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ABSTRACT

In this paper a reduced-complexity partial transmit sequences (PTS)
approach is proposed for the reduction of peak-to-average power
ratio (PAPR) in OFDM systems. In the PTS scheme, we need sev-
eral IFFTs (inverse fast Fourier transforms) to compute thepartial
transmit sequences. There are two main contributions in thepaper.
Firstly, we propose to partition the input symbols into disjoint sub-
blocks in an interleaving manner. In this way, we can significantly
reduce the complexity by sharing the arithmetic in the IFFT com-
putations. Secondly, we show that in the new partition scheme, the
number of rotation factors can be reduced by one without affect-
ing the PAPR reduction ability. As a result, the search time for the
optimal rotation factor can be reduced by 75%. Simulation results
show that the PAPR of the proposed method is only slightly worse
than the original PTS scheme but it has a much lower complexity.

1. INTRODUCTION

One major drawback of the orthogonal frequency division multi-
plexing (OFDM) system is its high peak-to-average power ratio
(PAPR). In OFDM systems we use the inverse discrete Fourier
transform (IDFT) to process the baseband signals. After applying
the IDFT, the envelope of the transmitted samples is approximately
Rayleigh-distributed, and the transmitted samples can have a high
PAPR.

In the literature, many distortionless methods have been pro-
posed for the PAPR reduction [1]-[7]. One effective approach for
PAPR reduction is to generate a number of candidates of transmit-
ted signals and select the one with the smallest PAPR for trans-
mission. The selective mapping (SLM) method [1][2] and the par-
tial transmit sequences (PTS) method [4]-[7] belong to thisap-
proach. In the SLM method, the candidates are generated by mul-
tiplying the input modulation symbols by different rotation factors
which are often chosen from the setf�1;�jg. However, the SLM
method has a high complexity. To generateM candidates, one has
to computeM NL-point IDFT, whereN is the block size andL
is the oversampling factor. Though the IDFTs can be efficiently
implemented using inverse fast Fourier transform (IFFT) whenN
andL are powers of2, the computational complexity can still be
too high for many applications, especially whenM is large. To
reduce the complexity, the PTS method divides the input modu-
lation symbols into a few disjoint subblocks and each subblock is
weighted by a rotation factor. By doing so, the PTS scheme needs
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only (log4M + 1) NL-point IFFTs (whereM is number of can-
didates). In [5], a low complexity algorithm is proposed forthe
optimization of the rotation factors in the PTS approach. In[6],
the authors proposed a gradient descent search method to findthe
rotation factors. In [7], an improved rotation factor computation is
introduced. Though the methods in [5][6][7] can greatly lower the
cost of rotation factor optimization, the number of IFFTs needed
is not reduced.

In this paper, a new method is introduced to further reduce the
complexity of the PTS scheme. By exploiting the decimation-in-
time (DIT) IFFT algorithm, we will first show that we can share
most of the computation in the (log4M + 1) NL-point IFFTs. In
the special case of four partial transmit sequences, the total num-
ber of multiplications needed for computing all four PTS is the
same as that of oneNL-point IFFT. Moreover we will show that
for the proposed method, we can set the first two rotation factors
(rather than one) without affecting the PAPR reduction ability of
the PTS scheme. Thus the cost of the rotation factor optimization
is reduced to a quarter of that in the original PTS scheme. Sim-
ulation results show that the PAPR reduction performance ofthe
proposed PTS scheme is only slightly worse (less than 0.5dB)than
the original PTS scheme but its computational complexity ismuch
lower.

The paper is outlined as follows. Sec. 2 describes the SLM
and the PTS approaches. In Sec. 3, the proposed PTS approach is
presented. Simulation results are given in Sec. 4 and conclusions
are given in Sec. 5.

Notation: Boldfaced lower case and upper case letters repre-
sent vectors and matrices respectively. The notationAy denotes
the transpose-conjugate ofA andAT denotes the transpose ofA.
As the scaling factor does not change the PAPR, for notation sim-
plicity, we drop the normalization factor in the IDFT. TheN �N
IDFT matrixQN is defined as[QN ℄k;l = ej 2�N kl. The Kronecker
product of anm�nmatrixA and anp�q matrixB is anmp�nq
matrix given by:A
B = 264 a0;0B � � � a0;n�1B

...
. . .

...am�1;0B � � � am�1;n�1B 375 :
Throughout the paper, the IDFT sizeN is assumed to be a power
of 2 so that IFFT can be employed for its implementation. When
a sequence has fewer thanN samples, zeros are padded to the se-
quence for itsN -point IDFT computation. For convenience,N�1
vectors and length-N sequences are used interchangeably.



2. THE SLM SCHEME AND PTS SCHEME

In this section, we briefly review two techniques, namely these-
lective mapping (SLM) [1][2] and the partial transmit sequences
(PTS) [4], for PAPR reduction in OFDM systems. LetN be the
input block size of the OFDM system. That means, one OFDM in-
put block consists ofN modulation symbolssk andN is also the
size of inverse DFT at the transmitter. In this paper, we denote the
OFDM input block by anN�1 vectors = � s0 s1 � � � sN�1 �T

.
In an OFDM system, each symbolsk is modulated by a different
orthogonal subcarrier, and the signal sent at the transmitter is ob-
tained by summing up theseN modulated carriers:x(t) = N�1Xn=0 snej2�n4ft; 0 � t < NT; (1)

where4f = 1NT is the frequency spacing of the subcarriers. In
practice, most OFDM systems use a discrete-time implementation
for baseband processing. For the computation of PAPR [7], we
usually oversamplex(t) by a factor ofL to obtain the discrete-
time signalxk = N�1Xn=0 snej2�kn4fT=L , k = 0; 1; � � � ; LN � 1: (2)

The sequencexk can be interpreted as theNL-point IDFT of the
input vectors padded with(L � 1)N zeros. The PAPR ofxk or
the vectorx = [x0 : : : xNL�1℄T is given byPAPR(x) = max0�k�NL�1 jxkj2E[jxkj2℄ : (3)

It is known [7] that when the oversampling factorL is � 4, the
PAPR ofx(t) can be accurately approximated by the PAPR ofxk.
One commonly used performance measure for PAPR reduction is
the complementary cumulative distribution function(CCDF) which
is defined as:CCDF (PAPR0) = Prob(PAPR > PAPR0): (4)

It is also known as the clipping probability.

The SLM Method [1][2]: In the selective mapping (SLM) ap-
proach,M independent candidates of the sequencexk are gener-
ated and the one with the lowest PAPR is transmitted. To gen-
erate these candidates, we multiply the modulation symbolsn by
randomly generated unit-magnitude constantbn. These constantsbn are also known as rotation factors. For simplicity, we usually
choosebn 2 f�1;�jg. The candidate sequencesxk are obtained
by applying IFFT to the productbnsn. One can immediately see
that the SLM method has a very high complexity. In general a to-
tal of M NL-point IFFTs are needed to generateM independent
candidate sequences. One way to reduce the complexity is to use
the PTS method, to be described next.

The PTS Method [4]: In the PTS approach, we partition the
OFDM input blocks into U disjoint subblockssu, for 0 � u �U � 1. In other words, if thei-th entry ofsj is nonzero, thei-
th entry ofsl is equal to zero for alll 6= j. Moreover we haves = PU�1u=0 su. Applying theNL-point IFFT to su (padded

with zeros), we obtainxu, which is known as thepartial trans-
mit sequence. Eachxu is multiplied by a rotation factorbu wherebu 2f�1;�jg. The candidate signal is given byx = U�1Xu=0 buxu; bu 2 f�1;�jg: (5)

One can see that the vectorx is in fact theNL-point IFFT of the
sum

PU�1u=0 busu. In the PTS scheme, all the entries insu are
multiplied by the same rotationbu. It is clear that the PTS method
is a special case of the SLM method. For a PTS scheme withU partial transmit sequences, the number of candidate sequencesx are 4U�1 (the first rotation factorb0 can be set to1 without
affecting the PAPR). Compared with the SLM method, the num-
ber of IFFT required in the PTS method is greatly reduced. To
getM = 4U�1 candidate sequences, we need to carry outU (or
equivalentlog4M + 1) NL-point IFFTs. After the partial trans-
mit sequencesxu are obtained, one needs only additions to get the
candidate sequences as in (5). A direct computation of (5) needsM �NL �(U�1) additions. Below we will show how to further re-
duce the complexity of IFFT computation by carefully partitioning
the input blocks into su.

3. PROPOSED REDUCED-COMPLEXITY PTS METHOD

In this section, we will first show how we can further reduce the
complexity of the PTS method by partitioning the input blocks
into U disjoint subblockssi in an interleaving manner. Then we
will prove that when the input is partitioned in this way, we can
set the first two rotation factorsb0 = b1 = 1 without affecting the
PAPR reduction ability. Becausebi 2 f�1;�jg and we have one
fewer free parameters, the complexity of searching for the optimal
rotation factors is reduced to 1/4 of the original PTS scheme.

To explain the idea, we takeU = 4 as an example. And for
simplicity, we assumeL = 1, that is, there is no oversampling. In
this case, the4 subblocks are given bys0 = [s0 0 0 0 s4 0 0 0 s8 � � � ℄Ts1 = [0 s1 0 0 0 s5 0 0 0 s9 � � � ℄Ts2 = [0 0 s2 0 0 0 s6 0 0 0 s10 � � � ℄Ts3 = [0 0 0 s3 0 0 0 s7 0 0 0 s11 � � � ℄T : (6)

The partial transmit sequencesxu are obtained by takingN -point
IFFT of su and the candidate sequencex is obtained by taking the
sum x = 3Xi=0 bixi = 3Xi=0 biQN si; (7)

whereQN is theN �N IDFT matrix. The above implementation
needs4 N -point IFFTs. Suppose now that theN -point IDFT is
implemented using the radix-4 decimation-in-time(DIT) IFFT al-
gorithm [8]. ThenQN can be decomposed as a cascade ofQN4
andQ4 asQN = �Q4 
 IN4 �D�I4 
QN4 � ; (8)

whereD is a diagonal matrix consisting of the twiddle factors:D = 264 D0 0 0 00 D1 0 00 0 D2 00 0 0 D3 375 ; with [Di℄nn = ej 2�kniN : (9)



Using the above decomposition and the special forms ofsi in (6),
we can writex = 3Xi=0QN bisi = �Q4 
 IN4 � � 26664 b0D0QN4 s00b1D1QN4 s01b2D2QN4 s02b3D3QN4 s03 37775 ; (10)

wheres0i = � si s4+i s8+i � � � �T is the four-fold down-
sampled version of the subblocksi in (6). From the right hand
side of (10), we see that to getx we need to implement fourN4 -
point IDFTs rather than fourN -point IDFTs as in the original PTS
scheme. Moreover whenbi changes, we do not need to recompute
the vectorsDiQN4 s0i. AsQ4 has the formQ4 = 264 1 1 1 11 j �1 �j1 �1 1 �11 �j �1 j 375 ;
only additions are needed to computex whenbi changes. For the
case of the oversampling factorL > 1, the same is true. The low
complexity implementation of the proposed PTS scheme usingthe
radix-4NL-point IFFT is given in Fig. 1 for the case ofU = 4.
Notice that we need to implement only fourNL4 -point IFFTs, plus
some twiddle factor�i and the4 � 4 butterflies which need no
multiplications. When the rotation factorsbi change, we do not
need to recompute the vectorvi (see Fig. 1) and only additions
are needed to compute the candidate sequencex fromvi. The total
number of multiplications in fourNL=4-point IFFTs are the same
as oneNL-point IFFTs. Thus the complexity is reduced from
fourNL-point IFFTs in the original PTS scheme to oneNL-point
IFFT. The same technique can be applied to the more general case
of U subblocks whenU is a power of 2. By using the DIT IFFT
structure, we can split anNL-point IFFT into a cascade ofNL=U -
point IFFTs andU -point IFFTs. Like the case ofU = 4, whenbi
changes, there is no need to recompute theNL=U -point IFFTs
and we need only to recompute theU -point IFFTs. In practice,U
is usually small, so the complexity of theU -point IFFTs is small.
The complexity is thus reduced significantly.

Next we consider the rotation factors. In the original PTS
scheme, the first rotation factorb0 can be set to 1 without affecting
the PAPR reduction ability. Below we will show that if the dis-
joint subblockssi are obtained by partitionings in an interleaving
manner, then we can setb0 = b1 = 1 without affecting the PAPR
reduction ability. This result is proven in the next two theorems.

Theorem 1. For any integer n and any U = 2m � 4, we haveQU�n = PQU ; (11)

where � = diag[1 j j2 � � � j(U�1)℄ and P is a permutation ma-
trix.

Proof : First let us define the diagonal matrix� = diag[1 ej2�=U e2�j2�=U � � � e(U�1)�j2�=U ℄:
The one can verify by direct multiplication that:QU� = P1QU ; (12)

whereP1 = � 0(U�1)�1 I(U�1)�(U�1)1 01�(U�1) �
. BecauseU =2m � 4, U=4 will also be an integer. From (12) we haveQU�nU=4 = PnU=41 QU :

As�U=4 = � andPnU=41 is a permutation matrix, we have proved
(11). �
Theorem 2. For any set of rotation factors f1; b1; b2; � � � ; bU�1g,
where bi 2 f�1;�jg, the corresponding candidate sequence x
has the same PAPR as the candidate sequence x0 generated by
using another set of rotation factors f1; 1; b02; � � � ; b0U�1g for someb0i 2 f�1;�jg.

Proof : To prove the theorem, we first explain that it is sufficient to
prove that for any set of rotation factorsf1; b1; � � � ; bU�1g,QUdiag[1 b1 b2 � � � bU�1℄ = PQUdiag[1 1 b02 � � � b0U�1℄; (13)

for some permutation matrixP and someb0i. To see this, we look at
Fig. 1 where the case ofU = 4 is shown. From the figure, we see
that the candidate sequencex generated byf1; b1; � � � ; bU�1g can
be obtained by multiplying the entries ofvi by the matrix on the
left hand side of (13). It is clear that if (13) holds, then thecandi-
date sequencex generated by anyf1; b1; b2; � � � bU�1g is simply
a permuted version of the candidate sequencex0 generated by us-
ing f1; 1; b02; � � � ; b0U�1 g. As a permutation does not change the
PAPR of a sequence, the sequencesx andx0 have the same PAPR.

Next we will show (13). For anyf1; b1; b2; � � � ; bU�1g, be-
causebi 2 f�1;�jg we can always write

diag[1 b1 b2 � � � bU�1℄ = �ndiag[1 1 b02 � � � b0U�1℄; (14)

for somen and someb0i 2 f�1;�jg. Multiplying both sides of
(14) by the IDFT matrixQU , we haveQUdiag[1 b1 b2 � � � bU�1℄ = QU�ndiag[1 1 b02 � � � b0U�1℄; (15)

Using the result of Theorem 1, (13) follows immediately fromthe
above expression. �

As b00 andb01 can be set to 1, we need to search for the optimalb02; : : : ; b0U�1. The cost of rotation factor optimization is reduced
to a quarter of the original PTS scheme.

4. COMPUTER SIMULATION

We carry out Monte-Carlo experiments to verify the performance
of the proposed method. We consider two cases:

1. The block size isN = 64 and the modulation symbols are
16-QAM.

2. The block size isN = 256 and the modulation symbols are
QPSK.

The oversampling factor isL = 4. A total of 100000 random
OFDM blocks are generated. We will compare our results with
the SLM method withM = 16 and the PTS method withfU =4;M = 64g. The rotation factors of all methods are optimally
chosen from the setf�1;�jg and they are obtained by using an
exhaustive search. For comparison, we also include the PTS ap-
proach in [5] withfU = 4;M = 8g andfU = 8;M = 16g.
For our proposed PTS method, we consider the two cases offU =4;M = 16g and fU = 8;M = 16g. For U = 8, there are
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Figure 1: Proposed PTS approach for U=4, where the twiddle factor�k = ej 2�kNL .46 independent sequences and we randomly pick 16 of the46 se-
quences as our candidates for PAPR computation.

First let us look at the complexity of these methods. Table 1
and Table 2 show the complexity of different schemes forN = 64
andN = 256 respectively. For the IFFT algorithm, we use the
number of multiplications and additions listed in [9]. We have ex-
cluded all trivial multiplications (by0;�1;�j) and also taken into
consideration the fact that the sequences are zero-padded.From
the tables, we see that the SLM method has the highest complex-
ity and the proposed method has the lowest complexity. For the
case ofU = 4, we find that the number of multiplications in our
method is about1=3 of that in the original PTS method, and the
number of additions is about1=5 of the original PTS scheme. For
the case ofU = 8, our method still has a much lower complexity
than the original PTS scheme withU = 4.

The performances of PAPR reduction of these method are shown
in Fig. 2 and Fig. 3 for the cases ofN = 64 andN = 256 respec-

tively. From the plots, we see that the SLM method has the best
performance. For a CCDF of10�3, the performance of the origi-
nal PTS scheme withfU = 4;M = 64g is about 0.54dB worse
than the SLM method forN = 64 and it is about 0.33dB worse
than the SLM method forN = 256. The performance of the pro-
posed method withfU = 4;M = 16g is only 0.46dB worse than
the original PTS scheme forN = 64 and it is only 0.38dB worse
forN = 256. Notice that the number of independent candidates in
the proposed method isM = 16 which is much smaller than that
in the original PTS scheme (M = 64). Moreover, our method has
a much lower computational complexity. Comparing the original
PTS scheme with our method withfU = 8;M = 16g, we find
that the two methods have a comparable PAPR performance but
our method has a lower cost (see Tables 1 and 2). Also note from
Fig. 2 and Fig. 3 that the method in [5] has a worse performance
than our method even though it has a higher complexity.



Table 1: Complexity comparison,N = 64 andL = 4
MULs ADDs

SLM approach,fM = 16g 14336 24576
Original PTS,fU = 4;M = 64g 1508 50176

[5], fU = 4;M = 8g 1508 7168
[5], fU = 8;M = 16g 2072 33536

Proposed,fU = 4;M = 16g 515 9216
Proposed,fU = 8;M = 16g 1220 13056

Table 2: Complexity comparison,N = 256 andL = 4
MULs ADDs

SLM approach,fM = 16g 73728 131072
Original PTS,fU = 4;M = 64g 10020 200704

[5], fU = 4;M = 8g 10020 28672
[5], fU = 8;M = 16g 16520 134144

Proposed,fU = 4;M = 16g 3083 38912
Proposed,fU = 8;M = 16g 5376 54272

4 6 8 10 12
10

−3

10
−2

10
−1

10
0

PAPR
0
(dB)

P
r[

P
A

P
R

>
P

A
P

R 0]

Unmod
SLM, M=16
Orig. PTS, U=4, M=64
[5], U=4, M=8
[5], U=8, M=16
Prop. U=4, M=16
Prop. U=8, M=16

Figure 2: PAPR comparison, N=64 and the symbols are 16-QAM.

5. CONCLUSIONS

In this paper we have proposed a new way of partitioning the input
symbol into disjoint subblocks in the PTS scheme. By using the
DIT structure for IFFT, the complexity of IFFT computation can
be significantly reduced. Moreover with new partition, the first two
rotation factors can be set to 1 without affecting the PAPR reduc-
tion ability. Simulation results show that the PAPR of the proposed
method is only slightly worse than the original PTS method but it
needs a much smaller number of multiplications and additions.
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[4] S. H. Müller, and J.B. Hüber, “OFDM with reduced peak-to-
average power ratio by optimum combination of partial trans-
mit sequence,” Elect. Lett., vol. 33, no. 5, pp.368-369, Feb.
1997.

[5] L. J. Cimini, Tr., and N. R. Sollenberger, “Peak-to-Average
Power Reduction of an OFDM Signal Using Partial Transmit
Sequences,” IEEE ICC. vol. 1, pp. 511-515, June 1999.

[6] S. H. Han, and J. H. Lee, “PAPR Reduction of OFDM Sig-
nals Using a Reduced Complexity PTS Technique,” IEEE Sig.
Proc. Lett., vol. 11, no.11, pp. 887-890, Nov. 2004.

[7] C. Tellambura, “Improved Phase Factor Computation for the
Power Ratio Reduction of an OFDM Signal Using Partial
Transmit Sequences,” IEEE Commun. Lett., vol. 4, no. 3,
pp.135-137, Apr. 2001.

[8] A. V. Oppenheim and R. W. Schafer, “Discrete-Time Signal
Processing, 2nd edition,” Prentice-Hall, 1999.

[9] P. Duhamel, “Algorithms Meeting the Lower Bounds on the
Multiplicative Complexity of Length-2n DFT’s and their Con-
nection with Practical Algorithms,” IEEE Trans. Acoust.,
Speech, Sig. Proc., vol. 38, Sept. 1990.


