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Periodically Nonuniform
Sampling of Bandpass Signals

Yuan-Pei Lin,Member, IEEE,and P. P. Vaidyanathafellow, IEEE

Abstract—It is known that a continuous time signal =(%) A
with Fourier transform X(v) band-limited to |v|<®/2 can X(v)
be reconstructed from its samplesz(T,n) with To=27/@. In /““\
the case that X (v) consists of two bands and is band-limited f Y -
to vo < |v|<v,+0®/2, successful reconstruction ofz(t) from 0 v
z(T,n) requires an additional condition on the band positions. MEN

When the two bands are not located properly, Kohlenberg showed
that we can use two sets of uniform samplesg(2Ton) and Fig. 1. Band-limited signal with bandwidt®.
z(2Ton + d,), with average sampling period Ty, to recover

z(t). Because two sets of uniform samples are employed, this

sampling scheme is called Periodically Nonuniform Sampling of A F(v)
second order [PNS(2)]. In this paper, we show that PNS(2) can
be generalized and applied to a wider class. Also, Periodically
Nonuniform Sampling of Lth-order [PNS(L)] will be developed Ll
and used to recover a broader class of band-limited signals. 0 v
Further generalizations will be made to the two-dimensional case *‘g”
and discrete time case.
Fig. 2. A lowpass interpolation filter.
I. INTRODUCTION
T is well known that a continuous time band-limited signal x(t) %25“‘“‘) x(t)
x(t) can be reconstructed from its samples.z(t) has > - >

bandwidth© as shown in Fig. 1z(t) can be recovered from . . . _

. . ] ig. 3. Reconstruction of:(¢) from uniform samples by using a lowpass
its samplesr(nT’) as long as the sampling peridd < Ty, fiter F(v).
where T, = 27/©. A lowpass interpolation filterF'(v) as

shown in Fig. 2 can be used to recowdt) (Fig. 3). Suppose

o X o]
now xz(t) has total bandwidtt, but X () consists of two | o) e
bands as in Fig. 4. Successful reconstruction frotnTp) / \ / \
depends on the relative positions of these two bands [1]. A _v'o_c —vo O vo \;MT v

necessary and sufficient condition is that the frequengy
(indicated in Fig. 4) must be an integer multiple 6f/2. Fig. 4. Band-limited signal with two bands and total bandwiélth= 2¢.

More generally, it can be shown that a much wider class of

signals with total bandwidt® can be recovered from samplessjg 5 are used: the average sampling rate is &illThis

at nTo. To be more specific, define the support &f(») sampling and reconstruction scheme can be described by the
[denoted byS(X)] to be the set of frequencies for whichgiagram shown in Fig. 6. It is shown in [6] tha(t) can be
X(v) # 0. Then z() can be obtained from(nTo) if and  g,ccessfully reconstructed by properly choosigand the

only if no two frequencies ir5(.X') overlap under modul®  gynthesis filtersf,(¢) and f(¢). This is called periodically
operation [2]{5]. Such signals are calletiasfree(Zo) and ,nyniform sampling of second order [PNS(2)] [7], for there

their supports are referred to aBasfree(To) zones are two sets of uniform samples involved. Recently, general
When the two bands of(v) (Fig. 4) were not properly ;i order periodically nonuniform sampling [PNS{ and

located, Kohlenberg [6] proposed a periodically nonuniformuqqnsryction (Fig. 7) for such two-bands signals has been
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Fig. 9. An L-band signal with restricted band edges.

to the class of/(T, 2) signals [17], which is the collection of
signals whose supports are the union of two nonoverlapping
aliasfre€T’) sets! We will show that this class of signals
can be reconstructed from PNS(2) samples. An extension of
this result to the more gener8l(7, L) class usingLth-order
periodically nonuniform sampling scheme will be developed.
We will see that the 2-D counterpart of this can be shown
in a similar manner. Furthermore, the discrete time version
of these will be addressed. In this regard, we find that 1-D
discrete timeU (M, L) signals can always be reconstructed
from their first L polyphase components. However, in 2-D
discrete time casenly a subclass of/(M, L) signals allows
reconstruction fromZL polyphase components.

A. Paper Outline

In Section II-A, we provide a review of Kohlenberg’s results
[6]. The generalizations presented in later sections depend to
some extent on this review. In Section 11-B, we will show that
the reconstruction of two band signals in [6kisible although
the reconstruction filters are not stable in the Bounded Input
Bounded Output sense. The definition of stable reconstruction
will also be given in Section II-B. The results in [6] are
generalized for the more general continuous tifi€7’, L)
signals. The generalization to discrete tifi¢, L) signals
is straightforward, and the main results will be mentioned
briefly in Section Ill. We present, in Section IV, the 2-D
version (continuous time) of the theorem given in Section
lll. Generalizations in this case follow routinely. However,

Fig. 8. Periodically nonuniform sampling and reconstruction in discrete tinthe 2-D discrete time case exhibits some unusual behavior

case.

and will therefore be addressed in greater detail in Section
V. A conclusion is given in Section VI. Some preliminary

In the discrete time case, sampling is replaced by decimégrsions of the results derived here have been presented at

tion. Periodically nonuniform sampling afth order retains
L sets of samplesg(Mn + do), z(Mn + dy),---,2(Mn +
dr—1), for some integerd. The decimated signat(Mn +
d) is called thedth polyphase component aof(n) [14];
the operation of PNS{) sampling retains theloth, d;th,
--+,dr_1th polyphase components. In [15] and [16], PRS(

sampling and reconstruction (Fig. 8) has been considered for
a very restricted subclass @f-band signals. The subclasses
addressed therein are those signals whose frequency suppor®y

are the union oL bands, each band with bandwidth/AM and

band edges at integer multiples &f /M, e.g., the one shown
in Fig. 9 (the definition of L-band signal here is different

from that in [13]). It is shown in [16] that such ah-band
signal z(n) can be reconstructed from its firét polyphase
components, i.ex(Mn),z(Mn +1),---,z(Mn+ L —1).

In this paper, we first generalize the results in [6] and [16] 3)
to a significantly wider class of signals in terms of signal fre-

recent conferences [17], [18].

B. Notations

1) Boldfaced lower case letters are used to represent vec-
tors, and boldfaced upper case letters are reserved for
matrices. The notationd” and|A| represent the trans-
pose ofA and the absolute value of the determinant of
A.

Fourier transforms.The Fourier transform of a 1-D
continuous time signat(t) is denoted byX (v) [1]. For

a 2-D signalz(t), wheret is a2 x 1 vector, the Fourier
transform isX (v), wherev is a2 x 1 frequency vector.

For discrete time signals, the Fourier transforms of a
1-D sequence:(n) and a 2-D signak(n) are denoted,
respectively, byX (w) and X (w).

The support ofX () [denoted byS(X)] is defined as

the set of frequencies for whicK (/) # 0.

que”CY supports. The supports conS|de_red. n [6] are the unlO'I'Throughout this paper, we will assume that aliagfii€esets contain only
of two intervals, each of length. Generalization will be made finitely many intervals.
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4) AliasfredT’) signals and aliasfre@”) zonesA signal is
called aliasfre€T’) if the sampling ofx(t) with periodT
does not create aliasing. In this case, the suppak @f)
is referred to as an aliasfrég) zone. Equivalently, an
aliasfre¢T’) zone can be defined as a set such that no
two frequencies in the set overlap under modig' 7T’
operation. ~Vo+kqo

5) The notatiorU(T, L) represents the collection of Signal§:ig. 10. Shifted copies ok (~) and relative location to\(x).
whose frequency supports are the unionLohonover-
lapping aliasfre€l’) sets.

6) The characteristic functions () of a setS is defined as  Among the shifted copies ak’;(»), we see from Fig. 10
that only X; (v — koo) and X1[v — (ko + 1)o] contribute to

Xs(v) = 1, ves Y:(v) in the interval(zg, 9 + o), wherekyg = [2v0/c]([a] is
o 0, otherwise. the smallest integer greater or equalatp In particular,

Xi{v-kgo)  Xfv)  Xi(v-(ko+1)o)

Xo(l/) + Xl(l/ - /{}00'),
II. RECONSTRUCTION OFTWO-BAND v € (v, =10 + koo)

SIGNALS FROM PNS(2) SWPLES TYo) =4 xy00) 1 X[ — (ko + 1)o],
v € (—vg + koo, 1o + ).
A. Reconstruction from Periodically Nonuniform Samples [6%
ecauseX

and X are nonoverlappin can be
Consider the two-band signal in Fig. 4 and the sampling, ritten aéy) 1) PPingko (1)

scheme in Fig. 6. In each channel, the sampling period is

T = 27 /o and the average sampling periodZig2. We first

derive a general expression for the recombined signal in terms TYo(v) =

of the input and synthesis filters. The Fourier transforms of

yo(v) andy; () (as indicated in Fig. 6) in terms of the inputs

are, respectively, A similar expression can be derived fbg (1) for the interval
1 (—vo — 0, —1p). Let 5(v) be an integer function defined as

Yo(v) = T Z X(v — ko),

X(v)+ X(v — koo),

v € (vg, —vo + koo)
X))+ X[y — (ko + 1)),

v € (—vg + koo, g + o).

| ko, v € (vg, —vo + koo)
keZ B(v) _{ko—i-l, v € (1o + koo, v + o)
and and
1 .
P _ —jkdio
N =z ’;X (= ko)™, Bv) =—p(-v) [Fig. 11(a). 3)
where T' = 27 /0. (1) Then we can write (2) as
The recombined signal i& (/) = Yo (1) Fo(v) + Y1(v) F1 (v), TYo(v) = X(v) + X[v = B(v)o], forv e S(X)

and we have where §(X), the support ofX(v), is as defined in Section

X(v)= % Z X(v = ko)[Fov) + e * B ()], (2) I-B. Similarly,
kez TY:(v) = X(v)+ X[y — B(v)ole P40 for v € S(X).

As the total bandwidth of{ (») is 20 and the sampling period ysing the above two expressions i) andY; (), we have
is T in each channel, aliasing occurs ¥y(r) and Y;(v).

However, witha priori knowledge of the band position of TX(v)=X(v)[Fo(v) + 1 (V)] + X[v — B(v)o]
X(v), a proper choice ofl; and synthesis filters will allow [Fo(v) 4+ 77PN By ()],
us to cancel aliasing. The value df depends on the band for v € S(X). (4)
positions of X (v).

To see this, letXo(r) be the part ofX(v) restricted to  From (2), we see that ify(1) = F1(v) = 0 for v ¢ S(X),
positive frequencies, i.e., then X (v) = 0, for v ¢ S(X). It follows thatz(t) = «(¢) if

the following conditions are satisfied.
X)), v>0

Xo(v) = {0, otherwise. Fo(v) = Fi(v) =0, v ¢ S(X),

Fo(l/) + Fl(l/) =T,

Fo(v) + c00aepy = V€S G

cies. Then both¥, (1) and X; () are aliasfre€l’) signals. By
(1), the signalsYy () and Y1(r) consist of repeated copies
of X(v), i.e., repeated copies ofy(r) and X;(r). Because We can findfy(r) and /(1) that satisfy (5) if there existg;
the bandwidth of eactX;(v) is ¢ = 27/T and the sampling such thate=7#®*)%o £ 1 for everyr € S(X). This requires
period isT in each channel, the repeated copies of edglv) that d;8(v)/T is not an integer for any € S(X). Since

will fill the whole frequency line. B(v) takes on only four valuestko and +(ko + 1), we can

Let X; (v) be the part ofX (1) restricted to negative frequen-and {
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B(v) B. Stability of Reconstruction

kot1 Consider a signal(t) that can be reconstructed from a
ko sequencer, With ||z,|| < oo through the following equation.
—Vy—C -Vo ]— -
4 of voh voro v z(t) =3 znf(t—nl) ®)
|0 —votk,o nez
—ko-1 pointwise for eaclt. Suppose we add an error sequengdo
@) x, and the corresponding reconstructed signat(i§ + e(t).
Then the reconstruction is stable if a smgll, . ; |e,|? incurs
Folv) only a correspondingly small (in some sense) ee(@}. More
: 1 1 : precisely, the reconstruction is pointwise stable if there exists
P T R UL BT S S Ty ay independent ofr,, such that
—-e - - —-e
{ \‘— e(®)] < ellenl
‘ -
-voto  -vo O vo A Vo+o v where
i -vo—koo 12
© leall = [ S lenl? ] (2n0rm ofe,),
Fig. 11. Sketches of (a§(r) and (b) Fu(v). ez

always findd; such thate=#4e £ 1. In particular, we Observe that by Cauchy inequality, (8) yields

can find rationald; that satisfies this condition. For example,
choosed; = 1/p, wherep is an integer coprime with, and |l < llwallll £ = nT).
ko + 1, thene=78dio £ 1 for all 1. Whene=i7()dio £ 1,
we can solve (5) and obtain the synthesis filters. Therefore, Wwer the case wheré(v) is an ideal brick-wall filter with
can always recover a two-band signt) from the sequences bandwidth2z /7" (Shannon reconstruction)
x(Tn) andz(Tn + dy). Summarizing, we have the following
theorem [6]. 1 f(t = nD)|| = 1.
Theorem 1:Let x(¢) be a two-band signal, each band of
length o, as shown in Fig. 4. Ther(t) can be reconstructed In this case,
from z(nT) andz(nT+d,), T = 27 /o, through the following
formula. [#(®)] < [l (©)

holds for arbitrary sequence,, with ||z,|| <oco. From (8),
z(t) = E;x(”Tﬁo(t — D) +a(l +d)filt—nT) (6) e havec(t) = 3 ,.cz enf(t — nT) by linearity; hence
ne le(t)] < ||en]|. So the reconstruction is pointwise stable.
Returning now to the reconstruction scheme in Fig. 6, the

where d; is such thatd;3(»)/T is not an integer for any Signalswo(t) andw, (t) are
v € §(X). The synthesis filterd’; (/) are given by
wo(t) = Z x(nT) fo(t —nT)

ncz

T
Fo(l/) = m XS(X)(V) and Fl(l/) = FO(—I/) (7) and

wy(t) = Z x(nT +dy) f1(t — nT).
ncz
whereg(v) is as defined in (3) and the characteristic function o . i
xs(v) of a setS is as defined in Section I-B. _Usmg the fact that each synthesis filter is a sum of ideal filters,
Remark on the Synthesis Filter©bserve that the function It follows that
B(v) defined in (3) is piecewise constant [Fig. 11(a)]. The
synthesis filters given in (7) are functions 6fr) and are |wo(®)| < Aoflz(nT)|[ and |wi(t)] < Asl|lz(nT + d1)]].
hence piecewise constant [Fig. 11(b)]. The synthesis filters
F,(v) are constant with four different heights in four intervalsAs z(t) = wo(t) + w1(t), we have
This leads to the property that the synthesis filters can be
viewed as a linear combination of four ideal filters, each withe(t)| < |wo(t)| + [wi(f)] < Ao||lz(nD)|| + Av|lz(nT + dy)]|
bandwidth<o. This observation will be useful in showing the
stability of the reconstruction in the next subsection. and the reconstruction is pointwise stable.
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Fig. 12. Example 1. (a) Support of (), (b) shifts of X (»), (c) sketch

of B(v), and (d) sketch offp(v).
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is T/L. As the total bandwidth of:(¢) is Lo; aliasing occurs
in each channel. We will see that judicious choice of delays
d¢ and synthesis filters enable the reconstruction (@} from
PNS L) samples.

In the /th channely,(¢) contains samples(n7 + d;) and
Y;(v) consists of shifted versions of (/)

Yi(v) = % Z X(v — ko)emikde,
keZ

By the U(7,L) nature of X(v), we can partition the
support of X () into L nonoverlapping aliasfré&) sets,
S0, 81, +,8c—1. Define X;(v) to be the part ofX () on
S, e, X;(v) = X(v)xs, (v). Each X;(v) is aliasfreéT);
its shifted copies fill the whole frequency line upon sampling
at a period?.

Consider only the frequencies on the sg&t In addi-
tion to X;(v), the signal Y;(v) contains L — 1 shifted
copies, one from eachX,,(v), for m # . Say these
shifted copies are{X,,(r)}mx; shifted, respectively, by
B(V)a, Bo(V)a, - -, Br—1(v)o. Then,

TY, (1) = X:(v) 4+ Xo[v — pr(v)o]ePrder
+ X, _1[v = Bi(v)o]e i dee
+ Xip1[v = Bip1(v)ole i Pmder 4
+ X1 _1[v = Br_1(v)o]e”Pr-1()der

for v € S;. BecauseX;(r) are nonoverlappingy; () can be

rewritten as
%{X(V) + ; X[y = B;(v)ole P 0)der }7
(10)

for v € S(X).
Notice that the functions;(») thus defined are piecewise
constant overS(X) becauseS(X) is the union of finitely
many intervals. Under mild conditions to be discussed below,
there will exist a set of reconstruction filtefd’; ()} such
that that aliasing termsX[v — 3;(v)o] are cancelled and

X(v) = X(v) in Fig. 7. The details are given next.

L—1
Yi(v)

The signals considered in [6] and [8] have two bands asLémma 3:A U(T) L) signal z(t) can be recovered from

disjoint intervals. The two intervals (call therty, and S;)
have lengtho and are therefore aliasfrgE) zones, where

T = 27 /0. In this section, we will generalize the results in [6]

and [8] and show thaf, and .S; do not have to be intervals.
As long asSy and S; are disjoint aliasfre@’) zones [i.e.,

x(t) is U(T,2)] z(t) can be recovered from PNS(2) samples. e—j,BL_ll(z/)dgcr e—j,BL_ll(z/)dlcr

An example ofU(T,2) signal z(¢) is shown in Fig. 12(a).
We can verify thatSy and .S; as indicated in Fig. 12(a) are
aliasfre€T’) andz(t) is U(T,2), whereT = 2r /0.

In fact, we will show that reconstruction from PNS samples

can be achieved for the more genet8lT’, L) signals, those

whose frequency supports can be expressed as the union of
L nonoverlapping aliasfr¢&) sets. In this case, we use PNS

sampling of Lth order [PNS$L)]. In the PNSL) sampling
of z(¢), there areL sets of samplesy(nT + dp), x(nT +
dy),---,z(nT 4+ dr—1). Referring to Fig. 7, the sampling

everyrv € §(

1
=B (P)doo

X).

1
=i (Wdia

1
e—ib (V)10

e—iB2(¥)doo e—iB(W)dio e—iBe(V)drL_10

e_ijL—l(V)dL—lo'

-

Alv)
Ly(v) 1
F(v) 0
Br) | =1]0 (11)
I 1 (v) 0
F(v) €0

In particular, if the matrixA(z) is nonsingular, we can solve

period is7" in each channel, and the average sampling peri¢til) and obtain the synthesis filters.
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Proof of Lemma 3:The recombined signaf((z/) = éLz_Ol Notice that if we choosé, = ¢d,, for £ =0,1,---, L — 1.
Yi(v)Fy(v), or Then A(») becomes a Vandermonde matrix as shown in (14)
1 at the bottom of the page. The condition for nonsingularity
. 1 " i
X)) = = Z Fo(v) Z X (v — ko)eikdeo, becomes much more tractable. More precisely, we have the
T = = following theorem.

Theorem 2: Consider al/(7’,2) signal z(t). There always
) When » ¢ S(X): By the expressionX(v) = exist{d;};=, and synthesis filter§Z;(»)};, such thatu(t)
éLz_Ol Y.(v)Fi(v), we have X(v) = X(v) = 0, if the can be reconstructed from{nT+do), z(nT+dy), - - -, z(nT+

synthesis filtersF; (1) are zero outside of support & ().  dr—1) andx(t) = >_ x(nT +dg) fe(t —nT). In particular, we
i) When v € S(X): We can use (10) to simplify the can choose

expression ofX (), dy = 4d;, =01 L—1
73
i’:)l . dfi()/T and dyBi(v) — Br()]/T,
_ Fg(l/){X(l/) 1 Z X[y — ﬁi(l/)o_]e—j,ﬁi(u)dlo}7 ¢ # m, are not integers for any € S(X). (15)
=0 =1 The existence of suct; is guaranteed. In this casd(v) is
v € S(X). nonsingular angf(v) = [Fo(v)--- Fr_1(»)]* is given by
A rearrangement of the above expression gives us fw) = TA(V)_leOXS(X)(V)

L—1 L—1
G o where A(v) is as given in (14) andy = [1 0 --- 0]%.
TX(w) =X ; Fe(v) + z_; Xl = fi(v)ol Furthermore, in this case, the reconstruction is stable. m

L1 Proof: The condition for nonsingularity of the Vander-
_ZFZ(V)C_;@{(V)@U’ v e S(X). (12) monde matrix in (14) is
(=0 e—j,ﬁi(z/)dlo 7& 17 and e—j,ﬁg(z/)dlo 7& e—j,@m(z/)dla7 L7£ m.
We can make the following observations. Fere S(X),

the reconstructed signal is free from aliasing error
S Fi(v)emifider — ¢ for 4 = 1,2,---,L — 1 and

This can be rewritten as (15). The nonoverlapping property
mong X;(v) implies that 3;(v) — Bm(v) # 0, whenever
¢ # m. On the other hand, the support &f() consists of

in which caseX(v) is simply (1/T)X(v) o Fu(v). _finitely many intervals;3;(v) and 3;(v) — B..(v) can take
Combining i) and ii), we can reconstruett) successfully if 4, only finitely many integer values. So we can always find
the synthesis filter#(v), for £ = 0,1, .-, L—1, are nonzero rational 4, that satisfies (15). For a chose, solving (11)
only on the support o (/) and if for» € S(.X) the synthesis giyes us the solutions of the synthesis filtdfg(), which
filters satisfy are functions ofg;(r). The piecewise constant property of
-1 -1 B:(v) implies that#,(») are also piecewise constant and can
Z F,(v) =T, and Z Fy(v)ePidee — be viewed as a linear combination of some ideal brick-wall
=0 =0 filters. Therefore, following the reasoning in Section II-B,
t=12,---,L-1. (13) we conclude that the reconstruction aft) from its PNSL)
samples is stable. [ |

These conditions can be written as the matrix form in (Ml). Remarks:

Remarks:_lf A(y) is nons.ingular on the support of (v/), 1) Under the assumption tha(X) is the union of L
the synthesis filters are unique on th_e ;upporﬁ(cﬁ./). For nonoverlapping aliasfré@) zones,; (1) is unique for
v ¢ S(X), we can follow a procedure similar to that in Lemma any frequency.. Becauses; are now union of intervals,

3 and show that fov ¢ 5(X), B3:;(v) could take on more than four values, which is

X(v)=X(v)=0, ifandonlyif A()f(r)=0 the case for two-band signals. The number of intervals
contained inS; is finite and so is the number of values
where A'(v) is nonsingular for all ¢ S(X) wheneverA(v) Bi(v) can assume.
is nonsingular for every frequency on support of X (v). 2) We only address the class of signals whose supports
Therefore, if A(v) is nonsingular on the support of (v) are the union ofZ nonoverlapping aliasfré&) zones.
[henceA’(r) is nonsingular for ¢ S(X)], then the synthesis In this case, the signals have total bandwidlth For a
filters F;(v) are necessarily zero for ¢ S(X). signal X (») whose support is the union éfoverlapping
1 1 1 1
1 e—j,ﬁl(z/)dlcr e—j2,81(z/)dlcr . e—j(L—l),Bl(z/)dlcr
A(l/) — |1 e—j,@g (v)dio e—j?,@g(z/)dlcr . e—j(L—l),Bz(z/)dlcr (14)

1 e dBr-1w)dic  —j28L1(w)dic |, —i(L-DBr_1(v)dio
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/M X(w) /M Am

f—P fett— |

[\ YA ! . [1 o)
-0y-tM -y 0 W, We+M o 1 nro 05 2

Fig. 13. Band-limited aliasfré@/ )signal with total bandwidti2z /M.
Fig. 14. Lattice ofT.

aliasfre€T’) zones, the actual total bandwidth could be
<Lo. In this case, we can always add &X) some the 2-D discrete time case, which will be discussed in Section
hypothetical region to make it the union éfnonover- V.
lapping aliasfre€l’) zones, and the above theorem can
be applied.

3) Stability of ReconstructionThe synthesis filterd,(v)

are nonzero only o(X) according to (7). OnS(X) . . .
they are functions of3;(») and are hence piecewise For 2-D signals, aliasfr¢®) property and aliasfré®’)

constant. Much like the two-band case in the previoJQnes can be defined as in the one-dimensional (1-D) case.

section, the synthesis filtei,(1/) can be regarded as ab!t n(;)whthe san?plmg pelrlod '3 ax 2hn(|)ns_|ngu(;a;_matrlx
linear combination of some ideal brick-wall filters; thel and the samples are located on the lattice defined”by

argument for stability of reconstruction in two-band caseE» 10cated atl’n for all integer vectors:. For example, the

IV. Two-DIMENSIONAL CONTINUOUS TIME UNIFORN
AND PERIODICALLY NONUNIFORM SAMPLING

continues to hold for thé/(T’, L) class. lattice of
Example 1: Consider thel/(T’,2) signal X(») shown in T— { 1 0}
Fig. 12(a). ForL = 2, there is only one beta functiofi(z/). 05 2

The shifted versions of{;(») are as shown in Fig. 12(b),
which shows thatX; (v — 3¢) and X; (v — 40) overlap with
Xo(v). In the interval whereX; (v —30) overlaps withX(v),
the value of3(») is 3 and in the interval wher&; (v — 40)

overlaps withXo(r), the value of(y) is 4. A sketch offi() As mentioned in Section |, the sampling theorem for two-

is given in Fig. 12(c). In this cas@(v) is a piecewise constantb nd signals is well known: a two-band signatt) with
function with constant values in six intervals. For successfyoﬁal bandwidtho (Fig. 4) aIIoWs reconstruction from uniform
reconstruction ofc(¢) from z(T'n) andz(Tn + d; ), the value g

: . samplesz[(27/©)n] if band edgey, is a integer multiple of
of d; should be such that, 5(»)/T is not an integer for ©/2. A two-dimensional (2-D) extension of two-band signals
anyr € S(X). As 8(v) assumes four values3 and+4,d; . ; .

is the class of two-parallelograriiyo-P signals [18]. A signal
can be any real number other thaf’/3 andnT/4, where . o . . :
. . . X(v) is called Two-P if its support consists of two identical
n IS any integer. For example]; can be any number in the

interval (0,7/4). The synthesis filtet, (1), for the choice parallelograms, e.g., as shown in Fig. 15. We derive in Section
dy = T/5, is as sketched in Fig. 12(d). The other SynthesIV-A a sampling theorem for th@&wo-P class parallel to that

: Br 1-D two-band signals. When reconstruction from uniform
filter F1(v) = Fo(—-v). . . e
. . . . . samples fails, we then seek reconstruction from periodically
Discrete Time Caself a discrete time signalz(n) has . . :
. . . nonuniform samples, analogous to Section Ill. In Section IV-B,
Fourier transformX (w) restricted to the intervals ShownWe resent a periodically nonuniform sampling theorem for the
in Fig. 13, we can decimate(n) by M without creating P P y ping

L . X . ) . rHore general class (T, L), which is the collection of signals
aliasing. This idea is routinely used in cosine modulate . .
whose frequency supports are the unior.dliasfreéT’) sets.

multiple of =/M, we need to use periodically nonuniformqrhe Two-Pclass is, by definition, & subclass BT 2).

sampling techniques. In the discrete time case, decimatign
of a signal by an integef/ is equivalent to retaining the "™
first polyphase component of that signal; in a periodically Recall that the key issue in the 1-D bandpass sampling
nonuniform sampling ofZth order (Fig. 8), theL sets of theorem is to sample at the critical sampling rate without
samples are théyth, d;th, - - -, d;_1th polyphase components.creating aliasing, so that we can reconstruct the original signal
Similar to the continuous time case, aliasf&®) property from samples. The sampling rate represents how fast the
for discrete time sequences and aliasfige zones can be samples are acquired or how densely located the samples are.
defined. We usel/(M, L) to denote the class of signalsThe second meaning in the 2-D case is represented by the
whose frequency supports are the unionLofionoverlapping guantity calledsampling densityThe sampling density for
aliasfre¢ M) zones. Note that in Fig. 8, the total dataligh/ a sampling matrixI” is

times the original input; the nonuniform sampling scheme 1

makes sense only foL. < M. In the 1-D continuous time p= m

case, we saw that the clal§$7’, L) allows reconstruction from
PNS L) samples. Generalizations to the 1-D discrete time caseConsider arwo-P signal z(¢) (as shown in Fig. 15) whose
follow fairly routinely. However, such generalizations fail intwo parallelograms are shifted versions 8P D(7N~71),

is as shown in Fig. 14. A 2-D signalt) is called aliasfre@”)

if the sampling ofz(¢) with matrix 7" does not create aliasing.
In this case, the support of (v) [Fourier transform ofz(#)]

is called an aliasfreéd’) zone or aliasfre@’) set.

Sampling Theorem for Continuous Time Two-P Signals
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vo+SPD(zN"T) i

Yo/ 2+SPD(0.51)

«

-

sk .
-Yo/2+SPD(0.51)

Fig. 16. Support of a two-parallelogram sign&(») with normalized axes.

—vo+SPD(xN-T)

Fig. 15. Typical support of a two-parallelogram signal.

where the symmetric parallelepipedP D(V') of a matrix V/ { l l [ I l

is the set I l l ] I‘I

SPD(V) = {Vz,z € [-1,1)?}.

For a one-parallelogram signal with frequency support
SPD(zN~T), the critical sampling density i4/|N|. The
area of the support o (v) is twice that ofSPD(zN~1): the
critical sampling density foiX () is 2/|N|. So the sampling
theorem to be established for tAgvo-P class is a necessary
and sufficient condition such thatt) allows critical alias free
sampling, i.e.,z(t) can be reconstructed from(Tt), where

T is some2 x 2 matrix with |T'| = |N|/2. The 1-D sampling b)
theorem for two-band signals hints that the two parallelograms N ) ] ) o
in the support ofX () should be somehow properly Iocated.F'g' 17. Square tiling with (a) horizontal lines and (b) vertical lines.

The details of this are given in the following theorem.

Theorem 3: Let z(t) be a continuous tim&wo-Psignal and lines (horizontal square tiling). In the tiling of Fig. 17(b),
let the support ofX(x) be the union of two parallelogramshowever, we can observe vertical lines, and the squares are
described by, + SPD(xN~1) and —vo + SPD(zN~T). bounded by these vertical lines (vertical square tiling). Notice
Define ro = N¥vo/n. Then z(t) is aliasfre¢T’) for some that in a horizontal tiling, any two unit squares have integer
matrix 7" satisfying|T’| = |N|/2 if and only if the following is vertical distance, whereas in a vertical tiling, any two cells
true:the vectorr, has at least one nonzero integer elemerl.  have integer horizontal distance. So the passbahdad S’,

Proof of Theorem 3: (Necessity of the conditioRecall being two cells in a horizontal or vertical tiling, have integer
that when we sample a signal¢) using a sampling matrix horizontal or vertical distance. AS and S’ are separated by
T, the Fourier transform of the output is 79, the vectorry must have one integer element. Wherhas

1 R R o o one zero element, sayolo = 0, the squaresS and S’ are
7] > Xg(w), where Xp(v) = X(T "v-27T""k)  confined to the same two vertical parallel lines-vertical tiling.

kez2 So the vertical distance betweeghand S’ is necessarily an
integer as well, i.e.[ro]; is also an integer. Thereforg must
have at least one nonzero element.

Sufficiency of the ConditionTo show the condition is suf-
ficient, we will construct a sampling matrlk = NL™* with
|L| = 2 such thatz(t) is aliasfre€T’). In particular, the

which consists of shifted and expanded versionsXdf).
The expanded versioﬁzk(u) consists of two identical par-
allelograms that are shifted versions $PD(7L~7"), where
L=T"'N.If |T| = |N|/2, the frequency plane will be filled

?Iy (‘jXItg(Vt)h So if aljl(tl) 'S allas;r;gT),I'fhg frequency plane is following L can be used for i) whefr], is a nonzero integer
lied by the parallelogram o .(W )- and ii) when[rg]; is a nonzero integer:
For convenience, we normalize the frequency plane by

27 L~ the new axesi andy, are the two entries ok = . I— 1 ([rols = 1)/[rolo

2rL~Tv. After normalization, the support ak.(u) appears ) |0 2

as the union of two squares (Fig. 16), denotedShand 57, B 9 0

with S = —r/2 + SPD(0.5I) and S’ = ro/2+ SPD(0.5I) i) {([TO]O —1)/[rols J - (16)

and the relative position of and S’ is described by the
vector ry. So if the original frequency plane is tiled by thelt can be verified that corresponding to these two choices,
parallelogram ofSPD(xL~"), the new normalized plane isshifts of S constitute the patterns in Fig. 18(a) and (b). It can
tiled by the unit squares of PD(0.51). Observe that in a be further verified that the blank space left will be filled by
square tiling, we can always find at least one set of parallble shifts ofS’ when L is given above. That is, the shifts of
lines (Fig. 17) and all the cells are bounded by these lines. F®rand S’ are interlaced perfectly; and(¢) is aliasfreé7’). m
example, in the tiling of Fig. 17(a), we can observe one set ofRemark: The preceding theorem shows that the relative
parallel lines and all the squares are bounded by the horizorgakitions of the two parallelograms determines whethBrae-
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page. By imitating the procedures in the proof of Lemma 3,
the following lemma can be shown.

Lemma 4: A 2-D U(T, L) signalz(¢) can be reconstructed
from z(Tn+dy),z(Tn+dy), -, 2(T'n+dr—_,) if and only
if the equation below has a solution for everye S(X).

AWE®) Fiw) - @) =T 0 0 - 0
(18)

where theL x L matrix A(v) is given by (19), shown at the

bottom of the page. I4(v) is nonsingular for al € S(X),

we can solve (18) and obtain the synthesis filters.
Observe that the choice

(b)

Fig. 18. The patterns formed by and its shifts corresponding to the two dy = ldy, £=0,1,---,L -1

cases ofL in (15).
leads to a Vandermonda(r) for all v € S(X). If, further-

P signal z(t) can be recovered from(Tt) for some matrix MOre, there existd, such thatA(v) is nonsingular, then we
T with |T| = |N|/2. However, for a given matrixf” with ~can always reconstrudtf_(T, L) signals from PNS samples.
IT| = |N|/2, whetherz(¢) is aliasfre¢T’) depends not only The existence of suctf; is guaranteed as to be shown in the
on the relative positions of two parallelograms, but also gheorem to follow. _

the shape of the parallelograms. In particular, it can be shownTheorem 4:A 2-D  U(T,L) signal z(f) can be
that L = T~'N must have one integer column vector. Thi§econstructed from PNS samples(Tn + do),z(Tn +

situation does not arise in the previous 1-D case becauséliﬁv"'vx(T"J_FdL_—l)- ) ] u
1-D shapes are not involved. Proof: This will be done in two steps. We first show that

nonsingularity ofA(v) is assured ifd; is such that
B. Periodically Nonuniform Sampling and Reconstruction

In this subsection we will show that 2-D(T", L) signals can
be recovered from samples obtained throuigifrorder period-

BY(v)T~'d, #integer

T

ically nonuniform sampling, i.e., samples{@n+do}, {Tn+ [B] (v) - BL(w)]T'd; #integer for i #m. (20)
di}, -, {T'n+dr_1}. A sampling and reconstruction theorem

similar to that derived in the previous section for 1tI7’, L) Then we show that there always exists sdgh

signals will be developed. i) The matrix A(v) is nonsingular if

In each channely,(¢) contains samples(nT + d;), and
Y:(v) consists of shifted versions of (v),

1 I
Vi) = o Y X(v - 2T~ T k) 2k T e

| |k622
Since z(t) is U(T, L), similar to the 1-D case};(v) can This condition can be rewritten as (20).
be written as the sum ok (r) and L — 1 shifted copies of ii) Becauseg;(r) assumes values from a finite collection of
X(v). Denoting these shifted copies by[v — f3;(v)o], for integer vectors, the total number of distinct vectors represented
i=1,2,---,L—1, we have (17), shown at the bottom of theby 87 (v)T*, fori = 1,---, L—1 and[8} (v) — L ()]T*,

6—]’277,3? (V)T_ldl 7& 1

and
o T —1 _ T —1 .
e I2 B (T dy 4 (=278 (T s g1 oy,

L—1
1 : _
Y, (v) = i {X(V) +> Xy - 20T B;(v)]e ™7 @)"T } for v € S(X). 17)
=1
1 1 . 1
e—i27BT ()T~ do e—i2mBL (T e —i2xB ()T 'y
A(V) _ e—jQWﬂg(u)T_ldg e—jQw,ﬂg(u)T_ldl L. e—jQWﬂZT(u)T—ldL_l (19)

i8I (T Mo —i2n8T_ (T 'y |, —i27B_ (»)T 'di_y



LIN AND VAIDYANATHAN: PERIODICALLY NONUNIFORM SAMPLING OF BANDPASS SIGNALS 349

if the following equation has a solution for evexye S(X)
as shown (22), shown at the bottom of the page. ]
In the 1-D case, we can always choakesuch thatA(w)
slope=-[a,],/[e;];  is a nonsingular Vandermonde matrix for everye S(X).
However, it is not always possible to do so in the 2-D case.
In fact, the above equation may not have a solution for some
- w € S(X), in which casez(n) cannot be reconstructed from
[d; 1o L of its polyphase components. To explain this, we take a
closer look atA(w).
slope=—{at, }, /[at, ], The matricesA(w) andW'@): It can be verified that the
Fig. 19. An illustration pertaining to the proof of Theorem 5. matrix A(w) above is an x L submatrix of a matri#(?),
called the generalized DFT matrix, possibly with some row

for i < fin I these disti and column exchanges. The mat#‘?) is of dimensions
or i # m is finite, sayN. Let_L_Js cal these distincV ve_ctors 4M| x |M| and the elements a9 are given by
«;,i =1,2,---, N. The conditions in (20) can be rewritten a

A4,

(9. _ .—i27kI M~ 'm, ) T
[ai]o[d1]0+[ai]1[d1]1 7£ integer, for ¢ = 1,2,---,N. (21) [W ]m =e s m, ¢ N(M), k; € N(M )
where the notation'(M) denotes the set of integer vectors of

If we draw a graph wittid]o and[di], as the two axes, for formMz,z € [0 1)2. Let A be the Smith form ofM [14],

eachi the equatiorfe;]o[d1]o+ [e:]1[d1]1 = integer represents
a set of parallel lines. Equation (21) says that the points on

these lines are not permitted. We haVesets of such parallel A= {
lines. For example, leftN = 2. Then there are two sets of

parallel lines (Fig. 19) and only the points on the lines aignany, andk; are properly ordered, it can be verified that
not permitted. We can, therefore, always fihdthat is not on W@ — W, oW, .whereW, denotes a\ x A\ DFT matrix
these lines, i.e., satisfies (20). Ao AL A

Ao O
0 AL’

. ' L iven b
With a nonsingular A(v), the synthesis filters can beg y
uniquely determined from (18). [ | (W sl = o i@r/\ymn 0 < m.n<A 23)
V. Two-DIMENSIONAL DISCRETE TIME The notation® denotes the Kronecker product. The Kronecker

SAMPLING AND RECONSTRUCTION product of two matricesA and B is defined as

In the 2-D discrete time case, aliasf{d¢) property,

aliasfre¢ M) zone andU(M,L) can be defined in the a,oB - aoxk—1B
same manner, wherdf is now a2 x 2 nonsingular integer A ® B = : :

. . . v \v/ . .
matrix. In Section IV, we developed .the sampling the_orem for Ik JxL aj-1oB - aj_1x_B
continuous timeTwo-P signals (Section IV-A). The discrete N : :

time counterpart of this theorem can be found in [19]. In this LIXKL

section, we consider the reconstruction of 2-D discrete time

U(M, L) class fromPNS(L) samples. In the 1-D case, the Although DFT matrices are Vandermond#'? is not

discrete time results completely parallel that in the continuolg@ndermonde in general and neither arelitg L submatrices

time. However, the situation is quite different in the 2-D cas@btained by retaining the first columns and somé: rows.

A 2-D discrete timeU(M, L) signal z(n) cannot always The natural question to ask next is whether a particular set

be reconstructed frond of its polyphase components. Anof {d;} will make A(w) nonsingular for allw € S(X).

example of suche(n) will be presented. In terms of the generalized DFT matr# (), the question
Following similar procedures as in previous sections, th@n be recast as follows: can we fidd columns of W9

following lemma for reconstructing/(M, L) signals can be such that for arbitrarily choseh rows of W9 the resulting

established. submatrix is always nonsingular? The answer is, unfortunately,
Lemma 5: A 2-D discrete timel/(M, L) signal z(n) can no. Although for every frequency; € S(X), there always

be recovered frond. of its polyphase components if and onlyexist {d,;} such thatA(w;) is nonsingular. The saméy may

1 1 e 1 Fo(w) 1
e—i2mB] WM™ dy 2l ()M~ —i2nB (@)Mdiy Fi(w) 0
e—i2mB7 W)M ™ dy  —j2rpl (WM T Ay —i2nfs (w)M iy B(w) | =|M]||0 (22)
e—jQwﬂf_;(w)M_ldo e—jQwﬂf_l(w)M_ldl . e_jQW,af—l(.w)M_ldL—l FL—.l (w) 0
K - Nl

AE) f@) €0
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yield a singularA(w}) for a different frequency vectaw;.
The following is an example which demonstrates that there are
cases when (22) is not solvable with frequency independent
{de}.

Example 2: Consider a discrete time 2-D'(M,2) signal
z(n), where M = [39] and |M| = 4. The four vectors in
N(M) are

Wo

T T T T Fig. 20. A U(M,?2) signal that cannot be reconstructed from two of its
Mo = [0 O] o ML= [1 O] o M2 = [0 1] o Ms = [1 1] : po%yphase cor(npdntgntsg.J

Orderk; € N(MT) by letting k; = m;, then the generalized

DET matrix W@ is The corresponding generalized DFT mat#X?) is the| M| x
|M| DFT matrix Wa,. Similar to the reconstruction of 1-D
1 1 1 1 U(M, L) signals, choose
w _ |1 -1 1 -1
W= 1 1 -1 -1 (24) 0
de =0
1 -1 -1 1 1

The support ofX (w), as shown in Fig. 20, consists of twowhereU is the unimodular matrix in the Smith form decom-
aliasfreé M) zones,Sy and S;. The setS; is the union of position of M in (25). ThenA(w) will be nonsingular for all
three regionsky, R;, and R,. With L = 2, we only have one w € S(X), and by (22) we can inverid(w) to obtain the

beta function,8(w). Observe that synthesis filters.
ki, w€ Ro VI. CONCLUSIONS
ﬂ(W) = k27 wE Rl . . .
ks, w€ Ro. In this paper, we consider the reconstruction of a class

of continuous time bandpass signals, €T, L) class. The
frequency supports of this class of signals consist /of
aliasfre€T’) sets. We show thal/(T’, L) signals allow recon-
struction from periodically nonuniform samples &f order
[PNS(L)]. This is an extension of the work by Kohlenberg
that addresses the reconstruction of two-band signals from
[1 11 1} PNS(2) samples. We have also generalized the results to
I -1 1 -1 the 2-D continuous timel/(T,L) class and 1-D discrete
time U(M, L) class. In the discrete time case, the PNS
obtained by keeping two columns. As to which two columns, §amples are essentiallypolyphase components of the signals.
depends on the choice df andd; . Without loss of generality, However, the generalization fails in the 2-D discrete time
we can assumé, = 0. We see that (22) has a solution for/(M, L); a 2-D discrete timé/(M, L) signal does not allow
w € Ry only if d; is m; or ms. We can do the same thingreconstruction from. polyphase components.
for R; and Ry, and reach the following necessary condition

So forw € Ry, A(w) is a submatrix of ‘9 obtained by
keeping the zeroth and first rows &9’ and two columns
W9, That is, A(w) is a2 x 2 sub-matrix of
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