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ABSTRACT

The DMT (discrete multitone modulation) transceivers
have been shown to be a very useful technique for data
transmission over frequency selective channels. The
DMT scheme is realized by a transceiver that divides
the channel into subbands. The eÆciency of the scheme
depends on the frequency selectivity of the tranceiving
�lters. The �lterbank transceiver or DWMT (discrete
wavelet multitone) system, has been proposed as an im-
plementation of DMT transceiver that has better fre-
quency band separation. In this paper, we show how to
design �lterbank transceivers that have good frequency
selectivity and at the same time cancel ISI completely.

1 Introduction

The discrete multitone modulation (DMT) is now a
widely used technique for high speed transmission over
channels such as digital subscriber loops [1]-[3]. In the
DMT scheme, the channel is divided into subbands,
each with a di�erent frequency band. The transmission
power and bits are judiciously allocated according to the
SNR (signal to noise ratio) in each band [3]. This is sim-
ilar to the water pouring scheme for discrete transmis-
sion channels. The realization of the DMT scheme re-
lies on the design of a transceiver that e�ectively divides
the channel into subbands of di�erent frequency bands.
Band separation is of particular importance when the
channel is highly frequency selective and the SNRs of
di�erent frequency bands exhibit large di�erences.
The DFT based DMT system has been proposed as

a practical implementation of DMT system [1]. Very
good transmission rate can be accomplished. In the
DFT based systems, the transmitter and receiver con-
sists of DFT �lters, which have limited frequency se-
lectivity. Narrowband noise could induce serious im-
pairment due to the poor stopband of the receiving �l-
ters [4]. For better frequency band separation, Sandberg
and Tzannes [5] proposed the so called DWMT (discrete
wavelet multitone) system, in which perfect reconstruc-
tion �lter banks are used as the transceiver. The trans-
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mitting and receiving �lters have excellent frequency
separation property inherited from good �lter bank de-
signs. However, when the channel is not ideal, �lterbank
transceivers obtained from perfect reconstruction �lter
banks do not have ISI free property. Performance eval-
uation conducted in [6] shows that the resulting ISI can
seriously degrade the system performance. To reduce
the amount of ISI, inter- and intra-subband equaliza-
tion are performed on the receiver outputs in [5][7]. So
far, there is no methods for designing ISI free �lterbank
transceivers over frequency selective channels.

In this paper we will develop design methods for
FIR �lterbank transceiver with ISI free property using
polyphase approach. We will use over-interpolated �l-
ter banks to introduce redundancy, which enabling us to
cancel ISI completely. Two methods will be proposed for
designing FIR transceivers with zero ISI.

2 Polyphase Representation of Filterbank

Transceivers

Consider Fig. 1, where an M -subband �lterbank
transceiver is shown. The channel is represented by an
FIR �lter P (z) and an additive noise e(n). The channel
�lter P (z) is assumed to be FIR of order L, which is a
reasonable assumption after time domain equalization.
The �lters Fk(z) and Hk(z) are called transmitting and
receiving �lters respectively. When the interpolation ra-
tio N > the number of subbands M , we say it is over
interpolated and redundancy is introduced in this case.

Figure 1: An M -subband �lterbank transceiver over a
non ideal channel P (z).



Using polyphase decomposition we can decompose the
k-th transmitting �lter Fk(z) with respect to the integer
N [10],

Fk(z) =

N�1X
n=0

Gn;k(z
N)z�n: (1)

Writing the polyphase representation for all the M

transmitting �lters, we have

[F0(z) F1(z) � � � FM�1(z)] = [1 z�1 � � � z�N+1]G(zN)

where [G(z)]n;k = Gn;k(z); 0 � k < M; 0 � n < N:

The matrix G(z) is the polyphase matrix of the trans-
mitter. Using the noble identity [10], we can interchange
the expander andG(zN ). The transmitter can be imple-
mented using its polyphase matrix as shown in Fig. 2.
In a similar manner, we can decompose the receiving
�lters as

Hk(z) =
N�1X
n=0

Sk;n(z
N )zn; (2)

Then by invoking the noble identity, the receiver can be
redrawn as Fig. 2. The receiving �ltersHk(z) are related
to the M �N polyphase matrix S(z) of the receiver as:0
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where[S(z)]k;n = Sk;n(z); 0 � k < M; 0 � n < N (3)

Decomposition of the Channel

Using polyphase representation, we can decompose
the channel as

P (z) = P0(z
N ) + P1(z

N)z�1 + � � �+ PN�1(z
N )z�N+1:

(4)
Applying the polyphase identity from the multirate the-
ory [10], it can shown that the N �N system from y(n)
to by(n) in Fig. 2 is in fact an LTI system C(z). The
transfer matrix C(z) is pseudo-circulant [10] with the
�rst column given by,�

P0(z) P1(z) � � � PN�1(z)
�T
: (5)

Usually the interpolation ratio is chosen to be the
same as the order L of P (z). In this case, the N

polyphases of P (z) are constants and the last N �L�1
polyphases are zero. The matrix C(z) can be parti-
tioned as an N �M constant matrix C0 and an N �L

FIR causal matrix C1(z) that is of order 1,

C(z) = [ C0|{z}
N�(M)

... C1(z)| {z }
N�L

]: (6)

Figure 2: The polyphase representation of the transmit-
ter and receiver in a �lterbank transceiver.

3 Filterbank Transceivers with ISI Free Prop-

erty

From the polyphase decomposition in Fig. 2, we see that
even though multirate building blocks are used in a �l-
terbank transceiver, it is in fact an LTI M -input M -
output system. The transfer matrix T(z) of the overall
system can be expressed as

T(z) = S(z)C(z)G(z): (7)

The overall system is free from ISI if T(z) is the identity
matrix except delays. In the absence of channel noise the
outputs of an ISI free �lterbank transceiver are identical
to the inputs except delays and scalers.
Consider the transmitter G(z) of the form,

G(z) =

�
G0(z)
0

�
: (8)

Every input block of size M goes through an M �M

transfer matrix, and L zeros are inserted between every
two blocks before transmission. Then we have

C(z)G(z) = C0G0(z):

In this case the system is ISI free if

S(z)C0G0(z) = I: (9)

Thus, the channel dependent term becomes a constant
matrix C0. The receiver S(z) can be any left inverse for
C0G0(z). The following lemma gives us the condition
for an ISI free FIR transceiver [9].
Lemma 1. Suppose the transmitter is as given in

(8). Then there exist FIR solutions for S(z) if and only
if the inverse of G0(z) is FIR. In this case, the solution
of the receiver is of the form

S(z) = G�1
0 (z)B; (10)

where the M � L matrix B is any left inverse of C0.

4 Design of FIR ISI Free Filterbank

Transceivers

It is known that any causal FIR matrix with an FIR
inverse can be factorized as [11]

H(z)E(z);



where H(z) is causal FIR orthogonal and E(z) is causal
FIR unimodular. The class of FIR orthogonal matrices
can be completely factorized into some basic building
blocks [10]. There are also classes of unimodular ma-
trices that have been shown to be very useful in �lter
bank designs [12]. We propose two design methods for
FIR �lterbank transceivers with ISI free property: one
is based on FIR orthogonal matrices and the other is
based on unimodular matrices.

4.1 Design based on Orthogonal Matrices

Let us consider the case where G0(z) is FIR and
C0G0(z) is FIR orthogonal, i.e.,�

C0G0(e
j!)
�y �

C0G0(e
j!)
�
= I:

Such a construction has the advantage that the receiver
can be simply chosen as S(z) = eG0(z)C

T
0 . Further-

more in the case of AWGN noise source, the channel
noise will not be ampli�ed by the receiver; the average
receiver output noise power is the same as the receiver
input noise power. Observe that matrix C0 can be de-
composed using SVD (singular value decomposition),

C0 = U

�
�

0

�
N�M

V;

where U and V are respectively N � N and M �M

orthogonal matrices. The matrix � is diagonal and
[�]

2
k;k for k = 0; 1; � � � ;M � 1 are the eigenvalues of

CT
0C0, which are nonzero as C0 has full rank. It can

be shown that if C0G0(z) is FIR and orthogonal, the
matrix G0(z) is necessarily of the form

G0(z) = VT��1Q(z); (11)

where Q(z) is an arbitraryM �M FIR orthogonal ma-
trix. Partition U as

U = [ U0|{z}
N�M

U1|{z}
N�L

]: (12)

Then the product C0G0(z) assumes the form

C0G0(z) = U0Q(z):

In this case ISI free property can be obtained by choos-
ing the receiver S(z) as

S(z) = eQ(z)UT
0 :

However the above equation only gives one possible
ISI free solution. To obtain all possible solutions, we
note that the ISI free condition only requires that S(z)
be a left inverse of C0G0(z). As C0G0(z) is of dimen-
sion N �M , the receiver S(z) is not unique. In fact, we
can incorporate the left null space of U0 and choose

S(z) =
�eQ(z) �(z)

�
UT ; (13)

where �(z) is an arbitrary M �L FIR transfer matrix.
The 
exibility can be exploited to improve the frequency
selectivity of the receiving �lters or to minimize the total
output noise power [8].

4.2 Design based on Unimodular Matrices

The FIR unimodular matrices, unlike orthogonal ma-
trices, do not allow factorization in general. However,
a particular class of unimodular has been shown to be
very useful in designing M -subband �lter banks. Using
polyphase matrices that belongs to this class, we can de-
sign analysis and synthesis �lters with sharp transition
bands and good stopband attenuation. The unimodu-
lar matrices in this class can be written as a product
of lower-triangular and upper-triangular matrices of the
following form

�(z)	(z)

where the matrices�(z) and	(z) are respectively lower
triangular and upper triangular FIR matrices given by,

�(z) =

0
BBBBB@

D0 0 � � � 0
�1;0(z) D1

�2;0(z) �2;1(z)
...

. . .

�M�1;0(z) �M�1;1(z) DM�1

1
CCCCCA ;

	(z) =

0
BBBBB@

1 	0;1(z) 	0;2(z) � � � 	0;M�1(z)
0 1 	1;2(z) 	1;M�1(z)
0 0 1
...

. . .

0 1

1
CCCCCA ;

where Dk are constants and, �i;j(z) and 	i;j(z) are
FIR �lters. It can be immediately veri�ed that such
a product matrix �(z)	(z) is a unimodular matrix as
det�(z) = �M�1

k=0 Dk and det	(z) = 1. Therefore, its
inverse is also FIR.

Consider the following choice of receiver and transmit-
ter pair that is based on the above class of unimodular
matrices,

S(z) =
�
�(z)	(z) �(z)

�
UT ;

and G0(z) = VT��1 (�(z)	(z))
�1
; (14)

where �(z) is an arbitrary M � L FIR transfer matrix.
Using the partition of U =

�
U0 U1

�
in (12), the re-

ceiving �lters Hk(z) can be represented by

0
BBB@

H0(z)
H1(z)

...
HM�1(z)

1
CCCA = �(zN )	(zN )UT

0 d(z) +�(zN)UT
1 d(z);

where d(z) is as given in (3). Let0
BBB@

�0(z)
�1(z)
...

�M�1(z)

1
CCCA =	(zN)UT

0 d(z):



Then, we have Hk(z) given by,

H0(z) = D0�0(z) + �T0 (z
N )UT

1 d(z)

H1(z) = �1;0(z)�0(z) +D1�1(z) + �T1 (z
N)UT

1 d(z)

...

HM�1(z) = �M�1;0(z)�0(z) + �M�1;1(z)�1(z)

+ � � �+DM�1�M�1(z) + �TM�1(z
N)UT

1 d(z);

where �Tk (z) is the k-th row of �(z). We can start the
optimization process by designing D0, �0(z) and the 0-
th row of �(z) to obtain H0(z). As �0(z) is already
determined in the design of H0(z), the �lter H1(z) is
designed by optimizing �1;0(z), D1, �1(z) and �T1 (z). In
a similar manner we can continue on to the optimization
of H2(z), H3(z), � � � , and HM�1(z).
Note that in the design based on orthogonal matrices,

the receiving �lters are optimized simultaneously. Also
all the transmitting �lters have the same length and all
the receiving �lters have the same length. In the uni-
modular matrices based design, the �lters are designed
one by one. The �lters that are designed earlier will not
be a�ected by the optimization of other �lters later. In
this case, the �lters can have di�erent length. Also, as
the �lters are designed one by one, the optimization also
converges faster than orthogonal design.
Design Example. Design Using Unimodular Ma-

trices. The LTI channel to be used in the example is
P (z) = 1 + 0:8z�1. The order of P (z) is L = 1. We
chooseM = 8 and N = 9. The transmitter and receiver
are as given in (14). The matrices �(z) and 	(z) are
of order 3. The resulting the magnitude responses (dB)
of the transmitting and receiving �lters are shown in
Fig. 3. The stopband attenuation of the receiving �lters
are around 22 dB.
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