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ABSTRACT

In this paper, we propose an efficient iterative algorithm for
finding the minimum sampling frequency for a signal that
consists of multiple bandpass signals. This finds important
application in software radio where it is desirable to down-
convert multiple bandpass signals simultaneously. We will
derive a new set of conditions for alias-free sampling for
signals that contain multi-band signals. The conditions can
be easily examined with few computations. The minimum
sampling frequency can be found by iteratively increasing
the sampling frequency to meet the alias-free conditions.
The simulations demonstrate that the proposed method re-
quires a much lower complexity than existing algorithms.

1. INTRODUCTION

Bandpass sampling has important applications in downcovert-
ing radio frequency (RF) signals. In the application of soft-
ware defined radio systems, it is desirable to downconvert
multiple RF signals simultaneously to save cost [1, 2]. The
signal to be sampled may consist of more than one bandpass
signal. Sampling theorem for a bandpass signal (two pass-
bands) is well-known [3, 4]. The minimum frequency for
alias-free sampling can be found in a closed form [5]. The
minimum sampling frequency is usually significantly lower
than the carrier frequency of the bandpass signal.

For signals with more than two passbands, the minimum
sampling frequency can not be found in a closed from due
to the nonlinear nature of spectrum folding in the process
of sampling. An example of a spectrum that consists of N
bandpass signals is shown in Fig. 1. Sampling for multi-
band signals is extended in [2] and conditions for alias-free
sampling derived. A systematic algorithm for finding valid
sampling frequencies is developed in [6]. In [7][8][9], the
complexity for finding valid sampling frequency is consid-
erably reduced by imposing constraints on the ordering of
the bands in the folded spectrum. These results may not
yield the minimum frequency for alias-free sampling due to
the ordering constraints. An efficient algorithm for finding
valid sampling frequency range is proposed in [10]. By ex-
hausting all possible orderings of the bands in the folded
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spectrum and categorizing all possible cases, the computa-
tional complexity can be reduced. An algorithm for finding
the minimum sampling frequency is developed in [11] by
finding the intersection of valid sampling frequencies for
every two signal bands. An iterative algorithm for finding
the minimum sampling frequency of signals that contains
only two bandpass signals is given in [16].

In this paper, we propose an efficient algorithm for find-
ing the minimum sampling frequency for a signal consist-
ing of multiple bandpass signals. Generalizing the results
in [16], we will derive a new set of conditions for alias-
free sampling of multiband signals. These conditions can
be checked with very few computations. When one of these
conditions is not satisfied, the sampling frequency can be
adjusted with minimum increment so that the condition be-
comes satisfied. By iteratively increasing the sampling fre-
quency to meet the conditions for alias-free sampling, an
algorithm for finding the minimum sampling frequency can
be developed. There is no need to consider the ordering of
the signal band in the folded spectrum. We will see that the
algorithm based on the conditions derived in this paper is
more efficient than previously reported methods.

The rest of the paper is organized as follows. We de-
rive conditions for alias-free sampling of multiband signals
in Sec. 2. Based on these conditions, an algorithm for find-
ing the minimum sampling frequency of multiband signals
is given in Sec. 3. Simulation examples are presented in
Sec. 4 and a conclusion is given in Sec. 5.

2. CONDITIONS FOR ALIAS-FREE SAMPLING

Conditions for alias-free sampling can be stated in vari-
ous ways in terms of the band edges and bandwidths of
the member bandpass signals. The conditions that are em-
ployed affect the complexity of ensuing algorithms. In this
section, we derive a new set of conditions for alias-free sam-
pling that will lead to an efficient algorithm in the next sec-
tion.

Suppose we are to sample a signal X (f) that consists
of multiple bandpass signals X1 (f), Xao(f), -+, Xn(f) as
shown in Fig. 1. Assume X;(f) # 0, fo, < |f|] < fn:»
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Figure 1: An example of spectrum that consists of /V bandpass signals.

fori =1,2,---, N, where fy, and f,, are band edges, and
Wi = fn, — fo, are one-sided bandwidths as indicated in the
figure. Let X7 (f), and X; (f) denote respectively the pos-
itive frequency part and negative frequency part of X;(f).
There are 2N signal bands, including X3 (f), -+, X7 (f)
and X7 (f), -, Xy(f). Since the replicas of any two
bands may overlap and result in aliasing after sampling,
there are a total of C3% cases. Note that X;"(f) and X, (f)
are symmetric with respect to O for 7 = 1,2,.-- ,N. If
X:F(f) and Xj(f) are not aliasing after sampling, then
X; (f) and X (f) will not be aliasing by symmetry for
1 <i < j < N. Similarly, if X;(f) and X (f) are not
aliasing after sampling, then X" (f) and X (f) will not be
aliasing for 1 <14 < 7 < N. Thus, we only need to consider
the following N2 cases:

(A0) Cases to be considered

@ {X;7(), X7 (N},
b {X(). X (N}
© {X;7 (). X (N}

for1 << N,
forl1 <i<j <N,
forl <:<j <N.

ey

To discuss the above different cases in a more general
setting, we first consider the sampling of a hypothetical 2-
band signal Y (f) as shown in Fig. 2(a). Y (f) consists of
P(f) and Q(f), where P(f) # 0, only for fp, < f < fp,
and Q(f) # 0, only for f,, < f < fg,. The bandedges f,,,
fpa» far» and fg, can be positive or negative.

Lemma 1 For the 2-band signal Y (f) in Fig. 2(a), there is
no aliasing for a given sampling frequency fs if and only if

(fth 7fp1)
(fqz _f:m)

where Wy, = fp, — fpi, and Wy = fq, — fq,.

(mOd fs) =0,

(mod f5) > Wy, + Wy, (2)

or

Proof. We observe that there is no aliasing in sampling
Y'(f) if and only if there is no aliasing when we sample a
shifted version Y'(f + fo), where fj is the shift. For con-
venience we will consider the condition for alias-free sam-
pling of Y(f + fo). Suppose we choose fy as the midpoint
of fp, and f,,, ie.,

fo= (fpl +f¢12)/2'
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Figure 2: (a) The spectrum of a hypothetical 2-band signal
Y(f). ®Y(f+ fo), where fo = (fp, + fg.)/2. (¢) An ex-
ample of the folded spectrum for the interval [0, f,) when a
(mod f5) > (—a) (mod fs). (d) An example of the folded
spectrum for the interval [0, fs) when a (mod fs) < (—a)

(mod f).

Then the shifted pair is as shown in Fig. 2(b), where a =
(fao = fp)/2,0 = for — (fpu + fau)/2, ¢ = fpo = (fp +
fq2)/2. If we consider the folded spectrum in the [0, f5)
interval, the band edges a (mod fs) and (—a) (mod f5)
are equal-distanced from f5/2. We now discuss two possi-
ble scenarios: (i) a (mod fs) > (—a) (mod f) and (ii) a
(mod fs) < (—a) (mod fs). Examples of these two pos-
sible cases are shown respectively in Fig. 2(c) and (d).

(i) When @ (mod f5) > (—a) (mod f;) there will be
no aliasing if and only if (—a) (mod fs) = a (mod f) or
if the interval ((—a) (mod fs),a (mod f;)) is large enough
to accommodate the two replicas. Thatis, x = 0,or z >
Wy + Wy, where x = a (mod f5) — ((—a) (mod f5)).
The equivalent conditions are

2a

(mod f5) =0, or2a (mod fs) > W, +W,. (3)



(ii) When a (mod f5) < (—a) (mod fs) as shown in
Fig. 2(d), there is some space between the two replicas and
the space is of length ((—a) (mod fs)—a (mod fy)). There
will be no aliasing if and only if the remaining part of the
[0, f5) interval is large enough to take in the two replicas.
Thatis, fs — ((—a) (mod fs)—a (mod fs)) > W,+ Wy,
Or equivalently 2a (mod fs) > W, + W,,. This is the same
as the second condition in (3).

Substituting a = (fy, — fp,)/2 to (3), we obtain the
necessary and sufficient condition for alias-free sampling of
Y(f) in (). m

The result in Lemma 1 is for the sampling of a 2-band
signal with arbitrary band locations. We can apply it to each
of the cases in (A0). Then we can obtain sufficient and nec-
essary conditions for aliasfree sampling of multiband sig-
nals. For a given sampling frequency fs, there will not be
aliasing if and only if the following are true.

(A1) Aliasfree conditions

(@) 2fp, (mod fs) = 0, or 2f, (mod fs) > 2W;, for
1 <i<N.

(b) (fhj_fei) (mOd fs) :O’Or(fhj*fei) (mOd fs) >
Wi +W;,forl <i<j<N.

(C) (fhi+fhj) (mOd fs) :O’Or(fhi+fhj) (mOd fs) >
Wi+Wj,f0r1§i<j§N.

3. AN ALGORITHM FOR FINDING THE
MINIMUM SAMPLING FREQUENCY

For a given sampling frequency f;, there will be no aliasing
if all the conditions in (A1) are met. If any one of the con-
ditions is not satisfied, we will see how to make minimum
increment to the sampling frequency so that the condition
becomes satisfied.

Let us first go back to the hypothetical 2-band signal
Y (f) that is useful in previous section.

Lemma 2 Consider the sampling of the 2-band signal Y ( f)
in Fig. 2. Suppose there is aliasing for a given sampling
frequency fs. Then the smallest fs pew > fs that yields
aliasfree sampling of Y (f) is

fQ2 — fpl
[(fao = fou)/ fs]

Proof. Consider the folded spectrum in the interval [0, f;)
as shown in Fig. 2(c) and (d). We discuss the two cases: (i) a
(mOd fs) < fs/2 and (i) fs/2 <a (mOd fs) < f37 Sep-
arately. (i) 0 < a (mod f,) < fs/2: When we gradually
increase the sampling frequency the band edge a (mod f;)
of replica Q(f) moves towards 0 while the band edge (—a)
(mod fs) of replica P(f) moves towards fs. When the

“)

fs,new =
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sampling frequency is increased such that a (mod f;) de-
creases to 0, then the condition in (2) becomes satisfied. (ii)
fs/2 < a (mod fs) < fs: Similarly the condition in (2)
becomes satisfied when a (mod fs) decreases to f,/2.
Therefore we can conclude that the alias-free condition
in (2) can be satisfied by increasing the sampling frequency
such that a becomes an integer multiple of f;/2. The small-
est new sampling f; ey for this to happen can be computed
as follows. Let us write a as a = nqfs/2 + rq, where
re = a (mod f/2) and n, = [a/(fs/2)]. Then we have
@ = Ngfsnew/2, O fsnew = 2a/nq. Using the fact that
n, can also be computed using n, = |2a/fs], we obtain
the expression of fg peqy in (4). [ |

We can apply Lemma 2 to the cases in (AO). Then for
each case in (A0O), we can obtain a formula for adjusting
the sampling frequency so that the corresponding aliasfree
condition in (A1) is satisfied.

(A2) Frequency adjustment formula
2fn;

(a) fs,new = m,forl <3< N.

fl-_fi . .
(b) fs,new = m,ﬂ)rl <i<y < N.
©) fsnew = Thitn; forl <i<j<N.

L(flbi+flbj)/fSJ ?

Proposed iterative algorithm. Using the conditions
for alias-free sampling in section 2 and the methods for
computing new sampling frequency for each case, we have
the following iterative algorithm for finding the minimum
sampling frequency. To start off, let f; = 2(W7 + Wa +
-+-+Wy), which is the lowest possible sampling frequency
for no aliasing.

1. Examine the conditions for aliasfree sampling in (A1)
one by one. If any one of the condition is not satisfied,
go to the next step. If all the conditions in (A1) are
satisfied, then we have found the minimum sampling
frequency.

2. For the condition that is violated in Step 1, compute
the corresponding new sampling frequency using (A2).
Go to Step 1.

There is no need considering the ordering of signal bands
in the folded spectrum. The conditions in (A1) can be eas-
ily examined and frequency adjustment in (A2) can be done
with few computations. As a result, the proposed method
requires a lower complexity than earlier methods as will be
demonstrated in the next section.

4. SIMULATIONS AND COMPARISONS

In this section, we apply the proposed algorithm to wireless
applications. The bandpass signals considered in the simu-
lations are GSM 900 (935-960 MHz, one-sided bandwidth



Case Method in [10] | Method in [11] | Proposed Method
ADD MUL | ADD MUL | ADD MUL
GSM900, GSM1800, 802.11g | 105 186 87 109 60 42
DAB, GSM1800, 802.11g 75 126 99 133 41 36
GSM900, DAB, WCDMA 183 342 198 331 77 84

Table 1: Complexity for finding the minimum sampling frequency of multiple bandpass signals in terms of additions (ADD)

and multiplications (MUL).

25 MHz), GSM 1800 (1805-1880 MHz, one-sided band-
width 75 MHz) [13], DAB Eureka-147 L-Band (1472.286-
1473.822 MHz, one-sided bandwidth 1536 KHz) [14], IEEE
802.11g (2412-2432 MHz, one-sided bandwidth 20 MHz)
[15], and WCDMA (2119-2124 MHz, one-sided bandwidth
5 MHz). Table 1 lists the complexity of finding the mini-

mum sampling frequency for different combinations of band-

pass signals and compares with the methods in [10][11].
The complexity is given in terms of numbers of multipli-
cations (MUL) and additions (ADD). The simulation result
demonstrates that the proposed method can reduce the num-
ber of additions and multiplications significantly. The re-
quired numbers of additions and multiplications are reduced
respectively by around 28-58% and 61-76%.

5. CONCLUSIONS

We have proposed an efficient algorithm for finding the min-
imum sampling frequency for signals that contain multi-
passband signals. We have derived a new set of necessary
and sufficient conditions for alias-free sampling that can be
checked with few computations. There is no need to con-
sider ordering of the signal bands in the folded spectrum.
The conditions developed in this paper lead to an efficient
iterative algorithm for finding the minimum sampling fre-
quency. The complexity is much lower than existing meth-
ods.
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