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ABSTRACT 
The discrete multitone modulation (DMT) systems have been 
widely used in various applications. The DMT system can 
be considered as a dual of a subband coder, obtained by us- 
ing the synthesis bank as the transmitter and analysis bank 
as the receiver. In designing optimal subband coders, the 
objective is to minimize output quantization noise, whereas 
in the problem of designing optimal DMT system, the ob- 
jective function to be minimized is the transmitted power. 
In this paper we will show that the design of optimal DMT 
systems can be formulated as a hypothetical design problem 
of optimal subband coders. The solution of optimal DMT 
system can be obtained using existing design methods for 
optimal biorthogonal subband coders. 

1. INTRODUCTION 

The discrete multitone modulation (DMT) systems have been 
shown to be a very useful for transmission over frequency 
selective channels [ 1][2][3]. Recently there has been con- 
siderable interest in  the design of optimal DMT systems 
[4][5]. Fig. I shows an M-band DMT system over a fre- 
quency selective channel C(z )  with additive channel noise 
e(n). The transmitting and receiving filters are respective- 
ly T k ( z )  and R k ( z ) ,  and the DMT system V is denoted by 
D = {Tk(z),Rk(z)}. The inputs zk(n) of the transmitter 
are modulation symbols, e.g., PAM or QAM symbols. Each 
symbol of the k-th band contains b k  bits. The average bit 
rate is b = 1/M CE;' b k .  We say the DMT system is per- 
fect if the outputs i 2 k ( n )  = zk(n), for k = 0,1,. . . , M - 1 
in the absence of channel noise e(n) .  In this case, there is 
no inter- and intra-band ISI. When there is channel noise, 
zk(n) = ~ k ( n )  + e k ( n ) ,  where the noise ek(n)  of the k- 
th band comes entirely from the channel noise e(n) .  For a 
given average bit rate, the optimal DMT system minimizes 
the transmitted power P ,  i.e., the variance of the transmitted 
signal ~ ( n )  as indicated in Fig. I .  
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The M-band DMT system can be viewed as a dual of 
an M-band subband coder (Fig. 2) by interchanging the 
analysis and synthesis bank. The filter bank with analysis 
filters Hk(z )  and synthesis filters Fk(z),  denoted by F = 
{ H k ( z ) ,  Fk(z )} ,  is said to be biorthogonal or have perfect 
reconstruction (PR) property if 

(Fk(ej")Hm(ejW))lM = 6(k - m), 

where 4 M denotes M-fold decimation. When there is 
quantization noise, the output 2(n) = ~ ( n )  + q(n), where 
q(n) comes entirely from the quantization noise q k ( n ) .  A 
PR filter bank is called orthonormal if F(ej" )  = H*(ej").  
For a given class of filter banks, the optimal solution is one 
that minimizes the output noise variance 0:. 

In the context of optimal subband coder design, great 
advance has been made recently [6][7][8][9][ 101. It has 
been shown that, for the class of orthonormal filter banks, 
the Principle Component Filter Bank (PCFB) minimizes the 
output noise variance 0 4 2 .  For the design of biorthogonal fil- 
ter banks, the structure of cascading orthonormal (ParaUni- 
tary) filter banks with pre- and post-filters (PPU structure) 
is proposed in [ 1 I]  to minimize the output noise. Recently, 
Moulin et. al. show that [IO] there is no loss of generali- 
ty in assuming the PPU structure in the design of optimal 
biorthogonal filter banks. More recently, i t  is shown that 
PCFB is also optimal for designing DMT with orthonormal 
transmitter [5].  

In this paper, we will formulate the design problem of 
optimal DMT systems and point out the duality in the de- 
sign of optimal DMT systems and optimal biorthogonal fil- 
ter banks. We will show that the design of optimal perfect 
DMT systems can be converted to the design problem of a 
hypothetical subband coder and hence can be solved using 
existing techniques for designing optimal biorthogonal filter 
banks in most cases. 

2. THE DMT SYSTEM 

In this section, we will formulate the problem of designing 
optimal DMT system for a given channel C ( z )  and channel 
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transmitter receiver 

Figure 1: An M-band DMT system over a frequency selective channel C ( z )  with additive channel noise e(n) 

band is u:k = s,'" S e e ( e 3 w ) l R k ( e 3 W ) 1 2 g ,  where See(eJW) 
is the power spectrum of the channel noise e (n ) .  Using (1) 

x(n)  and the above expression for vz,, we obtain the following 

analysis bank sythesis bank 

Figure 2: An M-band subband coder. 

noise e(.). For simplicity, we assume x k ( n )  are PAM sym- 
bols. Each of the symbols x k ( n )  of the k-th band carries 
b k  bits. The average bit rate is b = 1/hl b k .  In this 
case, the probability of symbol error of the k-band is relat- 
ed to b k ,  the variance of k-th band symbols 02, and the k-th 
output noise variance o:, by 

Pe(lc) = 2(1 - 2-b")Q 

where Q(y)  = 
probability of error Pe for all bands, we have 

JYm e- t2/2dt ,  for y 2 0. Given a fixed 

fl;, = g ( P e r b k ) g : , ,  (1) 

Trunsmittedpower. Assuming the input modulation sym- 
bols X k ( 7 2 )  are white and uncorrelated, which can always be 
done with proper interleaving. The transmitted power P is 
given by 

M-1 

p = l l t k l l ~ ~ ~ , ,  (2) 
k=O 

where I l t k l l i  = E, ) t k ( n ) I 2  is the energy of the k-th trans- 
mitting filter. On the other hand, the output noise of the k-th 

3. OPTIMAL BIORTHOGONAL SUBBAND 
CODERS 

An M-band filter bank F = {Hk(z ) ,Fk ( z ) }  is as shown 
in Fig. 2. The quantization noises q k ( n )  are usually as- 
sumed to be wide sense stationary random processes that 
are white, zero mean and uncorrelated. The variance of the 
output quantization noise q(n) is given by 

M - 1  

k=O 

where I l f k l l ;  = E, l f k ( n ) l z  is the energy of the k-th syn- 
thesis filter. The variance of the k-th quantization noise 
q k ( n )  is related to the variance of the k-th subband signal 
2 ) k ( n )  by a distortion function, 

U:, = D ( b k ) a : ,  7 

where b k  is the number of bits allocated to the k-th subband. 
An example of the distortion function is D ( b k )  = ~ 2 - ~ ~ ~  in 
the high bit rate case. The variance of the k-th subband 
signal U:, is given by u:k = s,"" S z z ( e ~ w ) I H k ( e ~ w ) ) 2 ~ ,  

where Szz(ejw) is the input power spectrum. Therefore, 

Principle Component Filter Banks (PCFB). In recen- 
t years, great advance has been made in the study of opti- 
mal orthonormal filter banks or the so-called Principle Com- 
ponent Filter Banks (PCFB) [6][8][9], . The developmen- 
t is based on the majorization theorem. Given 2 ordered 
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sequences {a,}?=!' and {b,}?G' with an 2 a,+' and 
b, 2 b,+l, we say {an}Fs'  majorizes {b,}?=;' if 

N N c an 2 bn, 0 i N 5 11.1 - 1, 
n=O n=O 

with equality when N = M - 1. 
Consider a class of filter banks C. The class can be the 

collection of FIR filter banks or the set of ideal filter banks. 
A filter bank F in  the class C is a PCFB for the given in- 
put Szx(ejw) if the set {o:,}&' formed by its subband 
variances majorizes the set {oht}E;' formed by the sub- 
band variances of any other filter bank F' in the class C. 
The PCFB, when it exists, minimizes the output quantiza- 
tion noise in (4). This result does not require that q k ( n )  be 
white and uncorrelated. Also the PCFB is optimal for any 
given bit allocation. In particular, it is optimal under opti- 
mal bit allocation. 

Prefilters for  Orthonormal Filter Banks. To minimize 
the quantization noise or to maximize the coding gain, [ 1 1 3  
considers a class of biorthogonal filter banks by cascading 
orthonormal or paraunitary (PU) filter banks with pre- and 
post filters (Fig. 3). This will be called PPU structure. The 

analysis bank sythesis bank 

Figure 3: An M-band filter bank with pre-filter P(z )  and 
post filter I / P ( z ) .  

analysis and synthesis filters of the biorthogonal filter banks 
are of the form 

where {Pk(e j" ) ,  PL(ejw)} form an orthonormal filter bank. 
Under high bit rate assumption D ( b k )  = ~ 2 - ~ ~ ~  and opti- 
mal bit allocation, it is shown that [ 111 the optimal prefilter 
P(ej") should be the half whitening filter for the input pow- 
er spectrum Sxx(ejw),  i.e., 

p(e j " )  = l /S :e(e jw) .  

Furthermore, {Pk(e j " ) ,  P;(ej")) should be the PCFB for 
the input power spectrum d m .  That is, the design 
problem decouples as 2 problems: the problem of design- 
ing a half whitening filter for Szx(e jw)  and the problem of 
designing the PCFB for d m .  

Optimal Biorthogonal Filter Banks. More recently, 
Moulin et. al. [ 101 shows that it is not a loss of generality 
assuming the PPU structure in designing optimal biorthog- 
onal subband coders. It is shown in [IO] that, for the ob- 
jective function in (4), we can consider filter banks that is 
the cascade of an orthonormal (paraunitary) filter bank with 
pre-filter P(ejw) and post filter l /P(e j" )  as in Fig. 3. The 
problem of designing optimal biorthogonal filter banks can 
be decoupled as the problem of designing a half whitening 
filter and a PCFB. Without assuming optimal bit allocation, 
this is true in most cases [lo]. Only in some pathological 
cases, the function D(.) is subject to the following condi- 
tions: D(.) is strictly positive, strictly convex, and In(D(.)) 
is concave. The high bit rate model D ( b k )  = c2-2bk is an 
example that satisfies the above assumptions. 

4. OPTIMAL BIORTHOGONAL DMT SYSTEM 

It is known that, when the channel C ( z )  is ideal we can ob- 
tain a perfect M-band DMT from an M-band filter bank by 
using the synthesis bank and analysis bank of an M-band 
PR filter bank as the transmitter and receiver. In particu- 
lar, given a PR filter bank F = { H k ( z ) , F k ( z ) }  the DMT 
system 'D = { F k ( z ) ,  H k ( z ) }  with transmitting filters F k ( z )  

and receiving filters HI,  ( z )  is perfect. For frequency selec- 
tive channels, the connection can be made more general as 
follows: 

Theorem 1 AJiZter bank F = { Hk ( z ) ,  Fk (2)) is biorthog- 
onal if and only if the DMT system 

is perfect over a possibly non ideal channel C(z ) .  

For every PR filter bank F = { H k ( z ) ,  Fk(z )} ,  there is an 
associated perfect DMT 2) = { F k ( z ) ,  H k ( z ) / C ( z ) } .  

Orthonormal Transmitter. In an orthonormal filter bank 
with synthesis filters Fk(ejw),  the analysis filters are simply 
F; (ej"). Consider the DMT system with transmitting fil- 
ters T k ( z )  = Fk(z) ,  where Fk(z)  are the synthesis filters of 
an orthonormal filter bank { Fkf ( z ) ,  Fk ( z ) } .  The receiving 
filters, by Theorem 1, are given by F*(ej")/C(ej").  For 
the class of DMT system with orthonormal transmitters, the 
design problem can be converted to the problem of design- 
ing an optimal orthonormal filter bank for an appropriate- 
ly defined power spectrum [4]. More recently, it has been 
shown that the design of the optimal DMT system of this 
class can be further formulated as a PCFB design problem. 
The optimal DMT system with orthonormal transmitter can 
be obtained by choosing the associated orthonormal filter 
bank F = {Fk+(z) ,Fk(z )}  to be the PCFB for the input 
power spectrum See(ejw)/lC(ejw)\2. In the following we 
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consider the more general DMT systems, where the associ- 
ated PR filter banks are biorthogonal, not restricted to the 
orthonormal case. 

DMT with PPU structure. Here we consider the case 
that the associated PR filter bank of the DMT system is of 
the PPU structure in Sec. 3. To be more specific, the trans- 
mitting filters T k ( z )  and receiving filters & ( z )  are given 
by, 

where {Pk(ejw)7 Pk+(ejw)} forms an orthonormal filter bank. 
It can be shown that [ 121 the problem of designing optimal 
DMT of this class (referred to as the DMT systems of the 
PPU class) also decouples as in the design of optimal sub- 
band coders with PPU structure. This result is summarized 
in the following theorem. 

Theorem2 Consider the DMT system of the PPU class 
with transmitting and receiving jilters as given in (6). The 
optimal prejlter P (e j” )  is a half whitening j l t e r  for  the 
power spectrum See(ejw)/lC(ejw)12. That is, 

1 
P(ej”)  = (see (e  j w  / I c (ejw ) 12 ) / 4  . 

The associated orthonomaljlter bank { Pk (ej”) ,  P: ( e j“ ) }  

should be the PCFB for the power spectrum (m) ‘I2. 

This result holds for any given bit allocation. Note that, 
in the design of optimal filter banks with a PPU structure, 
we need to assume that the quantization noise qk(n) are 
white and uncorrelated. In the DMT design problem, we 
can always perform appropriate interleaving so that the in- 
put modulation symbols x k ( n )  are white and uncorrelated. 

Optimal DMT For the design of the optimal DMT sys- 
tems for the most general class, let us consider the DMT 
system 

where H ~ ( z )  and Fk(z )  are the analysis and synthesis fil- 
ters of a biorthogonal filter bank F = { H k ( z ) ,  F ~ ( z ) } .  By 
Theorem I ,  we know there is no loss of generality in such a 
construction. The transmitted power in (3) can be rewritten 
as 

2) = {Fk(ZL H k ( Z ) / C ( Z ) }  7 

(7) 

For the above objective function, we can convert it to the 
following hypothetical filter bank design problem: consider 
the M-band filter bank in Fig. 2 with input power spectrum 

S e e ( e j w ) / l C ( e ~ w ) ( 2 .  Suppose the distortion function D ( b k )  
is replaced by g(Pe, b k ) ;  the variance of quantization noise 
gk (n) is 

cik = g(Pe, b k ) ~ : ,  . 
Then the output quantization noise a i  is given exactly by 
(7)! Note that in  the design of optimal biorthogonal fil- 
ter banks, the problem decouples as prefilter design and 
PCFB design in most cases without making assumptions 
on D(bk) .  This means that, except in pathological cases, 
we can solve the design problem of optimal perfect DMT 
systems in the same manner using the design method for 
optimal biorthogonal filter banks . 
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