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Abstract—Discrete multitone (DMT) modulation is an attractive
method for communication over a nonflat channel with possibly
colored noise. The uniform discrete Fourier transforn (DFT) filter
bank and cosine modulated filter bank have in the past been used in
this system because of low complexity. We show in this paper that
principal component filter banks (PCFB) which are known to be
optimal for data compression and denoising applications, are also
optimal for a number of criteria in DMT modulation communica-
tion. For example, the PCFB of the effective channel noise power
spectrum (noise psd weighted by the inverse of the channel gain)
is optimal for DMT modulation in the sense of maximizing bit rate
for fixed power and error probabilities. We also establish an opti-
mality property of the PCFB when scalar prefilters and postfilters
are used around the channel. The difference between the PCFB and
a traditional filter bank such as the brickwall filter bank or DFT
filter bank is significant for effective power spectra which depart
considerably from monotonicity. The twisted pair channel with its
bridged taps, next and fext noises, and AM interference, therefore
appears to be a good candidate for the application of a PCFB. This
will be demonstrated with the help of numerical results for the case
of the ADSL channel.

Index Terms—Channel capacity, digital subscriber loops (DSL),
discrete multitone (DMT) modulation , frequency division multi-
plexing (FDM), principal component filter banks (PCFB).

I. INTRODUCTION

D ISCRETE multitone (DMT) modulation for nonflat chan-
nels has been studied by a number of authors in the last

decade. The theoretical advantages of multitone modulation
were demonstrated in the pioneering paper by Kalet [15] more
than ten years ago. DMT has been considered seriously for use
in digital subscriber loops (DSL), and excellent descriptions
of this can be found in [10] and [31], The DMT system can be
regarded as a filter bank in transmultiplexer configuration [1],
[36], [41]. Typically, the filter banks used for this purpose are
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DFT filter banks which can be implemented efficiently with
the FFT. The filters in these DFT filter banks provide poor
separation between adjacent subchannels [27]. It is known that
the use of better filters improves performance (e.g., higher bit
rate for fixed error probabilities and power). This was clearly
demonstrated in [27] using cosine modulated filter banks
(CMFB) with sharp filters. Advantages of more general filter
banks for this application are also described in [9]. In this
paper, we consider a special type of orthonormal filter banks
called the principal component filter bank (PCFB) (reviewed in
Section IV) and show that it isoptimal for the DMT application
in a well-defined theoretical sense.

The filter responses in the PCFB depend on the channel
transfer function and the noise power spectrum. Moreover even
though PCFBs can be defined for infinite filter orders, they are
evidently unrealizable. However, there appear to be two reasons
why the optimality of the PCFB is of interest. First, it serves as
a benchmark for comparing the performance of conventional
unoptimized DMT systems which use the DFT, CMFB, and so
forth. Second, in applications where the channel characteristics
are fixed (e.g., twisted pair lines with standardnext and fext
noise) we can design the PCFBapriori and approximate it with
practical digital filters. Such approximations can yield better
performance than unoptimized designs like the DFT at the
expense of higher complexity of implementation.

A. Outline and Relation to Past Work

The PCFB was introduced first in [32] and its optimality for
a variety of problems was suggested in [35]. It has since been
proved to be optimal for a general class of objective functions
in signal processing [4], [24], [37], [46]. The role of a specific
class of PCFBs in the optimality of DMT systems was first ob-
served in [22]. A related problem, namely the optimization of
filter bank precoders [13], [44] has been considered in great
depth in a series of recent papers by Giannakis and his group
[13], [28], [29]. The precoder typically introduces redundancy
(like a non maximally decimated filter bank) to combat inter-
symbol interference. The precoder and receiver filters can be
optimized according to several possible criteria. In this context,
an excellent unification of several filter-bank based communi-
cation systems (including DMT) can be found in [28]. In this
paper, we consider the specific role of the PCFB in the design
of optimal orthonormal DMT systems. We believe this provides
a fundamentally different viewpoint.

Two other excellent papers on related optimizations should be
mentioned here. In [7], the authors consider many fundamental
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questions pertaining to transmission of signals in blocks, over
dispersive channels. One of the results there is on the optimiza-
tion of the covariance matrix of the transmitted block to maxi-
mize mutual information. The authors also show how such co-
variance can be realized by filter design. Next, a very general
problem of filter bank optimization is handled in [30] where the
authors optimize mutual information by optimizing the transmit
and receive filters. Both zero forcing equalizers and minimum
mean square equalizers come out of this elegant approach as
special cases. In our paper, we consider the case of orthogonal
filter banks with the perfect reconstruction property and assume
that the channel is equalized by a zero forcing equalizer. Fur-
thermore, we do not consider the mutual information but in-
stead consider the optimization of useful quantities such as, for
example, the actual bit rate with fixed error probabilities and
transmitted power. This makes the problem much simpler and
leads to very elegant insights. For example, it becomes clear that
PCFBs optimize the bit rate for a fixed set of error probabili-
ties and power. There is some commonality between the theme
of our paper and the results in [30] and [7]. We shall see how-
ever, that the approach here is simpler and insightful because we
focus directly on the PCFB solution based on simple convexity
arguments.

In Section II, we describe the DMT system using multirate
filter bank language and formulate a noise model. The bene-
fits of optimizing the transmitting filters is motivated with a
simple example in Section III. A brief review of PCFBs and
their optimality is given in Section IV. More details on this sec-
tion can be found in [4], [5]. Various criteria for the optimiza-
tion of orthonormal DMT filter banks are presented in Section V
and solutions presented. The role of principal component filter
banks for asymmetric DSL (ADSL) service on twisted pairs is
explained in Section VI, along with some numerical examples.
Prefiltered orthonormal DMT systems (which are biorthogonal
rather than orthonormal) are considered in Section VII and it is
shown again that the PCFB has a role in optimality. Some parts
of this paper have appeared in [38] and [39].

B. DSP and Multirate Notations

Bold faced letters denote matrices and vectors. The trans-
pose, conjugate, and transpose–conjugate of a matrix are de-
noted, respectively, as , and . We use a subscript
[e.g., , etc.] to distinguish continuous-time quanti-
ties from discretized versions. In general, the filters are allowed
to be ideal (e.g., brickwall lowpass, etc.). So thetransforms
may not exist in any region of theplane. The notation
should be regarded as an abbreviation for theFourier trans-
form . The language of multirate signal processing [36]
will be used extensively throughout this paper. A summary of
the most common ones follows.

1) The building block in the figures denotes a decimator
with input/output relation . The building block

denotes an expander with input/output relation

multiple of

otherwise.

The expander followed by a filter yields an interpolated version
of . We use the notations and to denote
the decimated version and its -transform. Similarly, the
expanded version is denoted by , and its -transform

by . It can be shown that the Fourier transform
of is a superposition of and shifted
versions [36]

2) Some standard abbreviations: a) PCFB: principal com-
ponent filter bank, b) DMT: discrete multitone modulation, c)
DSL: digital subscriber loop, d) ADSL: asymmetric DSL, e) PR:
perfect reconstruction, f) KLT: Karhunen Loeve Transform, g)
psd: power spectral density or power spectrum.

II. DMT FILTER BANK

Fig. 1(a) shows the essentials of DMT communication as re-
quired for the discussions of this paper. The signals are

-bit symbols obtained from a PAM or QAM constellation
(Appendix A). These symbols are interpolated-fold by the
filters to obtain the subchannel or subband signals .
The th transmitting filter has output

(1)

Fig. 1(b) demonstrates how this construction is done for the
0th filter , assumed to be lowpass. Essentially, we draw
one copy of the impulse response sequence around every
sample of (separated by ) and add them up. The outputs
of the filters and so forth, are more complicated
waveforms because they are bandpass. The filters
traditionally cover different uniform regions of frequency as
shown in Fig. 1(c). The signals are analogous to mod-
ulated versions of the “baseband” sequence because the
bandwidth is shifted to the passband of . These are packed
into adjacent frequency bands (passbands of the filters) and
added to obtain the composite signal . Thus

(2)

This signal is then sent through the channel which is represented
by a transfer function and additive Gaussian noise
with power spectrum . The received signal is a
distorted and noisy version of . The receiving filter bank

separates this signal into the components which
are distorted and noisy versions of the symbols . The task
at this point is to detect the value of from with
acceptable error probability.

In actual practice, the channel is a continuous-time system
preceded by conversion and followed by con-

version. We have replaced this with discrete equivalents
and . The original motivation behind multitone modulation
[15] is that the power and/or bits could be allocated in an effi-
cient manner in the subchannels, depending on the channel gain
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(a)

(b) (c)

Fig. 1. (a) The DMT communication system. (b) The interpolation or modulation performed by the transmitting filterF (z). (c) An example of responses of the
transmitting filters.

, and noise psd in that subchannel. In this
way, the classicalwater filling idea for resource allocation [11],
[26] could be approximated. For a given transmitted power and
probability of error, this yields a better bit rate than direct single
tone modulation (assuming no channel coding). The DMT idea
is similar in principle tosubband codingwhere a signal
to be quantized is first decomposed into subbands. Background
material on the DMT system and more generally on the use of
digital filter banks in communications can be found in [1], [10],
[15], [17], [20], [33].

A. Perfect Reconstruction

In absence of the channel noise , the DMT system of
Fig. 1(a) is LTI, with the transfer function from to
given by

In general, the symbol is therefore affected by
when , resulting ininterband interference. For the case

, if the quantity is not a constant, then is
affected by when , and we haveintraband interfer-
ence. The condition to eliminate these two interferences is

(3)

If interband and intraband interferences are eliminated, the
DMT system is said to be free fromintersymbol interference
(ISI). We then have the perfect reconstruction orPR property

for all (in absence of noise). If the filter
responses in Fig. 1(b) are nonoverlapping, then the subchannels
are completely isolated. There is no interband ISI, though we

might still have intraband ISI. Even if the filters have overlap
as in any practical implementation, we can still avoid both
types of ISI as long as (3) holds. In fact, the most popular DMT
system uses a DFT filter bank where the filters have significant
overlap even though (3) holds.

Biorthogonality: The filter bank is said to be
biorthogonal if

(4)

This means that the impulse response of the product
filter has the Nyquist( ) or zero-crossing prop-
erty

for and . Under this biorthogonality
condition, we have perfect reconstruction only if .
In this paper, we shall make the simplifying assumption
that is biorthogonal and that the channel transfer
function is equalized by using the inverse filter or
zero-forcing equalizer just before entering the bank
of filters . The path from to now has
the effective form shown in Fig. 2(a).1 In actual practice,
there are many ways to approximate this equalized system
(see [25] and references therein). One approach would be to
use a time domain equalizer in cascade with the channel and
reduce the effective channel to be FIR with a short impulse
response. This effective FIR filter is then compensated for by
the use of acyclic prefix followed by appropriate multipliers
at the outputs of , called frequency domain equalizers.

1We make the assumption thatC(e ) 6= 0 for any!. Otherwise, we have
to leave out the offending frequency band.
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(a) (b)

(c)

Fig. 2. (a) The path fromx (n) to y (n) in a DMT system with ideal equalizer1=C(z). (b) Noise processing in thekth subchannel. (c) Complete noise model.

This is explained at length in [10] for DFT based DMT, and a
modification for general DMT has been advanced in [22].

B. Channel Noise Model

Now consider the effect of channel noise . Assuming that
is biorthogonal and that is inserted as shown

in Fig. 2(a), the th received symbol at time is given by

(5)

where is the channel noise filtered through
and decimated [Fig. 2(b)]. If the channel noise is wide sense sta-
tionary with power spectrum then, the variance of
is

(6)

Notice that the noise at the detector input can be viewed as
the output of a maximally decimatedanalysis bank in
response to aneffective noise source with effective noise
psd

(7)

This yields the noise model shown in Fig. 2(c).
Optimization of the DMT Filter Bank:We see that there is

some control on the variances of , because we can choose
the filters . We can take advantage of this. Even if we
assume that the filters are allowed to be ideal, it turns out that
the brickwall filter stacking shown in Fig. 1(c) is not necessarily
the best choice (Section III). For any given channel, we can de-
fine a filter bank called the principal component filter bank. The
frequency partitioning generated by such a filter bank is optimal
for the channel (Section V).

C. Probability of Error, Transmitted Power, and Bit Rate

For simplicity, we assume that are PAM symbols (Ap-
pendix A). Assuming that is a random variable with

equiprobable levels, its variance represents theaverage power
in the symbol . The Gaussian channel noise is fil-

tered through and decimated by . For the pur-
pose of variance calculation, the model for the noise at
the detector input can therefore be taken as in Fig. 2(c). Let
be the variance of . Then, theprobability of error in de-
tecting the symbol is given by [26]

(8)

where (area of the normalized
Gaussian tail). Since the-function can be inverted for any non-
negative argument, we can invert (8) to obtain

(9)

where the exact nature of the function is not of immediate
interest. This expression says that if the probability of error has
to be or less at the bit rate , then the power in
has to be at least as large as. The required total transmitted
power is therefore

(10)

Suppose is converted into a continuous time signal
by the D/A converter at sampling rate so that

. If a voltage waveform V is applied across a 1-
resistor, the power delivered is actuallyW, regardless of the
sample spacing . The samples of are separated by
s. With representing the number of bits per sample in ,
the th subchannel therefore carries bits/s. The total bit
rate is therefore

bits/s

or equivalently, bits/s where .
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(a)

(b)

Fig. 3. Examples of orthonormal filter banks. (a) Delay chain system. (b)
Brickwall filter bank with contiguous stacking(M = 4).

D. Orthonormal DMT Systems

The set of filters is said to beorthonormal if

(11)

In an orthonormal DMT system we choose the transmit filters
to be , i.e., . This en-
sures biorthogonality (4), and furthermore the filters sat-

isfy . In terms of impulse

responses, this orthonormality condition is equivalent to

Thus, the composite signal in (2) can be regarded as a
superposition of elements from an orthonormal set. In fact, any
subchannel signal is a superposition of elements from the
orthonormal set as seen from (1). Fig. 3 shows
two extreme examples of orthonormal filter banks. The first one
is the delay chain system [ and ] and
the second is the idealbrickwall filter bank.

For , (11) yields . If the impulse
response of is denoted as then the preceding
condition is equivalent to the Nyquist() or zero-crossing
constraint . Similarly, for biorthogonal filter
banks, the product is Nyquist( ). Orthonormal
filter banks have been thoroughly studied [36], [42]. Here
are some of their properties: 1)
(unit energy property); 2) (boundedness);
3) (power complementarity). Stated
here for , these also hold for .

E. Polyphase Representation of DMT Systems

Using the polyphase notations described, for example, in [36,
Ch. 5], we can express the row vector of transmitting filters and
the column vector of receiving filters as

where is the delay chain vector defined by
. The DMT system can therefore

be redrawn as in Fig. 4(a). Using Noble identities [36] the
decimator and expander can be moved as shown in Fig. 4(b).
This is the polyphase representation of the DMT filter bank.
Note that the noise model shown in Fig. 2(c) can be redrawn
in polyphase form as shown in Fig. 4(c). This will be quite
insightful as we shall see.

The biorthogonality property (4) can be shown to be equiv-
alent to . The special case where the matrix

is unitary for all corresponds to orthonormal DMT
systems. In this case, we choose (transpose
conjugate) for perfect reconstruction. The DMT systems where

is a constant unitary matrix has been of some practical
importance. In this case, the filters are FIR with lengths

. This is the DMT counter part of thetransform coder in
subband coding theory. The example whereis the DFT ma-
trix falls under this class.

III. OPTIMAL CHOICE OFDMT FILTER BANK

To motivate the usefulness of optimizing the transmitter and
receiver filters, consider Fig. 5(a). This shows an example of the
effective noise psd in terms of the continuous-time fre-
quency variable . [The discretized version of this is
defined in (7)]. This is assumed bandlimited to 1 MHz. The units
for are in milliwatts per hertz, and a decibel plot would
show in dB m/Hz as in the figure. Using a sam-
pling rate of 2 MHz, the digital version of
the psd is as shown in Fig. 5(b) where (due
to the factor in the Fourier transform after sampling). These
are not unrealistic numbers for typicaltwisted pair telephone
channels for which DMT modulation is the standard. The two
bumps (each assumed 10-kHz wide) can be regarded as over-
simplified versions of the effects of bridged taps (first bump)
and AM noise (second bump) [31]. The rapid decay of channel
gain is not depicted in this “toy” example, but we shall do that
in Section VI. Consider a two-band DMT system ( ).
One choice of the orthonormal filter bank, namely the brickwall
stacking, is shown in Fig. 5(c). With the effective psd
as in Fig. 5(b) we can now calculate the variances. Let us
pick some values for the remaining parameters.

1) Error probabilities .
2) and . These are the bits in the PAM con-

stellations for and . It makes sense to use smaller
value for because there is more noise in the region covered
by . Since the average of s is 4, the average bit rate
for the 2-MHz sampling rate is 8 Mbits/s.

The average power needed to meet these requirements can
be calculated from (10), and the result turns out to be 56 mW.
Instead of using the brickwall filter bank suppose we use the
filter bank shown in Fig. 5(d) and (e). We still have two sub-
bands ( ) but each filter now has two passband regions. It
can be verified that this filter bank still satisfies orthonormality
(11). We can recalculate the variances now and compute the
average power. The result is 5.67 mW. Thus

savings in total power



1402 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 10, OCTOBER 2002

(a)

(b)

(c)

Fig. 4. (a) Polyphase representation of the DMT filter bank. (b) Simplification using multirate identities. (c) Noise model in polyphase form.

(a) (b)

(c)

(d) (e)

Fig. 5. Demonstrating the effectiveness of good choice of filter banks in the DMT system. (a) Effective noise psd. (b) Digitized version. (c) Traditional brickwall
filter bank forM = 2. (d) and (e) Different choice of filter bank.

or about 10 dB. In summary, the modified filter bank achieves
the bit rate of 8 Mbits/s and error probability of 10 using
almost 10 dB less power!

The difference between the two filter banks in the example is
that the variances (whose sum is fixed by orthonormality)
are distributed differently depending on the shape of the effec-
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tive noise psd . The natural question then is: given an
effective noise psd and an arbitrary, how do we choose the
orthonormal filter bank to minimize the transmitted
power for fixed specifications? The answer is that
should be chosen as aprincipal component filter bankfor the
effective noise psd.

IV. PRINCIPAL COMPONENTFILTER BANKS

To define a PCFB first consider two sets of nonnegative
numbers and . We say that majorizes if,
after reordering such that and , we have

for , with equality for . Thus,
all the partial sums in dominate those in . Consider a
given class of -band uniform orthonormal filter banks. This
class can be the class of transform coders (with filter lengths

), or the class of ideal filter banks (filters allowed to
have infinite order, like brickwall filters). Or it could be a prac-
tically attractive class like the FIR class with filter orders
bounded by a fixed integer, or the so-called cosine modulated
class [36]. Given such a classand an input power spec-
trum we say that a filter bank in is a principal
component filter bank orPCFB if the set of its subband
variances [i.e., variances of the signals in Fig. 2(c)]
majorizes the set of subband variances of all other filter
banks in the class. That is, with and ,

and so forth. The equality follows au-
tomatically from orthonormality.

The advantage of PCFBs is that they are optimal for several
problems. This includes subband coding with arbitrary (not nec-
essarily high) bit rates, the denoising problem, and so forth, as
elaborated in [4]. These arise from the result (proved in [4]) that
anyconcavefunction of the subband variance vector

isminimized by a PCFBwhen one exists. Similarly any convex
function is maximized by a PCFB. Note that any permutation of
the filters in a PCFB retains the PCFB property. Thus, given a
particular (concave or convex) objective, we have to choose the
right permutation so that the objective is optimized.

Using the preceding results we show in this paper, that PCFBs
also serve as optimal solutions to certain problems in commu-
nication systems which use DMT modulation. It is possible that
PCFBs do not exist for certain classes (e.g., see [4]). But when
they exist, they have the stated optimality. Whenever we say that
the PCFB is optimal for a problem, the implicit assumption is
that the class of filter banks searched is such that a PCFB exists.

A. Construction of the PCFB, and Compaction Filters

For the transform coder class the filters have length .
This means that the polyphase matrix in Fig. 4(c) is a con-
stant matrix . Suppose denotes the autocorre-

lation matrix of its input vector. If is chosen as the unitary
matrix diagonalizing then, it defines the PCFB in this case.
This is nothing but the Karhunen–Loeve transform (KLT) of
the effective noise input . This choice decorrelates the sig-
nals for each . That is, the autocorrelation matrix of the
vector

(12)

is diagonalized. For the ideal filter bank class , the ma-
trix could have infinite order in . This means in par-
ticular that ideal filters are allowed. In this case, the
PCFB is such that the power spectrum of the vector (12) is di-
agonalized which in particular means that the autocorrelation
matrix is diagonal as well. In short, the KLT forces the instan-
taneous decorrelation property for each

, whereas the PCFB for forces thetotal decorrelation
property for all (with ). In
addition, the PCFB for also induces thespectral ma-
jorization property. That is, assuming are in decreasing
order, the power spectra of are ordered such that

pointwise for all . It has been shown in
[37] that total decorrelation and spectral majorization are neces-
sary and sufficient for the PCFB property in the class . For
classes other than and the transform coder class, such con-
ditions for the PCFB property have not been established. In fact,
the existence of a PCFB is not guaranteed for arbitrary classes
of orthonormal filter banks (see [4] for counterexample). When
a PCFB does exist, there is a sequential algorithm that can be
used to construct the filters [23], [4], [5].

Closely associated with PCFBs is the notion of an optimal
compaction filter for a signal with power spec-
trum . Such a filter has the property that its output in
response to the input has maximum variance subject to the
Nyquist( ) constraint . For the transform
coder class, this filter can be constructed by making the
KLT, and taking the receiver filter with largest variance as the
solution. For the class the optimal compaction filter can be
constructed graphically [37]. Typically, there are multiple pass-
bands. For example, the power spectrum in Fig. 6(a) has optimal
compaction filter for shown in Fig. 6(b). To construct
such a filter we proceed as follows: take any frequencyin

and consider the set of frequencies

(13)

Choose one frequency in this set such that is a max-
imum in this set (if there are multiple maxima choose one arbi-
trarily). Include this frequency in the passband of , and
the remaining frequencies in the stopband. Repeat this
for all in . Set the passband height equal
to and stopband height equal to zero. This completely de-
termines the optimal compaction filter for the power
spectrum .

The PCFB can be constructed by designing the filters
sequentially one at a time as follows

[37]. First, design as an optimal compaction filter for
. Then, define a partial power spectrum by removing or
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. (a) A power spectrum. (b) Optimum compaction filter forM = 4 for (a). (c) Partial power spectrum obtained by peeling. (d) PCFB forM = 4. (e) A
monotone power spectrum. (f) PCFB forM = 4 for (e).

peeling off from those parts that fall in the passbands
of [Fig. 6(c)]. Design an optimal compaction filter

for this partial psd. Remove those parts of this partial
psd that fall under the passband of , and continue this
until all the filters have been designed. Fig. 6(d) shows the
filters designed in this manner for .

Filter banks constructed using this procedure have the fol-
lowing properties.

1) A filter may have more than one passband, but
the sum of all its passband widths is equal to , and
the heights of the passbands are equal to (e.g., two in
Fig. 6).

2) The passbands of any two filters are disjoint, and the filters
together cover the entire frequency range.

3) For any consider the set of frequencies in (13). Given
any filter , exactly one of these frequencies be-
longs to its passband, and the others belong to the stop-
band. This property implies two things: a) Each filter is an
aliasfree( ) filter. In other words, its output can be deci-
mated by without causing overlaps of the copies of the
spectrum created by downsampling; b) The decimated ver-
sion for all .

It readily follows from these that the resulting filter bank is
orthonormal. The proof that this is actually a PCFB can be found
in [37]. For the case of a monotonedecreasingpower spectrum

the compaction filter islowpass, as demonstrated in
Fig. 6(e) and (f). In this case, the PCFB happens to be the tradi-
tional brickwall stacking of bandpass filters as shown.

V. OPTIMIZATION OF THE DMT FILTER BANK

In this section, we show how to optimize the orthonormal
filter bank used in a DMT system. We assume that the number
of subchannels is fixed. The channel transfer function
and the noise power spectrum are assumed to be fixed
and known as well. A brief overview of these results will also
appear in [40].

A. Minimizing Transmitted Power

Recall that the total transmitted power can be expressed in
terms of the error probability and noise variances as shown in
(10)

Let us assume that the bit rates and probabilities of error
are fixed. For this desired combination of and
, the total power required depends on the distribution

of noise variances . These in turn depend upon the filters
. From (9) it follows that the required power in the

th band is a linear (hence concave) function2 of . The total
transmitted power is therefore a concave function of the
noise variance vector

(14)

From Fig. 2(c), we see that this is the vector of subband vari-
ances of the orthonormal filter bank in response to
the power spectrum . Recalling the discus-
sion on PCFBs from Section IV we now see that the orthonormal
filter bank which minimizes total power for fixed
error probabilities and bit rates is indeed aPCFB for the effec-
tive noise power spectrum

Having identified this PCFB, the variances are readily
computed, from which the powers for fixed bit rate
and error probability can be found [using (9)]. The
minimized power can then be calculated.

2A linear function is also convex, so there is a permutation of the optimal
PCFB which maximizes rather than minimizes power. Evidently it should be
avoided!
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B. Maximizing Total Bit Rate

Returning to the error probability expression (8) let us now
invert it to obtain a formula for the bit rate . This is tricky
because of the way occurs in two places. The factor
however is a weak function of in the sense that it varies from
0.5 to 1 as changes from one to infinity. Suppose we replace

with unity. Then, (8) yields

(15)

so the total is approximately

(16)

This is the achievable without channel coding, for a given
set of error probabilities and signal to noise ratios

. Since is convex in (for ),
the total bit rate is convex in the variance vector (14). Thus, the
orthonormal filter bank which maximizes the bit
rate for fixed error probabilities and powers is again a PCFB
for the effective noise psd as before. This
is intuitively appealing since the maximization of bit rate and
minimization of total power are consistent goals.

Without the approximation the closed form
expression (16) is not possible, but the convexity ofcan still
be proved in a more elaborate way as shown in Appendix B.

C. Optimal Power Allocation

The preceding result is true regardless of how the total power
is allocated among the bands. In particular we can

performoptimum power allocation. We have

(17)

where . The optimization of
for fixed total power is a standard problem

in information theory [11]. The solution is given by

if this is nonnegative,
otherwise

(18)

where is chosen to meet the power constraint. This is the
familiar water pouring rule [11] demonstrated in Fig. 7. This
power allocation is optimal regardless of the exact choice of the
filter bank . In particular, if is chosen as the
optimal PCFB and then power is allocated as above, it provides
the maximum possible DMT bit ratefor fixed total power and
fixed set of error probabilities. Note that the power allocation
automatically determinesbit allocation because of the formula
(15).

D. Capacity

We observe some similarities and differences between the ac-
tual bit rate (16) and the theoretical capacity of the DMT system.

Fig. 7. Optimal power allocation by water pouring.

The biorthogonal DMT system with ideal channel equalizer can
be represented by

(19)

where are the modulation symbols and the noise
components shown in Fig. 2(c). In general it is not true that
the effective noise components are Gaussian, white, and
uncorrelated. However, if the number of bandsis large, and
the filters are good approximations to ideal filters, then
this is nearly the case. In this case, the channel (19) is identical
to theparallel Gaussian channeland has information theoretic
capacity [11]

(20)

Since the noise variances depend on the filters ,
the above capacity also depends on them. For the case where

is an orthonormal filter bank thiscapacity is maximized
if is chosen as a PCFB for the effective noise psd

. The reason again is that (20) is convex in
the variance vector (14). Moreover, as in [11], we can optimally
allocate the powers under a power constraint .

Equation (16) is thebit rate achieved for fixed probabili-
ties of error , and without channel-coding in subbands.
Equation (20) is theinformation capacity, that is, the theoret-
ical upper bound on achievable bit rate with arbitrarily small
error. We see that both (16) and (20) depend on the choice of
filter bank, and are maximized by the PCFB. Suppose the error
probabilities are for all . A calculation of the
factor shows that if the two quantitiesand

have to be equal then the total power in (16) should be9.74 dB
more than the power used in (20). Channel coding is included
in many DMT systems in order to reduce this gap.3

The preceding discussion on capacity should be interpreted
carefully. Indeed, the capacity of a channel is a property of the
channel itself, and cannot depend on the filter bank. It depends
on the power, the channel transfer function, and the noise. How-
ever, in the preceding interpretation we imagine that the-band
transmitter filter bank and receiver filter bank are part of the
channel. The number of bands and the powers are
fixed, and the filter bank is assumed orthonormal. Under this
condition, (20) represents the capacity of the channel, and it de-
pends only on the noise variance distribution which can
be controlled by the receiver filters (the transmitter filters are

3This gap is very similar to the gap between PCM rate and channel capacity
for AWGN channels [19, Ch. 15].
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(a) (b)

(c) (d)

(e)

Fig. 8. Qualitative frequency-domain plots for ADSL service on the copper twisted-pair channel. (a) and (b) Transmitted psd masks; (c) Channel gainjC (f)j .
(d) Various noise spectra. (e) Model for the bridged tap.

conjugates of the receiver filters by orthonormality and perfect
reconstruction requirement). This is a useful interpretation be-
cause of the close analog between (20) and the bit rate (16). This
capacity is maximized by choosing the filter bank to be a PCFB
and by performing power allocation as described earlier. Notice
finally that the bit rate equation (16) with nonzero error prob-
ability is both practical and perfectly meaningful, and is in no
way affected by the preceding interpretation based on capacity
which in this context is only of aesthetic value.

VI. TWISTED PAIR CHANNEL

The data rate achievable on twisted-pair copper wires is lim-
ited by the channel noise and the gain of the line , which
decreases with frequency and wire length. The signal to noise
ratio deteriorates rapidly with frequency as well as wire length.
Nevertheless, with typical noise sources of the kind encoun-
tered in a DSL environment and with typical transmitted power
levels, a wire of length 18 kft could achieve a rate well above
1 Mbits/s. Shorter wires (e.g., 1 kft) can achieve much more
(40–60 Mbits/s) [31], [43]. This is done by allocating power
and bits into a much wider bandwidth than the traditional voice
band.

The purpose of this section is to demonstrate the improve-
ment obtainable with optimal filter banks instead of a DFT
based DMT system. A simplified model of the twisted pair
environment will be used. The model, while not accurate, helps
to demonstrate the ideas well. Only a real simulation with
published data on the channel can reveal the improvements
more accurately, but we shall not venture into that here.

The types of noise that are really important in a DSL en-
vironment are near end cross talk ornext and far end cross

talk or fext. These arise because several twisted pairs are typ-
ically placed in a single cable and therefore suffer from elec-
tromagnetic interference from each other. A great deal of study
has been done on this, both theoretical and measurement-based
[31], [43]. Assuming that all the pairs in the cable are excited
with the same input psd, the power spectra of thenextandfext
noise sources can be estimated using standard procedures. Even
though the “next noise” is an interference, it has the character-
istic of Gaussian noise as shown in [18].

Fig. 8 demonstrates the relevant quantities with plots that
reasonably resemble what one might expect in practice. Parts
(a) and (b) show the transmitted downstream (telephone office
to customer) and upstream (customer to telephone office)
power distributions for ADSL service. These signals often
occupy nonoverlapping bands but sometimes they are in the
same band, in which case echo cancelers are required [31]. The
downstream bandwidth is larger because of higher rate (several
megabits per second); upstream offers only a few hundred
kilobits per second. Fig. 8(c) shows a typical plot of the channel
gain. The dips are due tobridged tapstypically attached to
telephone lines in the US for service flexibility. Fig. 8(d) shows
the typical power spectra of thenextandfextnoises. The figure
also shows the typical interference on the phone line caused by
AM radio waves (560 kHz–1.6 MHz) and from amateur radio
(1.81–29.7 MHz, which is outside the standard ADSL band as
deployed today). These interferences depend of course on the
location of the line, time of the day and many other varying
factors.

In any case, notice that the overall noise spectrum is far from
flat. The ratio of the noise spectrum to the channel gain given
by is not monotone. Because of the many
bumps and dips in this ratio, the PCFB is significantly different
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from the contiguous brickwall stacking, and can therefore re-
duce transmitted power significantly, similar to the example of
Section III. This is demonstrated next.

A. Details

We assume that the channel gain as a function of the
continuous-time frequency has the form [16]

where is the length of the twisted pair line in kilofeet and
is in kilohertz. The constants appearing in the equation are

, , and . Notice that this value of
yields an attenuation of 12 dB at zero frequency. The preceding
expression for is sometimes referred to as the RC-ap-
proximation, and is valid for short lengths [16]. We approxi-
mate each bridged tap with a multiplicative term having
the form shown in shown in Fig. 8(e). The expression used in
the simulation is

otherwise.

This expression is used for , and it defines for all
because . The center frequency is determined
by the length of the bridged tap. The noise psd as a
function of continuous-time frequencyhas the form

For simplicity, the AM noise psd for a given station
is assumed to be a constant with total bandwidth of 10 kHz
around the station frequency . Its strength
can be specified in dBm/Hz (typically between 80 and 120
dB m/Hz on phone lines [31]). We consider the ADSL down-
stream channel for which thenextandfextsources are, respec-
tively, the upstream and downstream signals in the other twisted
pairs in the cable. We assume the upstream and downstream
signal power spectra and to be as in the ADSL
issue 2 mask described in [31]. More specifically, these are taken
to be the plots on pages 103 and 105 of [31] multiplied by the
baseband pulse shaping function

where MHz for downstream and 270 kHz for up-
stream [31]. The psd ofnextandfextnoise sources are taken to
be

where and . Here is the wire
length in kilofeet and is in hertz. The integers and are
the number ofnextandfextdisturbers ( 49 in a 50-pair cable).
For our example, we assume the following.

1) Number of subchannels , sampling rate
3.2 MHz, and probabilities of error in
all subchannels. PAM constellations are used in each
subchannel.

2) Twisted pair channel length kft, and number of
disturbers 49 (for both next and fext).

3) One bridged tap with , Hz and
kHz.

4) Two AM stations with BW 10 kHz each, having carrier
frequencies 600 and 850 kHz with power spectra95
dB m/Hz and 90 dBm/Hz, respectively.

Then, for a downstream ADSL bit rate of 3.2 Mbits/s, the
transmitted power is required to have the following values:

Traditional DFT-multitone: 4.68 mW
DCT-multitone: 4.08 mW
KLT-multitone: 2.76 mW
Ideal FB [contiguous stacking, Fig. 3(b)]: 1.28 mW
Ideal PCFB (unconstrained class): 0.94 mW

The PCFB is, therefore, significantly better than the other filter
banks. Compared to the traditional DFT, the savings in power
is about a factor of five. Fig. 9 shows the responses of two of
the eight filters in the PCFB (normalized to unity). Notice that
the filters have multiple passbands. The plot for shows
that its practical implementation could be expensive because of
the very narrow passbands. In fact, by a slight variation of the
PCFB design algorithm, it is possible to eliminate bands that
are narrower than a certain threshold. Such near-PCFB solutions
will still have performance close to ideal. In any case, it is our
opinion that the primary role of the PCFB is to provide bounds
on performance for fixed . If the performance gap between a
practical system and the PCFB solution is small in a particular
application, this gives the assurance that we are not very far from
optimality.

If we plot the required transmitted power as a function of the
number of bands (with all other parameters as in the pre-
vious example) the result is as shown in Fig. 10. The plot shows
the results for 1, 2, 4, 8, 16, 32, 64, and 128. The PCFB
requires smaller power than all other methods (consistent with
its theoretical optimality). However, the difference between var-
ious filter banks becomes negligible as increases. This is
analogous to a well-known observation in subband coding [14];
namely the coding gain is relatively insensitive to the choice
of filter bank as . DMT systems based on fixed filter
banks such as the DFT or cosine modulated filter banks are at-
tractive because of their simplicity; they are non adaptive and
can be implemented efficiently [10], [27].

VII. SCALAR PREFILTERING BEFORECHANNEL

Consider again, Fig. 1 where is orthonormal with
. Assume as before that has been

equalized by inserting . Suppose this configuration
is further modified by insertion of a prefilter and postfilter
around the channel [Fig. 11(a)]. Thus the effective transmitting
filters are and receiving filters are

. This defines a biorthogonal filter bank
. This system can achieve better performance
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(a)

(b)

Fig. 9. Two of theM filters in the PCFB which minimizes transmitted power
in the example.

Fig. 10. A comparison of the PCFB with other filter banks as a function of
number of bandsM .

than the orthonormal system . For example, we
can shape and such that the transmitted power
is minimized for fixed bit rates and probabilities of error.

The interpolated signal [Fig. 11(b)] has a variance
which in general depends on. In fact, if we assume that

is a WSS process, the signal is cyclo WSS, and its
variance is a periodic function of with period . The power
in the th symbol is this variance averaged over a period. To
find this, redraw Fig. 11(b) as in Fig. 11(c) where are
the polyphase components of . We shall assume
that the symbols arewhite with zero mean and variance

. This is consistent with the view that is generated by
parsing a binary i.i.d. sequence [8]. Thus the variance at the
output of is given by . The
average variance of is then

Assuming further that areuncorrelated for different ,
the total power input to the channel is the sum of these average
variances

(21)

The quantity is also the physical signal-power at the input of
the detector. The noise variance at the detector input can be
computed by referring to Fig. 2(c) and inserting the additional
factor in the noise transfer functions. Thus

Since for some , the total power is

where we have substituted the preceding expression forand
used the fact that for any orthonormal filter
bank. For a given channel, and are fixed. As-
sume the set of error probabilities and bit rates are
also fixed. The total power input to the channel then depends on
the orthonormal filter bank and the prefilter .
The next result shows how this power can be minimized. It is an
extension to the DMT system, of a familiar result in the subband
coding theory [12].

Theorem 1: Optimum Prefiltered Orthonormal FB for
DMT: Assume that the modulation symbols are white,
and uncorrelated for different . For fixed probabilities of
error and bit rates , the combination of orthonormal
filter bank and prefilter which minimizes the total
required power is obtained as follows: 1) Choose
with magnitude response (22); 2) Make PCFB for

.
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(a)

(b) (c)

Fig. 11. (a) Pre and post filters in the DMT system. (b) Thekth subchannel symbol and its interpolation. (c) Equivalent polyphase diagram.

Proof: From the Cauchy–Schwartz inequality we have

where the argument has been eliminated for simplicity.
Equality holds when the two integrands on the left are equal,
that is,

(22)

This is the optimum no matter what the orthonormal
filter bank is. With the prefilter chosen as above, the total
transmitted power is where

Thus, is a concave function of
which can be regarded as a subband variance vector from
an orthonormal analysis bank with input power spectrum

. Applying the result of Section IV
we conclude that the orthonormal filter bank mini-
mizing the total power is a PCFB for the power spectrum

.
Note that the solution (22) also arises in optimal prefiltering

prior to scalar quantization, and is said to be thehalf whitening
filter [14], [36] for the spectrum .

VIII. C ONCLUDING REMARKS

The DMT idea is similar in principle to subband coding where
a signal to be quantized is first decomposed into sub-
bands. Depending on the power spectrum of the input,
there is a certain distribution of signal energy across the sub-
bands. This distribution is exploited in the coding process by op-
timal bit allocation: we allocate more bits to the subband having

higher energy. Thus, in the subband coder, the frequency depen-
dence of the input signal is exploited. In the DMT system,
the frequency dependence of the channel and the noise

are exploited. The similarity of the two problems is
exemplified by the fact that the PCFB serves as an optimal the-
oretical benchmark in both cases. The complete duality between
the optimization of subband coders and DMT systems can also
be seen in a more basic way as explained in [21]. The use of
nonuniform filter banks and PCFBs for DMT communication
has not been addressed in this paper. Such an extension finds
application in the so-called DWMT (discrete wavelet multitone)
modulation. We conclude with one further remark. The implicit
assumption throughout has been that the channel and the noise
power spectrum are entirely known so that the optimal filter
bank can be identified. If there is an error in the estimation of
these channel parameters, then naturally the performance would
be suboptimal. An interesting research problem in this context
would be to analyze the extent to which the results will stray
from optimality.

APPENDIX A
PARSING STAGE IN DMT COMMUNICATION

Fig. 12(a) shows the first stage of multitone modulation [8],
[10] called theparsing stage. Here representsbinary
data to be transmitted over a channel. This data is divided
into nonoverlapping -bit blocks. The bits in each block are
partitioned into groups, the th group being a collection of

bits (demonstrated in the figure for ). Thus, the total
number of bits per block can be expressed as .

The b in the th group constitute theth symbol which
can therefore be regarded as a-b number. For the th block,
this symbol is denoted as . This is themodulation symbol
for the th band. The vector is
sometimes referred to as theDMT symbol. For the case of pulse
amplitude modulation (PAM), the sample is a quantized
real number as demonstrated in Fig. 12(c) for . For the
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(a) (b)

(c) (d)

Fig. 12. (a) and (b) Explanation of the parsing stage in DMT. (c) The 8-PAM constellation (3 b). (d) the 16-QAM constellation (4 b).

case of quadrature amplitude modulation (QAM) can be
regarded as a complex number, taking one ofpossible values
from a rectangular constellation as demonstrated in Fig. 12(d).
More efficient constellations exist [26].

APPENDIX B
PROOF OFCONVEXITY OF BIT RATE

The following proof was first presented in [6]. Consider (8)
and delete all dependence onfor simplicity. Without using the
approximation we will show that is convex in .
First notice that

As increases from to , the quan-
tity decreases from to zero. We will show that is
convex for . Since the inverse of a decreasing
convex function is convex (Appendix C), this will prove that

is convex in . For convenience define

Then, , and becomes

where the primes denote derivatives with respect to. We know
is convex if its second derivative is nonnegative. So it is

sufficient to show that is decreasing. Both and
are positive and decreasing in ,

and so as well. It is therefore sufficient to show that
decreases. Since , it

follows that . Similarly, the func-

tion has derivative .
Using these we verify that

where . Now the range
translates to . In this range,

is decreasing. So, it is sufficient to show
that is decreasing in , or its derivative is negative.
This is equivalent to showing that . Now

Using integration by parts this indeed becomes

APPENDIX C
DECREASINGCONVEX FUNCTIONS

To verify that the inverse of a decreasing convex function is
convex, let be an invertible convex function (in some
range ). We have

for . Substituting and
, and similarly for , we get

If is a decreasing function, then this implies

proving that is convex as well.
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