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BER Minimized OFDM Systems With Channel
Independent Precoders
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Abstract—We consider the minimization of uncoded bit error  subchannels. The subchannel gains aréihpoint DFT of the
rate (BER) for the orthogonal frequency division multiplexing channel impulse response.

(OFDM) system with an orthogonal precoder. We analyze the BER £ yireless transmission, the channel profile is usually not

performance of precoded OFDM systems with zero forcing and . . . . .
minimum mean squared error (MMSE) receivers. In the case of available to the transmitter. The transmitter is typically channel

MMSE receivers, we show that for quadrature phase shift keying independent, and there is no bit/power allocation. Having a
(QPSK), there exists a class of optimal precoders that are channel channel-independent transmitter is also a very useful feature
independent. Examples of this class include the discrete Fourier for broadcasting applications, where there are many receivers
transform (DFT) matrix and the Hadamard matrix. When the i1 different transmission paths. In OFDM systems, the
precoder is the DFT matrix, the resulting optimal transceiver . . ’
becomes the single carrier system with cyclic prefix (SC-CP) channel-dependent part of the trgnsce_lver IS asM_m‘calars
system. We also show that the worst solution corresponds to the at the receiver, and the transmitter is channel independent.
conventional OFDM system; the conventional OFDM system has In DSL applications, the channel does not vary rapidly. The
the largest BER. In the case of zero forcing receivers, the design of transmitter has the channel profile, which allows bit and power
optimal transceiver depends on signal-to-noise ratio (SNR). For 51qcation to be employed. Using bit allocation, the disparity
higher SNR, solutions of optimal precoders are the same as those . ; . ! .
of MMSE receivers. among the sgbchannel noise variances is exploited in the DMT
system for bit rate maximization. The DMT system has been

shown to a be very efficient technique in terms of transmission
rate for a given probability of error and transmission power.

In the context of transceiver designs for wireless applications,
|. INTRODUCTION the single carrier system with cyclic prefix (SC-CP) system [9]

HE DISCRETE Fourier transform (DFT)-based trang> also_a_ DFT'ba_SG(_j transce_iver .With a c_hannel indepen_dent
ceiver has found applications in a wide range Qtfansmlmng matr_lx, i.e., the identity matrix. A cychc. prefix

transmission channels, either wired [1]-[3] or wireless [4]—[81.S also inserted like in the OFDM system. The receiver per-
It is typically called discrete multitone (DMT) for wired orms both DFT and IDFT operations. It is demonstrated that

digital subscriber loop (DSL) applications and orthogon e SC-CP system has a very low pea!< {0 average power ratio
frequency division multiplexing (OFDM) for wireless local APR). Furthermore, numerical experiments demonstr_ate that
area network (LAN) and broadcasting applications, e.g., digil%\lOlJtIOerforms the OFD.M system for a useful range of bit error
audio broadcasting [7] and digital video broadcasting [8 ate _(BER) [10]. We will see later t.hat the SC-CP system can
The transmitter and receiver perform, respectivélf;point e viewed as the OFDM system with a DFT precoder. In [11.]’
indiscrete Fourier transform (IDFT) and DFT computatiorP,reCOded vector OFDM systems are proposed for combating
where M is the number of tones or number of subchannel@:'.DeCtraI nulls. When the channel has spectral nulls, the pro-
At the transmitter side, each block is padded with a cycl osed system outperforms the conventional OFDM system. In
the precoded vector OFDM scheme, more redundant samples

prefix of length L. The numberL is chosen to be no smaller . .
than the order of the channel, which is usually assumed to oy needed than in the conventional OFDM system. In [12], de-

an FIR filter. The prefix is discarded at the receiver to removad"'s of linear precoding to maximize diversity gain are consid-

interblock ISI. As a result, a finite impulse response (FIRE)'re - . . .

channel is converted intd/ frequency-nonselective parallel, Design of more_g_eneral blockt_rar)scewers,whlch are optimal
in the sense of minimum transmission power or minimum total
noise power, has been of great interest. In [13], general block
transceivers, which are not constrained to be DFT matrices, are
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Fig. 1. Block diagram of the OFDM system over a chanRét) with additive noise/(n).

bit rate and probability of error are derived. In all these systerpgeliminary results on the zero-forcing case can be found in
[13]-[16], it is assumed that the transmitter has the channel pfa3] and [24].
file. The sections are organized as follows. In Section I, we
Recently, based on the zero-forcing solution given in [13present the schematic of an OFDM system with an orthogonal
Ding et al! consider a class of optimal precoders in [17], iprecoder. We will state results of the conventional OFDM and
which a precoder refers to the transmitting matrix. It is assuméte SC-CP systems that will be useful for later discussion.
in both [13] and [17] that the transmitter has the channel profilen Section 1ll, we consider zero forcing receivers and derive
The optimal transmitter that minimizes the output noise vathe optimal precoder for QPSK modulation. Extensions to
ance consists of a unitary matrix, a diagonal power loading naodulation schemes other than QPSK are given in Section IV.
trix, and a second unitary matrix that is arbitrary [13]. The firsthe performance of a precoded OFDM system with an MMSE
unitary matrix exposes the eigenmodes of the channel, whereaseiver is analyzed in Section V. Numerical examples of BER
power loading exploits the eigenmodes to reduce the total nogrformances are given in Section VI. A conclusion is given in
variance. The second unitary matrix is optimized in [17] to mirBection VII.
imize BER. For high SNR, the DFT matrix has been found to
be optimal for BPSK modulation. The resulting transmitter i8. Notations and Preliminaries

channel dependent. 1) Boldfaced lower case letters represent vectors, and bold-

In this paper, we will consider the minimization of BER for faced upper case letters are reserved for matrices. The no-
OFDM systems with orthogonal precoders. The underlying  ;-u00 AT denotes transpose-conjugatedof
system is, in fact, the class of cyclic prefixed block transceivers 2) The function E[y] denotes the expected value of a
with orthogonal transmitters. We will address the design of "~ . 4om variabley.

optimal precoders with the assumption that there is no bit and3) The notatiorl is used to represent thel x M identity
power allocation. Notice that the objective is BER, rather than * ...

mean squared error (MSE). In the conventional single-band4) The notatiorW is used to represent thel x M unitary
transmission system, BER is directly tied to mean squared DFT matrix given by
error. For multisubchannel systems like OFDM and SC-CP

systems, this is no longer true. In the absence of bit and powel[: _ L oMk
allocation, transceivers with the same total noise variance ca lkn = —==¢ ’
have different BER performances. This is because different

transceiver designs distribute the noise among the subchannels

differently. We will consider the design of optimal precoders|l, OFDM TRANSCEIVERSWITH ORTHOGONAL PRECODERS

for zero forcing and for MMSE receivers. In the MMSE case, The block diagram of the OFDM system is as shown in Fig. 1.

Wrigggevr;h;te\,\éﬁz::i]eurgOliutlk?it';ocna?enlzzlrseaer;thsP:vlf/’hgﬁ:Igllﬂl'e modulation symbols to be transmitted are first blocked into
P que. ' %y 1 vectors, wheré/ is the number of subchannels. Each

of channel-independent optimal precoders. Examples of PiSbut vectors of modulation symbols is passed through/dn

coders in this class include the DFT matrix and the Hadamar M IDET matrix, followed by the parallel to serial (P/S) oper-

matrix. It turns out that when the precoder is chosen as the D : :
: . . ation and the insertion of redundant samples. The length of re-
matrix, the resulting transceiver becomes the SC-CP system

. : —"dundant samples is chosen to be no less than the order of the
[9]. On the other hand, we also ShO\.N that the identity matrix Ii?1;:1nnelP(,z) so that inter-block interference can be removed.
the worst precoder, and the conventional OFDM system has ﬁ]e

. . . fsually the redundancy is in the form of a cyclic prefix. At the
largest BER. In the case of zero forcing receiver, solutions of . . ; R,
receiving end the cyclic prefix is discarded. The samples are

opt|mallprecoders are SNR dependent. For h|g_her SNR, th%reain blocked intaVl by 1 vectors forM-point DFT compu-
also exists a class of channel-independent optimal precod %

The optimal solutions are the same as those of the MM on. The scalar multipliers/ Py, for k = 0, 1, M -1 .
receivers. We will derive the results for QPSK modulationérjlre the only channel dependent part of the transceiver design,

N ; : wherePy, Py, ..., Py are theM-point DFT of the channel
Generalizations to phase amplitude modulation (PAM), phase . .

: . . . Impulse responsg(n). In this case, ISI is canceled completely,
shift keying (PSK), and quadrature amplitude modulation O . ;
(QAM), based on approximated BER from symbol error rat%nOl the receiver is a zero-forcing receiver.

' bp Y In this paper, we consider the class of block transceivers with

formulae, can be obtained with slight modifications. Som(,]len]\/[>< M orthogonal transmitter, followed by cyclic prefix in-

1The authors would like to thank the anonymous reviewers for bringing th%?rtion- This class of system can be Vieweq as an OFDM system
reference to our attention. with a unitary precoding matriff’, as shown in Fig. 2, wherg

foro<k,n<M-1.
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Fig. 2. OFDM system with a precoddr.

m UP q As T is unitary, we have} o' |t ;|2 = 1. Using this
v » 0 fact, we can A\;vrilte the average mean square error (MSE)
—> w : T TP¢ & =yMSi 2i)as
1/;_ M-1
M1 g’r‘r = j\ﬁ Z D2 (3)
M = Bl

Fig. 3. lllustration of noise path at a zero-forcing receiver.

The average MSE is independentibf All zero-forcing OFDM

is unitary withTTT = I. The resulting block transceiver has éransceivers with a unitary precodBihave the same MSE given

unitary transmitting matrixG = WTT. To have a zero-forcing in (3).

receiverT" is cascaded to the end of the receiver. The transmit-F0r QPSK modulation, the BER of thith subchannel is [19]
ting matrix G and receiving matri$ are as shown in Fig. 2. By

considering the optimal solution of the precodgrwe are ad- p, (i) =Q 58_

dressing the problem of designing optimal cyclic-prefixed block (i)

transceivers with orthogonal transmitters. 1 _2)2

Bit Error Rate: We assume that the channel noige:) is whereQ(y) = Von / € dt, y20.
complex circular AWGN with varianceéVy. The modulation oY
scheme is QPSK, and modulation symbegjs= +,/&;/2 + The average BER is
j+v/Es/2 with symbol energy¥,. Let the receiver output vector
x be as indicated in Fig. 2; then, the output error vector is 1 A Es
e = x — s. The vectore comes entirely from the channel noise Pr = M Z Q1 o2(i) )’
as the receiver is zero forcing. The noise veet@an be ana- =0
lyzed by considering the receiver block diagram in Fig. 3. Th&lthough the MSE is the same regardlessIhfthe choice of
M x 1 vectorv consists of a block of siz&/ of the noise process T affects how the same amount of noise is distributed among
v(n). The elements af are uncorrelated Gaussian random varihe subchannels. We look at two important case¥ @ind the
ables with variancéVy. The elements ofi = W continue to respective BER analysis.
be uncorrelated Gaussian random variables with varidnge . OFDM SystemThe unitary precodeF is T = I. We have
due to the unitary property V. Therefore, théth element of
the noise vectog has variance given b(ygk = No/|Px|?. The 02eam (1) = No/|P;|?, i=0,1,...,M—-1. (4)
output noisee is related tog by

For theith subchannel, the SNRtam () is
M—-1

e; = Z tz,iqk ﬂofdm(i) = 7|Pi|2 (5)
k=0
wherey isthe SNRE, /Nyy. The BER of the OFDM system
wheret,, ; denotes thek, i)th element ofT. As ¢; are un- becomes
correlated, theth subchannel noise varianeg(i) = Y r ' Mt

2.2 ; 1
|tk i|*oy, - Thatis Potdm = i Z Q (1/7|P,L-|2) : (6)
=0

M-—1 2
a2(i) = Ny Z ||’L]’; i||2 7 fori=0,1,..., M—1. (1) * SC-CP SystemiVhen the unitary precodér¥ is the DFT
k
k=0

matrix W, the transmitting matrixc = I. The unitary

o _ matrix Tt appended to the receiverWT. The resulting
The real and |mag|.nar.y parts ef have equal variance. Let system shown in Fig. 4 becomes the SC-CP system [9].
(i) = €:/o*(i), which is the SNR of théth subchannel; then The SC-CP system can be viewed as a precoded OFDM

system with precodel” = W. All the elements in the
Bli) = 17‘ ) wherey = &,/Nj. ) DFT matrix have the same magnitude, which is equal to

tr, i
k

2 1/v/ M. Using this fact and (1), we see that the noise vari-

;0 1P |2 ances in all the subchannels are the same, and they are
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S cyclic b’(") cyclic I [Mpt DFT|: o M-pt IDFT
= P/S—> prefix removal >1S/P P W |t > pr >
1/Py, 4
Fig. 4. Block diagram of the SC-CP system over a chadt(el) with additive noises(n).
equal to the average MSE._, = &, As a result, all 0.16
the subchannels have the same SNR., = & /&, or 0.4}
Bsc-ep = % 0.12f
o & ST 0.1}
The BER of the SC-CP system can be written as 0.08}

Peceep = Q (v Bocmer ) - ) 0.06}

The BER performance of the precoded system is determined 0-04f
by subchannel SNRs. The unitary propertyBfallows us to

establish upper and lower bounds on the subchannel SNRs. 0.02 o ((1% £(1/3)) ]
Lemma 1: For any unitary precod€er’, theith subchannel 0 . . . .
SNR (i) is bounded by 0 0.2 0.4 0.6 0.8 1

y
Inkin /Bofdm(k) S /B(L) S IIl]iiX ﬂofdm(k)

fori=0,1,...,M—1  (8) Flg. 5. Plotolf(y) = Q(1/ym ford <y < 1.

where Boram (k) = 7|Px|? is the kth subchannel SNR of the The subchannel BER can be expressed Rs(i) =

OFDM system. . Q (\/55/02(1')) = f(1/6(3)). The BER performance is
_Proof: Using (éL).and (4), we observe that the variance @fosely related to the behavior of the functigt+). Important
theith subchanne=(i) is given by properties off(-) are given in the following lemma. A proof
M-1 is given in Appendix A.
o(i) = Z It i| 20 25am (110). Lemma 2: The functionf(y) = Q(1/,/y) is monotone in-

creasing. Itis convex whan< 1/3 and concave whep > 1/3.
N _ ) ) o A plot of f(y) is shown in Fig. 5. Each subchannel is oper-
In addition, by using the fact tha is unitary with'T"T = I, ating in the convex or the concave region of the functjgr,

m=0

. : M-1
the columns off” have unitenergy, i.},, 2y [tm,i|* =1,for  depending on subchannel SNRi). In particular, wher(i) >
all 7. We have 3, theith subchannel is operating in the convex regiory of
M-1 andPr(i) < Q(v/3) = 0.0416. If (i) < 3, theith subchannel
o?(i) < Z ltm, i|* max 02am(k) = max 020 (K). is operating in the convex region, afg (i) > 0.0416. We de-
m=0 fine three useful SNR quantities
Similarly, we can show thats2(i) > M1t 2 3 1 M=l 3
ming 0%, (k) = ming 0%, (k). The bounds of SNR 70 = miin 2 7= M P2 71 = max 1P
(i) follow directly from the bounds of2(i). YAVAVAN ‘ i=0 ! ‘

These relations hold for any unitary precoder For a dif- By definition, they satisfyy, < 7 < 1. We also define three
ferent choice ofT, the noise variances are distributed differgnR regions:

ently, but they are always bounded between,, o2, (k) and
maxy, 02, (k). For any precodeT, the best subchannel is no Riow = {77 <} Rumida = {770 <v <7}
better than the best subchannel of the OFDM system, and the .. =~ _ >
. high {V|’Y1 = ’Y} .
worst subchannel is no worse than the worst subchannel of the
OFDM system. In the next section, we derive the optiialich  When~ = 7, we havels.-., = 3, i.e., the subchannels of the

that the average BER is minimized. SC-CP system operating on the boundary between the convex
and the concave regions ¢f-). For the two SNR regionR& o,
[ll. OPTIMAL PRECODERS andR 4, the following can be observed.

For the convenience of the following discussion, we introduce * For the SNRregioR ..., v < 70, and all the subchannels
the function in the OFDM system have SNR,tam (i) < 3 for all 4.

In addition, using Lemma 1, we know thdfi) < 3 for
f(y) 2 Q(1/\/y). (9) any unitary precod€F. Therefore, all the subchannels are
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operating in the concave region ffy) for any precoder for arbitrary real choices df,, anda,,. The new matrixT” is
T. also unitary, and it has the equal magnitude property.
* For the SNR regiorRuign, v > 1. In this case, all the BER of Precoded OFDM Systems in Different SNR Re-

subchannels in the OFDM system have SR, (i) > gions: The results in Theorem 1 imply that the conventional

3. Moreover, the results in Lemma 1 imply that for artOFDM system T = I) is the optimal solution foty in Riow-

arbitrary unitary precodeT’, we always haved(i) > 3; When all the subchannels are operating in the concave region

all the subchannels are operating in the convex region af f(-), the OFDM system has the smallest error rate.for

the functionf(y) for any precodef. Ruigh, it is the worst solution; when all the subchannels are
FOr Riow and Ry, We can establish the following relationsoperating in the convex region ¢f(-), the OFDM system has
among the BER performances of the three systems OFD€ largest error rate. However, as we will see next, the SNR
SC-CP, and an OFDM system with an arbitrary unitary precod@dion Ri.,, corresponds to a high error rate, wheréas,n

T. A proof is given in Appendix B. corresponds to a more useful range of BER. The error rate
Theorem 1: Let Py be the BER of the OFDM system with abehavior can be analyzed by considering the valug f the
unitary precodefl in Fig. 2. Then following three regions.
1) The cas&Ry,: In this range, the OFDM system is the op-
Potam < Pr < Pse-cp, for v € Riow timal solution. All the subchannels haygsq., (k) < 3, and
Potam > Pr > Pac-cps for 7 € Rhign. hence,Potam > Q(v/3) = 0.0416. In this range of SNR,
the error rateP, ¢, IS at least 0.0416, which is a BER that
Each of the two inequalities relatirB; and Ps.-., becomes is too large for many applications. Furthermore, the min-
an equality if and only if subchannel noise varianedéi) are imum error rate 0.0416 can be achieved only when all the
equalized, i.e.¢%(i) = &, whereg,., is as given in (3). subchannels havB,¢4m (i) = 0.0416, which is true only in
Channel - Independent Transmitters Achievif - ¢p: the special casg| = |P1| = - - = |Pam—1]-
Theorem 1 states that we ha®r = Psc-., if and only if 2) The caséRyien: For this range, the OFDM system has the
o2(i) are equalized, i.eNo Y ry! Ite il2/IPL2 = &, largest BER, and the BERs of all precoded OFDM systems
where &, is as given in (3). In particular, to have channel are lower bounded b¥..-.,. All subchannels are operating
independent solutions @, we can choose in the convex region of (+), and3(k) > 3. The subchannel
error ratePr (k) is less tharQ(v/3), and the averagBr <
t. | = L 0<m,n<M-—1. (10) 0.0416. Notice that wheny = ~1, the worst subchannel
’ VM’ ’ of the OFDM system has an error rafg/3) = 0.0416,

. i and the average BER is at le&®(\/3)/M. Therefore,y;
In this case, all the subchannel BERs are the safei) = is also the minimum SNR to have an error rate lower than

Pr = Psc-cp- There are many_uni?ary matrices satisfying (1Q). Q(v/3)/M inthe OFDM system. For example, fof — 16,
Two well-known solutions satisfying (10) are the DFT matrix +1 is the smallest SNR for the OFDM system, to achieve an
W and the Hadamard matrH [18]. WhenT = W, the trans- error rateQ(v/3)/16 = 0.0026. For M = 64, ~, is the

glgtiggmatrix(;.:;, a}Pr(]j tr|1|e :jranscziverin_ Fig. 2 bebcomes the dsmallest SNR for achieving a BER(v/3)/64 = 6.4 x
-CP system in [9]. The Hadamard matrices can be generated, )4 ths gNR regiomRy,;,, corresponds to a more useful

recursively forM, that is, a power of 2. The & 2 Hadamard range of BER
matrix is given by 3) The caséR,iqa: We can plotPsc-c, andPotam as functions

1 1 1 of v. The curves 0fP,tam and?Psc-c, Cross in this range as
H, = ﬁ <1 _1> . Potdam IS smaller tharPy-., for v < ~ and larger than
Psc-cp fOr v > ~1. In most of our experiments, the crossing
The2n x 2n Hadamard matrix can be given in terms of then of the two curves happens atan SNR closg,fice., the SNR
Hadamard matrix by for which the subchannels of the SC-CP system fall in the
convex region of the functioifi(-).
H,, = 1 <Hn H, ) Remarks: When the channel has a spectral null, 8ay= 0,
" V2 \H, -H,/ the subchannel noise variances in the SC-CP system given in

o ) (3) go to infinity. The average probability of error is half in all
The Hadamard matrix is real with elements equaitto The  sypchannels, regardless of the value of SNR. In this case,
resulting transmitting matrbG = WTH will be complex. goes to infinity, and the SC-CP system is not an optimal solution

The implementation of Hadamard matrices requires only adgdy any SNR. Such cases can be avoided by using an MMSE
tions. The complexity of the transceiver is slightly more than th@ceiver, to be discussed in Section V.

OFDM system due to the two extra Hadamard matrices.
When we have a unitaf¥ that has the equal magnitude prop-

erty in (10), we can usd' to generate other unitary matrices IV. OTHER MODULATION SCHEMES
satisfying the equal magnitude property. For example, consider
a matrix T’ with The derivations in Sections Il and Ill are carried out for

’ QPSK modulation. Using approximations of BER obtained
tjmn = (0 +”")tm,n, 0<m,n<M-1 from symbol error rate (SER), we can extend the results to
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PAM, QAM, and PSK with slight modifications. Optimal pre-precoder for an MMSE receiver. We will see that using an
coders are obtained based on BER approximation formulae. WIMSE receiver improves the system performance, especially
will take QAM modulation as an example. Suppose the inputghen the channel has spectral nulls. The following lemma gives
are Nary QAM symbols with variance,. The subchannel the MMSE receiving matri¥s for a given unitary precoder (the
SER can be approximated by [19] proof is given in Appendix C).
Lemma 3: Consider the precoded OFDM transceiver in
. 1 3 . Fig. 2. Suppose the inputs have zero mean and varidnce
Prser(i) ~ 4 <1 - ﬁ) Q ( mﬂ@)) (11 Wit real and imaginary parts having equal variangg&. The
noise is circular complex Gaussian with varian®g. Let x
wheref(i) = & /o2 (i) is the SNR in theth subchannel. When be the receiver output, and let the error veetor x — s. For
Gray code is used, BERr(i) can be approximated from SER@ given unitary transmitting matri = WTT, the optimal

asPrp(i) ~ Pr.ser(i)/ logy N [19]. Therefore, we have receiving matrixS that minimizesF[e'e] is given by
Ail 'P S = TTAW, whereA = dlag( Ao A1 Anm—1 )
T *
yP} Es
Ak = ——5, 14
. k 14+ v|Pr|? = No (14)
wherePr (i) = aQ ( cﬂ(L))
4 1 The real and imaginary parts ef have equal variance. The
= (1 - T) average MSE,, = Elefe]is &, = (1/M) X151 (£./(1 +
62 N v|P;|?)). Inthis case, théth receiver output; can be expressed
and ¢=3/(N—-1). (12) 4
The subchannel SNRs observe the same bounds given in (8),
miny IBOfdm(k') < ﬂ(L) < maxy ﬂofdm( ) When SNR’Y is Ti =a;8i+Ti
large enough such that all the subchannels satj&fyim (i) > s NP
3, equalizing the subchannel noise variances will minimize the wherea; = Z [t 1+ ~|P?
approximated BER given in (12). The condition for this is M1
NP
-1 Sj 2Lk Lfk J
¥ >, wherey; = max |T|2) (23) ; kz;) 1+ ’Y|Pk|2
+ [TTAWY],. (15)

On the other hand, whetB,sam () < 3 for all 4, the conven-

tional OFDM system is the optimal transceiver. The conditiopor theith subchannel, the variance of interference plus noise

for this isy < 7o, wherey, is nowming ((N — 1)/|Px|?). The is E[|;|?]. The subchannel signal-to-interference-noise-ratio
conditions now depend on the QAM constellation. For a larggINR) B(i) = a2&,/E[|r;|?] is given by

constellation, i.e., largeWV, both~, andv; also become larger.

Similarly, the above technique is valid for any modulation M-1, Pl M-l 2
scheme in which the subchannel symbol error probability can g(4) (Z [tk il P )/ (Z %)

be either approximated or expressed as 1+ 9|Pf? < 14+ 9[Pf?
i=0,1,...,M—1. (16)
a@ cBk)) =af (—)
( ( )) (k) From the above lemma, we see that the average F)JSIS also

for some constants andc that are independent of subchannel independent of the choice df like the zero forcing case. The
P MMSE receiver can be easily obtained from the zero forcing re-

Examples of such a case include PAM, QAM, and PSK mo OIcelver by replacing th&/ channel-dependent scalars frafP;
lation schemes. Once the error probability is in such a forrp
d A; given in (14).

we can invoke the convexity and concavityfif) to obtain the When an MMSE receiver is used, the system is not IS free,
SNR ranges for which the OFDM system or the SC-CP system
and the error does not come from channel noise alone. The term

is optimal.
Remark: For real modulation symbols, e.g., PAM, the nois& is a mixture of channel noise and signals from all the other

Subchannels. However, Gaussian tail renders a very nice approx-
relevant for symbol detection of théh subchannel is only the :

|mat|on of BER [20]-[22], as we will see later in examples. The
real part ofe; but not the imaginary part. The subchannel nois

e; has equal variance in real and imaginary parts. Therefore, rfxggafll_z?o'i eﬁggﬂﬁg ?;)S(?[d(:fo ;r?ereaasoer:as\lli lj\zﬂﬁﬁi the
relevant noise variance i&[|e;|?]/2, which should be used in = g Paper,

i a i Gaussian assumption.
— |12
the evaluation ofi(i), i.e., 5(i) = &/(Efle:|]/2)- The computation of BER depends on the modulation scheme

used. We will use QPSK as an example. The results in Lemma

3 tell us that subchannel errors have equal variances in real and
In this section, we consider the case that the receiverimaginary parts; therefore, the real and imaginary parts of the

one that has MMSE. We will show how to derive the optimaQPSK symbols have equal probability of error. The BER of the

V. MMSE TRANSCEIVERS
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ith subchannel i§(+//5(4)). To simplify derivations, let us de- 05
fine
04r
h(y) 2 Q ( y=! - 1) :
Then, the subchannel BER is 03}
1
) = 0.2r
@ (VA®) =+ (157
Using (16), we can verify that the argumentif) in the above 0.1r
equation can be expressed as
0
M-1
1 Itr, i|?
1+ 50) kz_o YR @ oy . . . .
- 0 0.2 04 0.6 0.8 1
Therefore, we have y
M-1 Fig. 6. Plotofh(y) = Q(vy— T —1)for0 < y < 1.
Pr, MMSE = Z Pr. ammsk(

fori=0,1,..., M — 1.

M-—1
. |tk7 7 |2
wherePr, vuse(i) = h (Z T++[P.2)  Asinthe proofin Theorem 1, we can use the convexity of
k=0 to show that
(18)
M-1

M—

For the conventional OFDM system, the precodgis the & Z 1 1P 2) <Prvvse = Z (1 P, 2)
identity matrix. We can see from (16) that the subchannel SIN +1P% +1Pi
isv|P;|?: the same as that in the zero-forcing case (5); an OFDM
system with a zero-forcing receiver has the same performance = M Z (1 T 7|Pk|2> .
as that with an MMSE receiver. For the SC-CP syst#ns the
DFT matrix with [¢; ;| = 1/v/M. Using the definition ofi(-), The lower and upper bounds are, respectivBlyscp. mmse and

M-1

the BERs of OFDM and SC-CP systems are given, respectivety,, ., which are given in (19). AANA

by As we mentioned in the previous section for the zero forcing
M1 receiver, the output noise becomes infinitely large in the pres-
Potin e = Progam = Z < ) ence of spectral null. In the MMSE case, the expression of sub-

M 1+ 5|P;? channel SINR3(i) in (16) indicates that even if the channel has

M_1 spectral nulls3(4) is not zero.
Pac-cp, mmse = h 1 Z 1 (19) Optimal Precoders:Theorem 2 states that the minimum
’ M — 1+7|P]? Pac-cp, mmse i achieved, if and only if3(i) are equalized.

Observing (16), we see théti) can be equalized by choosing

Lemma 4: The functioni(y) = Q(\/y~' — 1) defined for T which has the equal magnitude property in (10). The same
0 <y < 1is convex withh/(y) > 0 andh”(y) > 0. class of T achievingP..-c, in the zero forcing case is also

The lemma is proved in Appendix D. A plot é{y) for 0 < optimal for the MMSE case. Again, the Hadamard matrix
y < 1is given in Fig. 6. We only need to consider that th@long with the DFT matrix are examples of such solutions.
interval 0 < y < 1 as the argument df(-) in (18) is in this On the other hand, the conventional OFDM system, although
range. Using the convexity @f(-), we can show the following optimal for low SNR in zero-forcing case, is the worst solution
theorem. in MMSE case for all SNRy.

Theorem 2:Let Pr sk, as given in (18), be the BER of  Other Modulation Schemesfor modulations other
the MMSE-equalized precoded OFDM systems with a Unitanan QPSK, we can use approximations of BER from
precoderT. Then SER as in Section IV. The results will be stated without

proofs. We will useN-ary QAM as an example. By (11),
Pr,vmse(?) = aQ(y/cB(i)), wheref(i) is as given in (16).
pket us define

Psc-cp, mmse S PT, MMSE S Pofdm-

The first inequality becomes an equality if and only if su

channel SINRg(7) are equalized. — o —1_1
Proof: Using (17) and the fact that the SINR¢4., (k) = 9(y) = aQ(Vely 2
v|Px|?, we can see that Then
1 1 1 1
i < < mse(l) & ) =9 ——~= | -
TP S T4 8G) - T T+ AP Pravse(i) ~ aQ (VD) = (1 +ﬂ(i)>
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Similar to the QPSK case, we can use (16) to express the 2
argument ofg(-) in the above equation as/(1 + 3(i)) =

no (It 412/ (1 + ~|Pi]?)). Therefore, we have

M—1

1 .

PT,MMSE:M E Pr, mmsk ()
i=0

Ail el

wherePr vimse(?) = g ]

= 14| P
(20)

To exploit the convexity and the concavity gf ), we define

Ro = [0, 20]7 Ri= (20, Zl), and Ro = [217 1]
3c+1—+v9c2 —10c+1
8c
V9c2 —10c+1

8c

We can show thay(y) is convex overR, and R., and it is
concave oveRR,. Notice that wherl /(1 + (7)) < zp, theith
subchannel is operating in the convex regidgof g(-). For the
conventional OFDM system, the condition for this is

wherezg =

0.5 1 15
Frequency normalized by &

0

3 1
and = ctl+

21

Fig. 7. Frequency responses of the two chanpe{s) andp»(n).

Y

2l -1 1
>0 — - 21 10

Similarly, wheny and P; are such that

&
r

e
o

(22)

Error Rate

the ith subchannel of the conventional OFDM system is operg
ating in the convex regioR>. When SNR is high enough so that
(21) is true for all or when the SNR is low enough so that (22)

is true for alli, all the subchannels of the conventional OFDM
system will operate in one of the convex regiong ©f. In this
case, we can invoke the convexitygf) to show that the class 4
of unitary matrices satisfying the equal magnitude property ii 0
(10) are optimal. It can be verified that the cd&gcorresponds

to a very high error rate, whered®, corresponds to a more

useful range. To have all subchannels operatingjnwe need Fig- 8. Example 1. Performance comparisonRfam, Pact: Pact, mmse
Poc-cpr ANAPsc-cp, mmse fOr the channep, (n).

_3-

10

P
sc-cp,mmse

_4

10
E/N, (dB)

5

zo_l -1
|2
It can be further verified that/ is less than the value of;

given in (13). This means th&.-cp, mmse DECOMES the min-
imum BER at a smaller SNR thaPy-cp,.

/ I __
¥Z 7, wherey = max Fig. 7. The BER performance is obtained through Monte Carlo

simulation, unless otherwise mentioned.

Example 1: We will usep, (n) in this example. We compute
the values ofyy = min; 3/|P;[2, 7 = 1/M Y M5" 3/|P2,
andy; = max; 3/|P;|?, respectively, as-0.51, 8.85, and 14.74
dB.

Fig. 8 showsP,tay, andPsc-cp as functions of SNRy. We

We will assume that the noise is AWGN with variancalso show the BER for the case when the transmitting matrix
No. The modulation symbols are QPSK with values equé&k is a unitary type Il DCT matrix, which is denoted &5.;.
to +£4/&,/2 + j\/E:/2 and SNRy = &,/Ny. The number In this case, the precoddf given by WG does not have the
of subchannelsM is 64. The length of cyclic prefix is unit magnitude property in (10). Whenever SNR= &, /N

VI. SIMULATION EXAMPLES

3. Two channels with four coefficientsL. = 3) will be
used in the first three examplegi(n): 0.3903 + 50.1049,
0.6050 + 50.1422, 0.4402 + 3j0.0368, 0.0714 + 50.5002,
and py(n):  —0.3699 — j0.5782, —0.4053 — 50.5750,
—0.0834 — 30.0406, 0.1587 — 3j0.0156. The magnitude
responses of the two channelg(n) andps(n) are shown in

is larger thany; = 14.74 dB, Psc-¢p Qiven in (7) becomes the
minimum BER for any unitary precodéF. Fory < ~q, the
conventional OFDM system is the optimal solution. kGt ~q,

we observe thaP.q,,, ~ 0.2. In this case, the OFDM system
is optimal only for BER larger than 0.2. For either SNR range,
v < 79 Ory > 71, and the performance @, is in between
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10
e 2
s &
s S 10 ]
0 w
5 i
10
x
10 : - : : 107 : - :
0 10 20 30 40 50 0 5 10 15 20
E/N, (dB) E/N, (dB)

Fig. 9. Example 2. Performance comparisoram, Pacts Pact. mmse, Fig. 10.  Example 3. Comparison of the actual BER and the BERuse
Pecmepr ANAPsc-cp. mmse fOr the channeps(n). computed from (18). For the DCT case, the actual BER is the dotted line, and

Pict. mmse IS the dotted line marked withx.” For the SC-CP system, the
actual BER is the solid line, anB.-.,, mmse is the solid line marked with

Potam andPsc-cp. The BER performances of MMSE receivers®”
Pact, mmse AN Psc-cp. mmse are also shown in the same plot.
In each case, the BER of the MMSE receiver is lower than th:
zero-forcing receiver for all SNR. For the OFDM system, an
MMSE receiver does notimprove BERgtam = Po fam, mmse-
In addition, observe that the crossingRg.-., andPqqm OCCUrs
around BER= 0.04 andy = 8 dB, which is a value very close
toy = 8.85 dB.

Example 2: The channel in this exampjg(n) has a spec-
tral null aroundd.97 (see Fig. 7). The DFT coefficients around

Error Rate

N
0.97 are very small. The values f, 7, andy; are, respectively, N
1.4, 33.8, and 51.9 dB. Fig. 9 shows the five BER performanc® R
curves as in the previous examp®stam, Pacts Pact, mmses - P "-,\"\
Psc-cpr aNUPgc-cp. mmse. DUe to the zero close to the unit circle, _ P°fd'" RS
the BERs of the three zero forcing systegam, Pact, and Pdd’vm"‘“ N
Psc-cp become small only for large SNR. However, there is nc | = sc-cpmmse R
. . . . L n s AN
serious performance degradation in the SC-CP system with ¢ 10
. . . 0 10 20 30 40

MMSE receiver. Notice that the crossing Bfc-cp, and Potdm E /N_(dB)

s 0

occurs around' = 37 dB, which is a value closer t§ = 33.8
dB thgn toyy = 14 dB orvy, = ‘51.9 dB. The BER corre- Fig. 11. Example 4. BER performance®.m, Puct.mmac, and
sponding to the crossing ésx 1073, Pre-ep. mmse OVer a four-tap fading channel.

Example 3:In this example, the channel jg(n), like in
Example 1. We plot the actual BER and the approximati
B e N 7. _, . usig (15) and average e resuis o
Carlo simulation. Two ’cases are shown: the SC-CP s dOOO random channels (see Fig. 11). For high SNR range,

. : ystem aj . o .
the case that the transmitting mat€ixis a DCT matrix. We can _°¢ P> ™ms¢ requires a significantly smaller transmission
see that in both cases, the approximations are indiétinguish ?gver tha.nPOfdm for the same BER. The performance of
i is in betweerP,,.- and?P, for all SNR.

from the actual BER. This example demonstrates that evefi" ™" serep,mmse ofdm

though output errors consist of ISI terms and channel noise,
the BER is well approximated by Gaussian tail for all SNR.
We will use (18) in the next example to compute BER over a In the context of transceiver designs, the optimality addressed
fading channel. in most of the earlier works is in the sense of mean squared

Example 4: We use a multipath fading channel with fourerror minimization. In the paper, we consider directly the min-
coefficients. The coefficients are obtained from independeintization of uncoded BER for the class of OFDM transceivers
circular complex Gaussian random variables with zero meuwiith unitary precoders. For QPSK signaling and MMSE recep-
and variances given, respectively, by 8/15, 4/15, 2/15, atidn, there exist channel-dependent optimal precoders. This is

%”15. We compute the BER performan®gam, Pact, mmse:

VII. CONCLUSIONS
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the class of unitary matricéE with the equal magnitude prop-a subchannel has SNR satisfyifig}) > 3, it is operating in the
erty, i.e.,|tm, »| = 1/VvM,for0 <m,n < M — 1. One of the convex region off (y). We have
solutions is the DFT matrix, and the resulting transceiver is the

M-1 M-—1
SC-CP system. In the case of zero-forcing receivers, the solutl _ Z ¥ ( > Z
of optimal precoders depends on SNR. For higher SNR assom- M /3 Precp
ated with a practical range of BER, the optimal precoders that (23)

are channel independent are also the set of unitary matrices with

the equal magnitude property. In the presence of channel sp@é-the other hand, using (2), we have

tral nulls, the performance of zero-forcing receivers exhibits se- M—1

rious degradation. Robustness against channel spectral nulls can f < ) Z |tr. i

be achieved by using MMSE receivers. |1D 2
M-1

APPENDIX A < Z Itr. | f< I |2>

PROOF OFLEMMA 2

Let u(y) 2 1/\/y fory > 0; then, f(y) = Q(u(y)). The The inequality follows from the fact that/(~|P|?) is in the
lemma can be proved by computing the first and second derieamnvex region off (-) for v > ~,. Therefore
tive of f(y). The functionu(y) 2 1//y fory > 0 is convex

M-1

with first derivativeu’(y) = —(1/2)y~3/? and second deriva- Pr = 1 Z f < )
tive u”(y) = (3/4)y~>/%. The functionQ(x) for = > 0 is also M
convex withQ'(z) = —(1/v/2x)e=""/2 and | Mo1 M-l

Q'(x) = =™/, 2 f<z ol Sims |2>

27 M-1 M-1
The first derivative f'(y) = Q'(u(y))u'(y) is given by <L Z Z It i]2 f< >
fy) = (1/22m)e=(/2)y=3/2 which means that M = | Pr|?
f(y) is strictly monotone increasing. We can verify that | M= 1
F7(y) = Q(u(y))'(v)]? + @' (u(y))u(y) can be expressed i 2 () =Pom @0
as M = " \7|P|
F(y) = 1 e~ (/20 =T/2(1 _ 3 where we have used the fact that for any unitBrjts rows have
427 ’ unit energnyigl |tk,:]*> = 1 for all k. Combining (23) and

(24), we obtaiPotam > Pr > Psc-cp fOr v > 1. Similarly,
wheny < ~9, we can use the concavity ¢f-) to show that
Pofdm S PT S PSC'C}')'

Therefore,f”(y) > 0fory < 1/3 andf”(y) < 0 fory > 1/3,
which proves the lemma.

APPENDIX B

APPENDIX C
PROOF OFTHEOREM 1

PROOF OFLEMMA 3

We will use the concavity and convexity ¢f(-) to prove o . .
Theorem 1. Given a set of numbeys, y1, ..., yar—1 With . t::gg:{n\e/\(/:ﬁg?;t_logsgo&?evcﬁgfgg'i;\lg C::eigpjlﬁ}aﬁgz?
0 < y; < 1/3, the strictly monotone increasing property an{i:i'n ular matrix a_ncB is a,dia | tg' ithth di |
the convexity off(y) imply 9 ' gonal matrix wi lagonal

elemen{®]., = 1/P;. Lety be the output vector of the matrix
M1 M1 ®. If we chooseH = T, thenS becomes the zero forcing so-
Z Nif(yi) > f ( Z /\iyz) lution. In the absence of channel noise, we have Ts. There-
=0 =0 et fore,y can be expressed gs= Ts + q, whereq = OWwv is
- a noise vector from the channel noise alone,ard Hy — s.
where); > 0, and Z Ai=1 By the orthogonality principlee should be orthogonal to the
observation vectoy, i.e., E[(Hy — s)y’] = 0. This yields
Similarly, givenyo, y1, ..., ya—1 Withy; > 1/3, the concave HE[yy'] = E[sy']. Solving this equation, we get
property of f(y) for y > 1/3 implies 1
H="T!¢& (£I+MN,001) (25)

M-1 M-1
Z Xif(yi) < f (Z Ail/i) D

=0 =0 Mt whereD is a diagonal matrix with théth diagonal element
and Z =1 equal t0&/(Es + No/|Pi|?). Therefore, the optimaB is
L TIDOW. Letting A = D®, we obtain the expression &f

) ) ) given in (14). UsingH as in (25), we can further verify that
Let us first consider the case > ~;. For .thIS range, the x = Hy can be written ag = T'DTs + TTAWuw. Hence
subchannel SNR of the OFDM systefigi., (1) > 3. For a

general unitary precodér, we can use (8) to see that whenever e= TT(D -ITs+ TIAWw.

where); > 0,
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The input symbols are assumed to be uncorrelated with real and
imaginary parts having the same variadgethe vectorI's has

the same statistics, which are implied by the unitary property %f
T. Therefore, we have

Ellei ]
M-1
Nov?|Pr)?
= th,i S el [1]
Z"‘ (1+ |P| Z|k|l+v|P|)
Mf T .
= kl R ————
14 | Prf?
k=0 (3]

Therefore, the MSE,, = 1/M M " E[|e;|?] is as given in

the lemma. We also observe that the error vector consists of twé ]
partsTT(D —I)Ts andTT A Ww. With the assumption that the
inputs have equal variance in real and imaginary parts, we canl®!
verify that the vectof'" (D —I) T's also has the property that the
real and imaginary parts have the same variance. Similarly, thgé]

noise vector has the same property, ald AWr also has the ~ []
same property. Therefore, we conclude thhais equal variance g
in real and imaginary parts.
As x = T'DTs + TTAWuw, theith elementz; has the .
expression in (15). The variance ©of is
M-1 [10]
VPl
|12|2] =& Z It Z|2 2"
1+ 7| P 1)
The above expression means tiglz;|?] = a;€, and that [12]
E[|7)%] = El|lz:|%] — a2&s = a;E, — a?€,. Theith subchannel
SINR
[13]
a?€ a?€ a;
3 . — 7 ~S — 2 ~8 — 1 .
AG) Elln?]  aiés—aiés  1-—a; [14]
Using the expression af; in (15), we obtain3(7), as given in
(16). [15]
[16]
APPENDIX D
PROOF OFLEMMA 4 [17]
We will prove the lemma by showing thdt'(z) > 0 (18]
and h”’(z) > 0. The function h(z) can be written as
h(y) = f(n(y)), wheren(y) = y/(1 —y). The firstand second [19]
derivatives ofn(y) are, respectivelyy’(y) = 1/(1 — y)? [20]
andn”(y) = 2/(1 — y)3, which are both larger than zero
for 0 < y < 1. The first and second derivatives ¢ty) are  [21]
computed in Appendix A. Ag”/(y) > 0 andn/(y) > 0, the
first derivativer/(y) = f'(n(y))n'(y) > 0. We can verify that  [22]
the second derivative” (y) can be rearranged as
(23]
h” — —(1/2n(y)) —3/2 1— -3, -2 1-2 2
(y) YWore ()] /(1 —y) "y (1 - 2y) 24

which is larger than or equal to zero.
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