A REDUCED-COMPLEXITY PTSSCHEME FOR PEAK-TO-AVERAGE POWER RATIO
REDUCTION IN OFDM SYSTEMS

Hsien-Yu Tseng*, Yuan-Hwui Chung*,

See-May Phoong*, Yuan-Pei Lin**

*Dept. of EE & Grad. Inst. of Comm. Engr., National Taiwan Uniaipei, Taiwan 106, ROC
** Dept. Electrical and Control Engr., National Chiao TungWriisinchu, Taiwan 300, ROC

ABSTRACT

Inthis paper a reduced-complexity partial transmit seqasPTS)
approach is proposed for the reduction of peak-to-averageip

only (log, M + 1) N L-point IFFTs (wherel/ is number of can-
didates). In [5], a low complexity algorithm is proposed fhe
optimization of the rotation factors in the PTS approach [6]n
the authors proposed a gradient descent search method théind

ratio (PAPR) in OFDM systems. In the PTS scheme, we need sev-rotation factors. In [7], an improved rotation factor cortation is

eral IFFTs (inverse fast Fourier transforms) to computeptintial
transmit sequences. There are two main contributions ipdber.
Firstly, we propose to partition the input symbols into disf sub-
blocks in an interleaving manner. In this way, we can sigaiftty
reduce the complexity by sharing the arithmetic in the IFBine
putations. Secondly, we show that in the new partition se&hehe
number of rotation factors can be reduced by one withoutaffe
ing the PAPR reduction ability. As a result, the search tioralie
optimal rotation factor can be reduced by 75%. Simulaticuolts
show that the PAPR of the proposed method is only slightlyseor
than the original PTS scheme but it has a much lower complexit

1. INTRODUCTION

One major drawback of the orthogonal frequency divisiontmul
plexing (OFDM) system is its high peak-to-average poweiorat

introduced. Though the methods in [5][6][7] can greatly éovhe
cost of rotation factor optimization, the number of IFFTeded
is not reduced.

In this paper, a new method is introduced to further reduee th
complexity of the PTS scheme. By exploiting the decimaiion-
time (DIT) IFFT algorithm, we will first show that we can share
most of the computation in théog, M + 1) N L-point IFFTs. In
the special case of four partial transmit sequences, thénam-
ber of multiplications needed for computing all four PTShe t
same as that of on& L-point IFFT. Moreover we will show that
for the proposed method, we can set the first two rotatiorofact
(rather than one) without affecting the PAPR reductionigbdf
the PTS scheme. Thus the cost of the rotation factor optiiiza
is reduced to a quarter of that in the original PTS scheme.- Sim
ulation results show that the PAPR reduction performanchef
proposed PTS scheme is only slightly worse (less than 0.6dB)

(PAPR). In OFDM systems we use the inverse discrete Fourier the original PTS scheme but its computational complexitpigh

transform (IDFT) to process the baseband signals. Aftelyamp
the IDFT, the envelope of the transmitted samples is appratdly
Rayleigh-distributed, and the transmitted samples cae havigh
PAPR.

In the literature, many distortionless methods have been pr
posed for the PAPR reduction [1]-[7]. One effective apphofar
PAPR reduction is to generate a number of candidates ofrtriéns
ted signals and select the one with the smallest PAPR fostran
mission. The selective mapping (SLM) method [1][2] and the p
tial transmit sequences (PTS) method [4]-[7] belong to #ps
proach. In the SLM method, the candidates are generated by mu
tiplying the input modulation symbols by different rotatitactors
which are often chosen from the det 1, +5}. However, the SLM
method has a high complexity. To generafecandidates, one has
to computeM N L-point IDFT, whereN is the block size and
is the oversampling factor. Though the IDFTs can be effigrent
implemented using inverse fast Fourier transform (IFFT@whN
and L are powers oR, the computational complexity can still be
too high for many applications, especially whéf is large. To
reduce the complexity, the PTS method divides the input modu
lation symbols into a few disjoint subblocks and each sutible
weighted by a rotation factor. By doing so, the PTS schemdsee
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lower.

The paper is outlined as follows. Sec. 2 describes the SLM
and the PTS approaches. In Sec. 3, the proposed PTS appsoach i
presented. Simulation results are given in Sec. 4 and csiocisi
are given in Sec. 5.

Notation: Boldfaced lower case and upper case letters repre-
sent vectors and matrices respectively. The notaidndenotes
the transpose-conjugate Afand A7 denotes the transpose Af
As the scaling factor does not change the PAPR, for notation s
plicity, we drop the normalization factor in the IDFT. Th& x N
IDFT matrix Qv is defined a$Qn ., = e’ ¥ . The Kronecker
product of anm x n matrix A and arp x ¢ matrix B is anmp x nq
matrix given by:

ao,0B ao,n-1B

A®B=

am—-1,0B Am-1,n—1B

Throughout the paper, the IDFT si2é is assumed to be a power
of 2 so that IFFT can be employed for its implementation. When
a sequence has fewer thAhsamples, zeros are padded to the se-
guence for itgV-point IDFT computation. For conveniend¥,x 1
vectors and lengtlV sequences are used interchangeably.



2. THESLM SCHEME AND PTSSCHEME

In this section, we briefly review two techniques, namely $be
lective mapping (SLM) [1][2] and the partial transmit segqoes
(PTS) [4], for PAPR reduction in OFDM systems. L&tbe the
input block size of the OFDM system. That means, one OFDM in-
put block consists ofV modulation symbols;, and N is also the
size of inverse DFT at the transmitter. In this paper, we tietie
OFDM input block by anVx 1 vectors = [ so s SN-1 |
In an OFDM system, each symbg] is modulated by a different
orthogonal subcarrier, and the signal sent at the transmiéttob-
tained by summing up the€ modulated carriers:

N-1
p(t) =Y spe™ A0 <t < NT, (1)
n=0

whereAf = ﬁ is the frequency spacing of the subcarriers. In
practice, most OFDM systems use a discrete-time implertienta
for baseband processing. For the computation of PAPR [7], we
usually oversample(t) by a factor of L to obtain the discrete-
time signal

N-1
j2mknd fT/L
:L‘kZE e TR ASTIL g —

n=0

0,1, ,LN—-1. (2

The sequence;. can be interpreted as tiéL-point IDFT of the
input vectors padded with(L — 1) N zeros. The PAPR af;, or
the vectorx = [zo ... znz—1]7 is given by

mMaXo<k<NL-1 |$k\2
Ef|lzx[?]

PAPR(x) = @)

It is known [7] that when the oversampling factbris > 4, the
PAPR ofz(t) can be accurately approximated by the PAPR jof

with zeros), we obtairx,,, which is known as th@artial trans-
mit sequence. Eachx,, is multiplied by a rotation factol, where
b. €{£1,+j}. The candidate signal is given by

U-1
x = buxy, by € {£1, +j}. (5)
u=0

One can see that the vecteriis in fact theN L-point IFFT of the

7 sum Y7 bs.. In the PTS scheme, all the entriessp are
"multiplied by the same rotatid, . It is clear that the PTS method

is a special case of the SLM method. For a PTS scheme with
U partial transmit sequences, the number of candidate segsien
x are4Y ! (the first rotation factob, can be set td without
affecting the PAPR). Compared with the SLM method, the num-
ber of IFFT required in the PTS method is greatly reduced. To
getM = 4Y~! candidate sequences, we need to carrylpior
equivalentlog, M + 1) N L-point IFFTs. After the partial trans-
mit sequencesg,, are obtained, one needs only additions to get the
candidate sequences as in (5). A direct computation of (&)l e
M-NL-(U-1) additions. Below we will show how to further re-
duce the complexity of IFFT computation by carefully paotiing

the input blocks into s,,.

3. PROPOSED REDUCED-COMPLEXITY PTSMETHOD

In this section, we will first show how we can further reduce th
complexity of the PTS method by partitioning the input black
into U disjoint subblockss; in an interleaving manner. Then we
will prove that when the input is partitioned in this way, wenc
set the first two rotation factols = b; = 1 without affecting the
PAPR reduction ability. Becauge € {+1, +;5} and we have one
fewer free parameters, the complexity of searching for fitéral
rotation factors is reduced to 1/4 of the original PTS scheme

To explain the idea, we také = 4 as an example. And for
simplicity, we assumé. = 1, that is, there is no oversampling. In
this case, thd subblocks are given by

One commonly used performance measure for PAPR reduction is

the complementary cumulative distribution function(CQm#ich
is defined as:

CCDF(PAPRy) = Prob(PAPR > PAPRy). @)

Itis also known as the clipping probability.

The SLM Method [1][2]: In the selective mapping (SLM) ap-
proach,M independent candidates of the sequencare gener-
ated and the one with the lowest PAPR is transmitted. To gen-
erate these candidates, we multiply the modulation sympdly
randomly generated unit-magnitude constant These constants
b, are also known as rotation factors. For simplicity, we usual
chooseh,, € {1, +;}. The candidate sequenceg are obtained
by applying IFFT to the produdt,s,. One can immediately see
that the SLM method has a very high complexity. In generala to
tal of M N L-point IFFTs are needed to generdteindependent
candidate sequences. One way to reduce the complexity &eto u
the PTS method, to be described next.

The PTS Method [4]: In the PTS approach, we partition the
OFDM input blocks into U disjoint subblockss,, for0 < u <

U — 1. In other words, if the-th entry of s; is nonzero, the-

th entry ofs, is equal to zero for all # j. Moreover we have
s = >Y")s,. Applying the NL-point IFFT tos, (padded

so = [5000s4000ss ---]"

si = [05,00055000s0 ---]"

so = [005200086000s10 --]"

s3 = [000s3000s700 0s11---]" (6)

The partial transmit sequences are obtained by taking/-point
IFFT of s, and the candidate sequencés obtained by taking the
sum

3 3
x:Zbixi :ZbiQNSi; (7
i=0 i=0

whereQy isthe N x N IDFT matrix. The above implementation
needs4 N-point IFFTs. Suppose now that thé-point IDFT is
implemented using the radix-4 decimation-in-time(DIT)-TFal-
gorithm [8]. ThenQx can be decomposed as a cascadé)%f

andQq as

QN:(Q4®I%)D(I4®Q%)7 (8)

whereD is a diagonal matrix consisting of the twiddle factors:

Dy O 0 0
0 D; O 0 . i 2mkni

=l o o Dy o [/WODd,=¢""". ©
0 0 0 Dj3



Using the above decomposition and the special forms of (6),
we can write

boDoQ%SB
3 !
b1D1Qun s}
= P . 1
x ;QN{JZSZ (Q4 ®I%> b2D2Q%s’2 , (10
bngQ%Sg
wheres; = [ si Sayi  Ssy . }T is the four-fold down-

sampled version of the subbloek in (6). From the right hand
side of (10), we see that to getwe need to implement fout’-
point IDFTs rather than foul-point IDFTs as in the original PTS
scheme. Moreover whéen changes, we do not need to recompute
the vectord; Q %s'i. As Q4 has the form

1 1 1
S |
-1 1 -1’
-5 -1

Q4

—_

only additions are needed to computevhenb; changes. For the
case of the oversampling factér> 1, the same is true. The low
complexity implementation of the proposed PTS scheme uhimg
radix-4 N L-point IFFT is given in Fig. 1 for the case 6f = 4.
Notice that we need to implement only foé&é-point IFFTSs, plus
some twiddle factor’ and the4 x 4 butterflies which need no
multiplications. When the rotation factobs change, we do not
need to recompute the vectof (see Fig. 1) and only additions
are needed to compute the candidate sequeffiaen v;. The total
number of multiplications in foutV L /4-point IFFTs are the same
as oneN L-point IFFTs. Thus the complexity is reduced from
four N L-point IFFTs in the original PTS scheme to aNd.-point
IFFT. The same technique can be applied to the more geneml ca
of U subblocks wher/ is a power of 2. By using the DIT IFFT
structure, we can split aN L-point IFFT into a cascade &f L /U-
point IFFTs and/-point IFFTs. Like the case di = 4, whenb;
changes, there is no need to recompute she/U-point IFFTs
and we need only to recompute tliepoint IFFTs. In practicel/

is usually small, so the complexity of tlié-point IFFTs is small.
The complexity is thus reduced significantly.

Next we consider the rotation factors. In the original PTS
scheme, the first rotation factby can be set to 1 without affecting
the PAPR reduction ability. Below we will show that if the dis
joint subblockss; are obtained by partitioningin an interleaving
manner, then we can skt = b; = 1 without affecting the PAPR
reduction ability. This result is proven in the next two treos.

Theorem 1. For any integer n andany U = 2™ > 4, we have

Qur" =PQu, (11)

whereT' = diag[1 j j2 j(Ufl)

trix.

] and P is a permutation ma-

Proof: First let us define the diagonal matrix
A = diag1 27 /U 2%52m /U e(Ufl)Xj27r/U].

The one can verify by direct multiplication that:

QuA =P:Qu, (12)

Lo_nyxw-1)
01><(U—1)
2™ > 4, U/4 will also be an integer. From (12) we have

Ow-1)x1 _

whereP; = Becausel/

QUAnU/4 P711U/4QU.
As AU/* = T andP}"/* is a permutation matrix, we have proved
(12). m
Theorem 2. For any set of rotation factors {1, b1, b2, -+ ,bu—1},

where b; € {1, =5}, the corresponding candidate sequence x
has the same PAPR as the candidate sequence x’ generated by
using another set of rotation factors {1, 1, b5, - - - , by;_; } for some
b, € {£1,+j5}.

Proof: To prove the theorem, we first explain that it is sufficient to
prove that for any set of rotation factof$, b1, -- ,bv—1},

Qudiag1 b1 bs --- by—1] = PQudiag1 1 by --- by_4], (13)

for some permutation matri® and some);. To see this, we look at
Fig. 1 where the case &f = 4 is shown. From the figure, we see
that the candidate sequencgenerated by1,b,,--- ,by—_1} can
be obtained by multiplying the entries of by the matrix on the
left hand side of (13). Itis clear that if (13) holds, then taadi-
date sequence generated by any1, b1, bz, - - - by—1} is simply
a permuted version of the candidate sequexicgenerated by us-
ing {1,1,b5,--- ,by_; }. As a permutation does not change the
PAPR of a sequence, the sequence@sdx’ have the same PAPR.
Next we will show (13). For any{1,b:,b2,--- ,bu—1}, be-
causeb; € {£1,+j} we can always write
diagl by by --- by—1] = T"diag1 16y --- by_4],  (14)
for somen and somé); € {£1,+j}. Multiplying both sides of
(14) by the IDFT matrixQu, we have

Qudiagl by b2 -+ by_1] = QuI'diagl 165 - blU_l], (15)

Using the result of Theorem 1, (13) follows immediately frime
above expression. |
As by andb} can be set to 1, we need to search for the optimal
5,...,by_1. The cost of rotation factor optimization is reduced
to a quarter of the original PTS scheme.

4. COMPUTER SIMULATION

We carry out Monte-Carlo experiments to verify the perfonoce
of the proposed method. We consider two cases:

1. The block size iV = 64 and the modulation symbols are
16-QAM.

2. The block size isV = 256 and the modulation symbols are
QPSK.

The oversampling factor i& = 4. A total of 100000 random
OFDM blocks are generated. We will compare our results with
the SLM method withM = 16 and the PTS method withU =

4, M = 64}. The rotation factors of all methods are optimally
chosen from the sdtt1, +5} and they are obtained by using an
exhaustive search. For comparison, we also include the PTS a
proach in [5] with{U = 4, M = 8} and{U = 8, M = 16}.

For our proposed PTS method, we consider the two casgs ef
4,M = 16} and{U = 8, M = 16}. ForU = 8, there are
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Figure 1: Proposed PTS approach for U=4, where the twiddterfa® = ¢’

4% independent sequences and we randomly pick 16 offrse- tively. From the plots, we see that the SLM method has the best
qguences as our candidates for PAPR computation. performance. For a CCDF aD~2, the performance of the origi-
First let us look at the complexity of these methods. Table 1 nal PTS scheme withU = 4, M = 64} is about 0.54dB worse
and Table 2 show the complexity of different schemes¥ot= 64 than the SLM method folN = 64 and it is about 0.33dB worse
and N = 256 respectively. For the IFFT algorithm, we use the than the SLM method foN = 256. The performance of the pro-

number of multiplications and additions listed in [9]. WevhaXx- posed method witQU = 4, M = 16} is only 0.46dB worse than
cluded all trivial multiplications (by), 1, +5) and also takeninto  the original PTS scheme fd¥ = 64 and it is only 0.38dB worse
consideration the fact that the sequences are zero-padttech for N = 256. Notice that the number of independent candidates in

the tables, we see that the SLM method has the highest complex the proposed method & = 16 which is much smaller than that

ity and the proposed method has the lowest complexity. Fer th in the original PTS schemé{ = 64). Moreover, our method has
case ofU = 4, we find that the number of multiplications in our a much lower computational complexity. Comparing the owdji
method is about /3 of that in the original PTS method, and the PTS scheme with our method wifty = 8, M = 16}, we find
number of additions is abou{/5 of the original PTS scheme. For  that the two methods have a comparable PAPR performance but
the case oV = 8, our method still has a much lower complexity our method has a lower cost (see Tables 1 and 2). Also note from
than the original PTS scheme with= 4. Fig. 2 and Fig. 3 that the method in [5] has a worse performance

) than our method even though it has a higher complexity.
The performances of PAPR reduction of these method are shown

in Fig. 2 and Fig. 3 for the cases 8f = 64 and N = 256 respec-



Table 1: Complexity comparisody = 64 andL = 4

MULs | ADDs

SLM approach{M = 16} 14336 | 24576
Original PTS{U = 4, M = 64} 1508 | 50176
6], {U=4,M =8} 1508 | 7168

[6], {U =8, M = 16} 2072 | 33536
Proposed{U =4, M =16 515 | 9216
Proposed{U = 8, M = 16 1220 | 13056

Table 2: Complexity comparisoy = 256 andL = 4

MULs | ADDs
SLM approach{M = 16} 73728 | 131072
Original PTS{U =4, M =64} | 10020 | 200704
5], {U=4,M =8} 10020 | 28672
[6], {U =8, M =16} 16520 | 134144
Proposed{U = 4, M =16} 3083 | 38912
Proposed{U = 8, M = 16} 5376 | 54272
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Figure 2: PAPR comparison, N=64 and the symbols are 16-QAM.

5. CONCLUSIONS

In this paper we have proposed a hew way of partitioning thatin

symbol into disjoint subblocks in the PTS scheme. By usirg th

DIT structure for IFFT, the complexity of IFFT computatioarc
be significantly reduced. Moreover with new partition, thistfiwo
rotation factors can be set to 1 without affecting the PARRIce
tion ability. Simulation results show that the PAPR of thepmsed
method is only slightly worse than the original PTS methotibu
needs a much smaller number of multiplications and addition
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