Duire > > [[VIAV]GP /(= M)

i=0 j=0,j#i

See Appendix B for a proof. Notice that an upper bound for ¢hent
i 3 e (VT AoV s [V Ao Vol%. Thus Lemma
2 implies

Dyo+ Dy S € max [A0VollE/ (X — A5)?,
?, 1

whereS; = {j # 4,4, e N|J0<i< M;—1,0<j <
M — 1}. The above expression depends the distance betiveen
and)\;. Using perturbation theory for matrix eigenvalues [17F th
distance satisfigs\;, — \;| < eC1, where¢, = ||(H'W + WiH)||
and||A |2 denotes the two norm of a matrik. Using this result
and ignoring the third or higher order termsepfve obtain an upper
bound that depends on the singular values of the currennehant
not those of the previous channel, given by

2
Dyo+ Dy S € max
i,jEST

1 2
——— || Ao Vol E- 11
s )\j)2|| oVolz  (11)

< € max; jes, [|AoVollE/ (N —
M), whereSo = {j #4,4,j eN|0<i<M—-1,0<j<
M — 1}. These results lead to the following result on the average
perturbation of eigenspace.

Similarly, we can showD, o <

Theorem 1. Consider the Gauss-Markov channel in (1). For a small
e, we haveE[D, 0 + Dy.1] < €2po and E[Dy 0] < €2 pu,0, Where

"o }
(Ai = A5)2

k= En| max
P [m‘esk

12)



andno = My 3 plg Ao+ M 300 N

vo = /(A2 — \)/36(A — do) andvy = /(M1 — N)/36(A — d1).
Applying the Cauchy-Schwarz inequality, we have

Proof. (12) can be obtained by taking expectation of the bound ins? <,2|¢c, ||2 522 o(Aj — A;)2. This leads to
N =

(11). A sketch of proof is given below. The computation regsii
averaging over the random matrickk and W. To do this, we
observe thaW is independent of the chanrHl, so the expectation
E[Dy,0 + Dy,1] can be obtained usingu [Eg;[Dv,0 + Dy,1[H]].
Also observe that the elements 8 are i.i.d. Gaussian with
zero mean and unit variance, 5 [W KW] = ¢r(K)Iy, and
EW[VVGVAV] = 0 for a deterministicM, x M, matrix K and

M, x M, matrix G. The theorem can be proved using these tW°||(HTV~V+VNVTH)H%.

observations.

The bound in Theorem 1 shows that the perturbation of eigeresp

is proportional toe?. The constantg,, , in (12) depend or{\,},
the eigenvalues ' H. As the elements oH are i.i.d complex
Gaussian random variables with zero mean and unit varighee,
matrix H'H has a Wishart distribution. Thus the joint probability
density function for the ordered eigenvalues of a Wishautrisnan
[18] can be used to compute the expectapon in (12).

3.2. Perturbation of SNR equalizer

We first review a closed form solution & that helps to establish
a connection betwee, and the perturbation of eigenvalues. To
ease the derivation of the perturbation of SNR equalizecamsider
M = 3. The caseVl = 2 follows directly. Derivation for a general
M can be found in [19].

It is known that the SNR equalizd? can be expressed as a
product of permutation matrices and Givens rotations [Difine
A = 4/ (/\k- — )\)/(/\19 — dk), ,Bk = 4/ (/\ — dk)/()\k — dk) for
k=0, 1, whereh = (AoA1A2)'/2, do = A2 anddy = AoXz/\.
ThenP = AoA; [14], where

ag —fo O 10 0
Ap=|0 0 1|, Ai=10 a1 —-p (13)
Bo a O 0 f1

Similarly, P can be given in terms ok, and Bk. We also define
0 = sin~ ag, Ox = sin~! Gx. Thend, = 05 — 6 represents the
perturbation in rotation angles. We show in Appendix C thatcan
be approximated nicely as

D, = 2(83 + 67). (14)
Although the statistical properties 6f are not readily available,
they can be bounded from above using eigenvalyethat are sta-
tistically more tractable, as we will see next. Usiig~ sin 6, and
sin 0, = Sin(ek — Gk), we haved, ~ akﬁk(dkalzl — Bkﬂgl) for
a smalle. Notice thatasa; ' andj,.3; " are both close to one. For
x ~ 1, Taylor approximation yieldg/z ~ (z + 1)/2. This means
aragt ~ atag?/2 +1/2 and BByt ~ BEBL2/2 + 1/2. Thus
we haved, =~ (1 + axay ')(ar — ar)/(28x). Substituting the def-
initions of o, and 3 to the approximation and ignoring the second
and higher order terms ef we obtain

Or ~ ykcgy, (15)
wherey = [Ao — Ao Az — X2 A1 — M),
(3dgi)\)i (2d1,A)L
No—do  Aa—x)%o M—di  M—2/2o
o 3o Pooale . has 1
Co = (_Azfdo + o\ )E ,C1 = ()\ —d, Al—A)E ’
a A +dy L=V
a—MAr (=%=a e Wby
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2
Dy S 25 lleoll® + e ) D (3 = Ap)*. (16)
j=0

J

The right hand side of the above equation depends only)gr}
and perturbation of eigenvalues. Using perturbation tésukigen-

values [17], we knowd "t (A; — A;)® S €*¢o, where¢o =

Thus we can obtaii, < 2¢%¢o 3o5_, villexll.
Taking expectation of both sides by using the techniqueerptioof
of Theorem 1, we arrive at the following theorem.

Theorem 2. Consider the Gauss-Markov channel in (1). Wies
small, E[D,] can be bounded b¥[D,] < €?p,, where

Mi—1 M-—-2
Pp = 4JWtEH|: SN u,fuckﬂ, (17)

j=0 k=0

Combining Theorem 1 and 2, we obtain
D S ev, (18)

wherey = /py,1 + pp + 2,/pu,0pp. The constanty can be com-
puted numerically using the joint probability density ftina for the
ordered eigenvalues of a Wishart matrix [18]. The resultmeebhat
the differential precodeE lies in a neighborhood dfi,; 0]7 with
radiusey. The radius is proportional toas the constant does not
depend ore. We can use this result to design codebook for the dif-
ferential precodeE. One possible approach is to pertifa; 0]”
and apply Gram Schmidt orthogonalization to the perturbettim

as described in [19]. This codebook design method is adoptibed
simulation examples.

4. SIMULATIONS

In the examples, we considéd, = 4, M; = 4 andM = 3.
The time-correlated channel is generated using the fidgtrdBauss-
Markov process in (1) and the optimal decision feedbackivecf]

is adopted in all the systems compared. Bgtbe the feedback bits
within a time instant. The transmission ratelis bits per channel,
the transmission power is equally divided among all the sabms,
and the feedback rate i8; = 2. We have used fof. = 2.5%10°Hz
and7Ts = 2ms as in [20]. In this case, a terminal speed of 3 km/hr,
a speed of interest in an indoor or microcellular environnj2a],
corresponds te = 0.06.

Example 1. Fig 2 shows the performance of the proposed differen-
tial GMD system designed according to the upper bounB.ah (6)
fore = 0.02, 0.06, and0.1, where0.02 and0.1 correspond to termi-
nal speed km/hr and 5 km/hr, respectively. We have also shown the
case when the system is designed udihgn (18) that is computed
by averaging oveil0° random channels. The performance of the
two are very close for all three casescofThe upper bound in (18),
although an overestimate @., provides a useful estimate &i..

We have also compared with "unquantized”, for which thegrait-

ter has perfect channel knowledge and the precoder is natiged.
Fore = 0.02 ande = 0.06, the quantized differential GMD with
Bj = 2is within 0.5 dB of "unquantized” when BER 10~*.
Example 2. In this example we show the BER of the proposed
method and other feedback systems for the same feedbadB rate

2. The differential precoder system based on the rotatiomixiat
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Fig. 2. Example 1. BER performance of the differential GMD sys- Fig. 3. Example 2. BER performance fer= 0.06.

tem designed according to two radiuses for the differeptietoder.

WhenP andP are respectively statistically independent\dfand
[9] and the geodesic curves in [8] are labeled as 'diffeentta- 'V, we haveE[\/Dy,01/D,] = E[\/DuvolE[/Dp|. Using the
tion” and 'geodesic’, respectively. For ‘differential aiveel’ [10],  jensen’s inequalitf[v/z?] < VE[z?], the result follows.
the feedback information is the difference of consecutivannels.
We also compare with the GMD precoder [4] that does not tage th
correlation into consideration. The results are shown @ R for

€ = 0.06. We can see that the proposed feedback scheme haspge. and post-multiplying (10) by’ ' andV, respectively and con-
good BER performance. This is because GMD with full chanmel i sjdering theijth element of the left and right hand side, we obtain
formation achieves the minimum BER and the performance of UV, (A=) = eI — €[V AgV]i;+e2[VT A1 V];;. When

proposed method is very close to the unquantized GMD. N £\ for0<i< M, —1and0<j < M — 1, theijth element

5 CONCLUSION of VIV can be written as

6.2. Appendix B: Proof of Lemma 2

~ ~ . -
In this paper, we consider differential quantization of Gidi2coder [VIV]; = (V1= @[VI AoV + E[VIAIV]) /(N = Xy).
for a time-correlated channel. Modeling the time-coredlathan- < . - (1.9)
nel as a first-order Gauss-Markov process, we show the eiiffiad When([V,, Vol;; is a positive real number for afl Du.o + Do, in

precoder is in the neighborhood of the identity matrix fomaa#t (B) becomes

e. Moreover we derive an upper bound of the radius of the neigh- M1 Mi—1 M-—1

borhood and show it is proportional to The resultis very useful p 4 p, , = Z (1-[ViVal;;)* + Z Z VTVl .

towards the codebook design for the differential precaatedemon- = D0 0

strated by simulations. With a small feedback rate, theoperénce (20)
of the proposed differential GMD comes close to that of GMEwi  Using (19) anq\N/'gVOﬁj =1 M1 |[\7TVO]U|2, it can be

N X . i=0,i%]
perfect channel state information at the transmitter. shown that(1 — [V V];,)? is in the order o&*. The proof can be

found in [19]. Thus (20) can be approximatedaso + D,1 ~
Sty L I[VTVoli; |2, Combining the approximation and

i=

-0 -0,
(19), we obtain the result.

6. APPENDIX
6.1. Appendix A: Proof of Lemma 1

From (3) and (5)E can be expressed &= [VoP  Vi]' VoP,  6.3. Appendix C: Proof of (14)
sowe havéE— (L 0" = [PTVIVoP—Tu |5+ VIVoP|3.
UsingPTVIV,P — Iy = PT(V{Vy —14)P + PP — I, and
A +B|r < [|A]r + B, we obtain| P VIVeP — Tn |3 <
[P (VIVo—Tar)P||3+2|[PT(VIVo—Tar)P| ¢ [[PTP— L || +

Using the fact thaf® and P are real and unitary anflA |2 =
tr(ATA), we can rewriteD,, in (9) asD, = 232 ' (1 — Plpx).
With (13), it can be verified theiﬁgpo = apdo + Popo, ﬁhp =

~ ~ 23 23 =t _ ~
s > : . ) . a1dr (aodo + Bofo) + B1S1 andplp2 7ﬂ1/31(040040 + Bofo) +
[|P™P — In||%. We know that the Frobenius norm is an unitary in aidy. On the other handzos 8, — cos(fx — Ox), i.€., cos &, —

; VA2 = IVTVa2 _ -
variance norm anffV Vo||z = ||V]Vol|z. Thus we have the up ardy + BrfBr. Whend, is small, we obtaircos 6, ~ 1 — §%/2.
per bound forD,, \/E[DU,O + Dy,1 + Dp| + 2E[\/Dyv,04/Dp)- Using these results, we arrive at (14).
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