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ABSTRACT

The pseudo-circulant matrices arise naturally in the block
filtering application of multirate systems. More recently,
there has been considerable interests in pseudo-circulants
for the applications of precoding and discrete multitone com-
munications systems. In these systems, a scalar FIR channel
P(z) is cast as a pseudo-circulant channel matrix. Many
important channel properties have been derived from the
Smith form and the decomposition of pseudo-circulants. In
this paper, we will show that the Smith form of an FIR
pseudo-circulant matrix can be given in terms of the zeros
of the underlying scalar filter P(z). Once the zeros of P(z)
are known, the Smith form of the corresponding pseudo-
circulant matrix can be obtained in closed form.

1. INTRODUCTION

Pseudo-circulant matrices have found many applications in

signal processing and communication systems [1]-[8]. There
matrices arise from block filtering implementation of scalar

LTI filters [1]{3]. Fig. 1 shows the block filtering repre-

sentation of P(z) in terms of an N x N pseudo-circulant

matrix C(z). A first detailed study of pseudo-circulants

is made in [3]. One very useful property shown in [3] is

that pseudo-circulants can be diagonalized using simple or-

thonormal matrices. More recently there is growing interest

in pseudo-circulants due to their applications in communi-

cation systems such as precoding systems, discrete multi-

tone systems or transmultiplexers [2]. In these systems, a

scalar FIR channel P(z) is recast into a FIR pseudo-circulant
matrix C(z). The matrix formulation greatly facilitates the

analysis of the transmitting and receiving systems.

It is well-known that, polynomial matrices in 2 ! can be
diagonalized using unimodular matrices, called Smith form
decomposition. The decomposition has been demonstrated
to be a very important tool for channel analysis [4]. As the
decomposition is given in terms of FIR matrices, it is also
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useful for the design of FIR transceivers. Smith form de-
composition is employed in [5][6][8] for the design of ISI
free FIR transceivers. Important properties of the under-
lying scalar filter P(z) can be directly linked to the Smith
form of the pseudo-circulant channel matrix C(z), [6][7].
For example, the minimum redundancy for the existence of
FIR DMT transceivers is equal to the number of nontrivial
terms in the Smith form.

In this paper we show that, given the scalar filter P(2),
the Smith form of its corresponding N x N pseudo-circulant
matrix C(z) can be given in closed form. In particular, the
zeros of P(z) can be grouped into sets of the so-called con-
gruous zeros. Using congruous sets, we will see that the
Smith form of C(z) can be determined by inspection.

2. PSEUDO-CIRCULANTS AND KNOWN RESULTS

Let P(z) be an FIR filter of order L. We can obtain the
polyhphase representation of P(z) with respect to an inte-
ger N, where N is not necessarily larger than L. Let the
polyphase representation of P(z) be given by,

N
P(z) = Z Py(z)z~t.
£=0
The scalar filter P(z) can be represented using block filter-

ing of block size IV as shown in Fig. 1. The corresponding
N x N block filter is given by,

C(z) —
Py(z)  2z71Pn-1(2) 27 1P (2)
Py (2) Py(2) 27 Py(2)
: : : M
Py_1(z)  Pn-2(2) Py(2)

Matrices in the above form are known as pseudo-circulant
matrices [1]. In what follows, we briefly review Smith form
decomposition for polynomial matrices [1] and two results
of pseudo-circulant matrices known in the literature [3][6].

1. Smith form decomposition. An N x N polynomial
matrix C(2) in 2~ can be represented using the Smith
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Figure 1: Block filtering representation of a scalar filter P(z).

form decomposition [1]
C(z) = U(2)T(2)V(2), @

where all three matrices in the decomposition are ma-
trix polynomials in the variable z~1. The matrices
U(z) and V(2) are unimodular matrices, i.e., matri-
ces with determinants equal to a constant; I'(z) is a
diagonal matrix,
I(z) = diag (vo(2) m(2) N-1(2)) .
3
Moreover the unimodular matrices U(z) and V(z)
can be so chosen that the polynomials 7y, (2) are monic
(i.e., highest power has unity coefficient) and yx(2) is
a factor of yx4+1(2), i.e., vx(2) divides Yyx+1(2). The
matrix I'(z), called the Smith form of A(2), is unique.
But the matrices U(z) and V(z) are not unique. The
decomposition can be obtained using a finite number
of elementary row and column operations [1].

‘2. Diagonalizaion using orthonormal matrices, [3]. Let

C(z) be a pseudo circulant matrix of the form in (1).
The the matrix C(2") be can diagonalized using or-
thonormal matrices [1][3]. In particular,

CzM) =D(2)WZ(:)W'D(z"}), @)

where
B(z) = diag (P(z) P(zW™1) PaW-N+1))
and

D(z) = diag (1 27! ZmNHY

The matrix W is the N x N DFT matrix given by,
1
vN
The k-th diagonal entry of £(z2) is P(zW ~*).

(Wlkn = W**  where W =e~927/N,

3. Zeros of Pseudo-Circulants [6]. Suppose the under-
lying scalar filter P(z) is a causal FIR filter of or-
der L. Let the zeros be oy, for £ = 1,2,--+, L and
P(z) =po Hf;l(l — a2z~ 1). Then det C(2) is also
a causal FIR filter of order L. The zeros of det C(2)
are a?’, for{ =1,2,--+, L. Inparticular,

L
det C(z) = p§ [[(1 - a2’z7h). 5)
=1

Remarks. Note that, the diagonalization in (4) gives us

the following decomposition of C(z),
C(2) = DE/NMYWE (/N YWDz~ 1/V).

The expression contains 2 ~'/V _ a fraction of a delay, which
can not be realized with a finite cost. Nonetheless the di-
agonalization is important from a theoretical viewpoint as
it is a link of C(z) and the underlying scalar filter P(2).
It is very useful for the derivation in Section 3. On the
other hand, notice that the matrices in the Smith decompo-
sition U(z), V(2) and I'(z) are all FIR and causal matrices.
They can be used in the analysis of FIR transceivers [4][5].
They can also be incorporated directly in the design of FIR
transceivers for channel equalization [8].

3. SMITH FORM OF PSEUDO-CIRCULANTS

In this section, we will derive the Smith form I'(z) of the
pseudo-circulant matrix C(z). We will see that given the
zeros {a}}.; of the scalar filter P(z), the diagonal terms
v (2) of the Smith form in (3) can be given in terms of o,
in closed form.

Consider the Smith form decomposition in (2). Since
det U(z) and det V() are both constants; we have

det C(2) = cdet T'(z) = cIly ' va(2),

where
¢ = det U(z) det V(2).
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This means that the collection of zeros of 7, (2) forms the
zeros of det C(z).

Definition 1 Congruous zeros. A set of zeros
B= {akjiakza”'akq}
of P(2) are congruous with respect to N if

(i) Oy, 0y, - Q, are distinct and,

.. N _ — N
(i) ap =ap = - =y, -

The zeros that are congruous are distinct but their mag-
nitudes are the same and their angles differ by an integer
multiple of 2 /N. They can be expressed as the rotation of
each other by integer multiples of 2 /N, i.e.,

ay; = ap, W, (6)

whereW:e—j21r/N’1 <n;<N,j=12,--,q.

As congruous zeros are distinct, the numbers n; are dis-
tinct. The results in (5) show that the zeros of det C(z) are
obtained by raising the zeros of P(z) to the power N. So,
when P(z) has a set of ¢ congruous zeros, det C(z) has a
zero of multiplicity g.

Lemma 1 Let C(z) be a pseudo-circulant matrix with Smith

form decomposition as given in (2) and diagonalization of
C(2V) in (4). Then,

rank(C(z")) = rank(E(z)) = rank(T'(z")), V.

Proof: The rank of C(z™) is the same as the rank of (z) as
‘W and D(2) in (4) are nonsingular. On the other hand, the
matrices U(z) and V(2) in the Smith form decomposition
(2) are unimodular; they are nonsingular for all z. Therefore
the rank of C(zV), £(2) and I'(2") are the same for all z.

AAA

Lemma 2 Let B = {ag,,Qk,, " ,0,} be a set of con-
gruous zeros. Suppose no other zeros can be included in B
to form a larger congruous set. Then,

I rank(Cle )) =N -g¢

2. The diagonal terms () in the Smith form of C(2)
satisfy the property that exactly q terms have the fac-
tor (1—cy, 271). The q terms are YN—q(2), YN—q+1(2),
oo, IN=1(2).

Proof: Consider the terms on the diagonal of X(2) in (4).
Observe that

P(ZW—nj)lz=m., = P(ay, W)

As the zeros g, , gy, - -
expressed as in (6) and

, Q@ are congruous, they can be

P(W™")|:=an, = Plax;) =0,
i=1,2,-,q.
Therefore, we have
rank(2(2)) s, = N ~ ¢.
By Lemma 1, this implies that
rank(C(e))) = rank(T(el))) = N — .

This means that ¢ of the diagonal terms {y4(z)} contain
the factor (1 — ) 27"). Because vi(2) divides Y+1(z2),
we conclude that the last ¢ terms contain the factor (1 —
af 271); we arrive at the second result of the Lemma.

AAA

In other words, whenever P(z) have a set of ¢ congru-
ous zeros {Q,,0,, - , 04, }, the scalar filter det C(2)
has a zero of multiplicity ¢ at a}.. The q zeros at g,
spread out into ¢ diagonal terms of the Smith form. No-
tice that, when P(z) has double zeros at a, det C(z) has
double zeros at &V . However, double zeros of P(z) are not
considered congruous zeros by definition; the double zeros
of det C(z) at a” do not spread out into two diagonal terms
of the Smith form.

Lemma 2 provides us with the link between congru-
ous zeros of the scalar filter P(z) and the Smith form of
C(2). Let us partition the zeros of P(z) into sets of con-
gruous zeros. Each set contains either congruous zeros or
a single zero and no two sets can be combined to form a
larger congruous set. In this case, the number of congru-
ous sets is minimum. Say, there are total s congruous sets,
By, Bs, -+, B,. Denoting the cardinal of B; as £;, we have

j=t

Without loss of generality, we assume
£ <y < L
Let
Bj = {aj1, 52 a1 § =128 (7)

Using Lemma 2, we see that det C(z) has a zero of mul-
tiplicity £; at a}';. This means that yN—g(2), for k =

1,2,---,¢; contains the factor (1 — a;-‘,’lz*l). Therefore
YN —k(2) contains every factor (1 — aj-\"lz'l) with £; > k.

For k > {,, we have yy_1(z) = 1. Summarizing, we have
the following theorem.
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Theorem 1 Let the zeros of P(z) be partitioned into mini-
mum number of congruous sets, By, Bz, -+ , By, where B;
are as given in (7). Then the Smith form T'(z) of the pseudo-
circulant C(z) has diagonal terms given by,

s
H (1_0;'\,{12_1)7 k=1’2:"' aeaa
i=1
IN-k(2) = Qg >k
1, otherwise.

®
Using the above theorem, one can determine the Smith
form of any N x N FIR pseudo circulant matrix C(z) by
inspection once the zeros of the corresponding scalar filter
P(2) are known. Theorem 1 implies that the number of
nontrivial terms in the Smith form is £, i.e., the cardinal of
the largest congruous set. This property has an important
application in DMT transceiver design, where the minimum
redundancy for the existence of FIR transceivers is equal to
the number of nontrivial terms in the Smith form [6].

4. EXAMPLE

Suppose the scalar filter P(z) have order L = 5 and P(z)
is given by

Plzy=1-z"t—2z7% 4273,

The zeros of P(z) are {1,1,—1, 7, —j}. Let us consider the
Smith form I'(z) of the pseudo-circulant matrix for N =
2,3,4.

1. N=2. The two zeros at 1, —1 are congruous and the
two zeros at §, —j are congruous. The minimum num-
ber of congruous sets is 3. The congruous sets are
{1}, {1,-1}, and {j, j}. The zeros of det C(z) cor-
responding to the congruous sets are {1}, {1,1}, and
{-1,-1}. We have y(2z) = (1 — 2~1)(1 4+ z71),
and v1(2) = (1 + z7!)(1 — 2~1)2. The Smith form
T'(z) of C(2) is

(== 42 0
T —( 0 (1-2712(1 + 271)

2. N=3. In this case, no two zeros are congruous. Each
congruous set has only one entry, {1}, {1}, {-1},
{5}, {—7} and the zeros of det C(2) corresponding
to the congruous sets are {1}, {1}, {—1}, {—;} and
{7}. We have 0(2) = m(z) = 1, and 72(2) =
(1-2712(1+27)(1 + 272). The Smith form I'(z)
of C(z) is

1 0 0
T(z)=(0 1 0
(0 0 (1—2'1)2(1+z“1)(1+z"2))

Although det C(2) has double zeros at z = 1, these
two zeros do not come from a congruous set; they do
not spread out into two terms in the Smith form.

3. N=4. There are two congruoussets, {1}, and {1, -1, 7, —5}.
The corresponding zeros of det C(2) are {1}, {1,1,1,1}.

Therefore, y0(2) = 11(2) = 72(2) = 1 — 271, and
v3(z) = (1 — 271)2. The Smith form I'(z) of C(z)
is

1-21 0 0 0

0 1-2"1 0 0

L(z) = 0 0 1-21 0
0 0 0 (1-z"1)?

The example demonstrates that the number of nontrivial
terms in the Smith form varies with the dimension N. It
may increase as [V increases.
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