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Discrete Multitone Modulation With Principal
Component Filter Banks
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Abstract—Discrete multitone (DMT) modulation is an attractive ~ DFT filter banks which can be implemented efficiently with
method for communication over a nonflat channel with possibly the FFT. The filters in these DFT filter banks provide poor
colored noise. The uniform discrete Fourier transforn (DFT) filter separation between adjacent subchannels [27]. It is known that

bank and cosine modulated filter bank have in the past been used in th f better filt . f higher bit
this system because of low complexity. We show in this paper that (1€ US€ Of better filters improves performance (e.g., higher bi

principal component filter banks (PCFB) which are known to be rate for fixed error probabilities and power). This was clearly
optimal for data compression and denoising applications, are also demonstrated in [27] using cosine modulated filter banks

optimal for a number of criteria in DMT modulation communica-  (CMFB) with sharp filters. Advantages of more general filter
tion. For example, the PCFB of the effective channel noise power banks for this application are also described in [9]. In this

spectrum (noise psd weighted by the inverse of the channel gain) id ial t f orth | filter bank
is optimal for DMT modulation in the sense of maximizing bit rate paper, we consider a special type ot orthonormal Tilter banxs

for fixed power and error probabilities. We also establish an opti- called the principal component filter barRCFB) (reviewed in
mality property of the PCFB when scalar prefilters and postfilters ~ Section IV) and show that it isptimal for the DMT application

are used around the channel. The difference between the PCFB and in a well-defined theoretical sense.

a traditional filter bank such as the brickwall filter bank or DFT The filter responses in the PCFB depend on the channel

filter bank is significant for effective power spectra which depart t fer functi dth . i M
considerably from monotonicity. The twisted pair channel with its ransier function an € noise power spectrum. Moreover even

bridged taps, next and fext noises, and AM interference, therefore though PCFBs can be defined for infinite filter orders, they are
appears to be a good candidate for the application of a PCFB. This evidently unrealizable. However, there appear to be two reasons
will be demonstrated with the help of numerical results for the case why the optimality of the PCFB is of interest. First, it serves as
of the ADSL channel. a benchmark for comparing the performance of conventional
_Index Terms—Channel capacity, digital subscriber loops (DSL), unoptimized DMT systems which use the DFT, CMFB, and so
discrete multitone (DMT) modulation , frequency division multi-  forth. Second, in applications where the channel characteristics
plexing (FDM), principal component filter banks (PCFB). are fixed (e.g., twisted pair lines with standarext and fext
noise) we can design the PCEBriori and approximate it with
|. INTRODUCTION practical digital filters. Such approximations can yield better

: : performance than unoptimized designs like the DFT at the
ISCRETE multitone (DMT) modulation for nonflat chan-extpense of higher complexity of implementation.

nels has been studied by a number of authors in the las

decade. The theoretical advantages of multitone modulation _ _

were demonstrated in the pioneering paper by Kalet [15] mgre Outline and Relation to Past Work

than ten years ago. DMT has been considered seriously for us&he PCFB was introduced first in [32] and its optimality for

in digital subscriber loops (DSL), and excellent descriptiors variety of problems was suggested in [35]. It has since been

of this can be found in [10] and [31], The DMT system can bproved to be optimal for a general class of objective functions

regarded as a filter bank in transmultiplexer configuration [1in signal processing [4], [24], [37], [46]. The role of a specific

[36], [41]. Typically, the filter banks used for this purpose arelass of PCFBs in the optimality of DMT systems was first ob-
served in [22]. A related problem, namely the optimization of
filter bank precoders [13], [44] has been considered in great
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guestions pertaining to transmission of signals in blocks, ov€he expander followed by a filter yields an interpolated version
dispersive channels. One of the results there is on the optimip&z(n). We use the notatioris(n)] »s and[X (#)] as to denote
tion of the covariance matrix of the transmitted block to maxthe decimated versiorn( A n) and itsz-transform. Similarly, the
mize mutual information. The authors also show how such cexpanded version is denoted py(n)]: s, and itsz-transform
variance can be realized by filter design. Next, a very genet&l~™) by [X (2)]; . It can be shown that the Fourier transform
problem of filter bank optimization is handled in [30] where thef =(An) is a superposition ok (¢/“/M) and M — 1 shifted
authors optimize mutual information by optimizing the transmitersions [36]
and receive filters. Both zero forcing equalizers and minimum M1
mean square equalizers come out of this elegant approach as G 1 A j(w—2rm)/M

. . (XN = == 3 X (e ).
special cases. In our paper, we consider the case of orthogonal
filter banks with the perfect reconstruction property and assume
that the channel is equalized by a zero forcing equalizer. Fur-2) Some standard abbreviations: a) PCFB: principal com-
thermore, we do not consider the mutual information but ifronent filter bank, b) DMT: discrete multitone modulation, c)
stead consider the optimization of useful quantities such as, ¥PL: digital subscriberloop, d) ADSL: asymmetric DSL, ) PR:
example, the actual bit rate with fixed error probabilities an@erfect reconstruction, f) KLT: Karhunen Loeve Transform, g)
transmitted power. This makes the problem much simpler apgd: power spectral density or power spectrum.
leads to very elegant insights. For example, it becomes clear that
PCFBs optimize the bit rate for a fixed set of error probabili- [I. DMT FILTER BANK

ties and power. There is some commonality between the themq:ig. 1(a) shows the essentials of DMT communication as re-
of our paper and the results in [30] and [7]. We shall see ho‘ﬁfuired for the discussions of this paper. The signalé:) are
ever, that the approach here is simpler and insightful becauselylyg)it symbols obtained from a PAM or QAM constellation
focus directly on the PCFB solution based on simple CO”VEXiEprendix A). These symbols are interpolatefifold by the

arguments. _ _ _filters F},(z) to obtain the subchannel or subband signals:).
In Section I, we describe the DMT system using multiratgpe 1.th transmitting filter has output

filter bank language and formulate a noise model. The bene-
fits of optimizing the transmitting filters is motivated with a . .
simple example in Section . A brief review of PCFBs and uk(n) = Z k() fi(n — 1M). (1)
their optimality is given in Section IV. More details on this sec- =00

tion can be found in [4], [S]. Various criteria for the optimiza+ig. 1(b) demonstrates how this construction is done for the
tion of orthonormal DMT filter banks are presented in Section Wth filter /,(z), assumed to be lowpass. Essentially, we draw
and solutions presented. The role of principal component filtghe copy of the impulse response sequefige around every
banks for asymmetric DSL (ADSL) service on twisted pairs isample ofz,(n) (separated byi/) and add them up. The outputs
explained in Section VI, along with some numerical examplegf the filters 1 (=), F»(z) and so forth, are more complicated
Prefiltered orthonormal DMT systems (which are biorthogon@laveforms because they are bandpass. The filtgge’)}
rather than orthonormal) are considered in Section VIl and itgditionally cover different uniform regions of frequency as
shown again that the PCFB has a role in optimality. Some pagtsown in Fig. 1(c). The signals;(n) are analogous to mod-

m=0

o

of this paper have appeared in [38] and [39]. ulated versions of the “baseband” sequengg:) because the
bandwidth is shifted to the passbandiaf(»). These are packed
B. DSP and Multirate Notations into M adjacent frequency bands (passbands of the filters) and

added to obtain the composite signéh). Thus
Bold faced letters denote matrices and vectors. The trans- ! posi igngh) !

pose, conjugate, and transpose—conjugate of a matrix are de- M—-1 oo

noted, respectively, ad7, A*, andA'. We use a subscript zn)= > > akli)faln —iM). 2
[e.g.,z.(t), S.(f) etc.] to distinguish continuous-time gquanti- k=0 i=—o0

ties from discretized versions. In general, the filters are allowggl;g signal is then sent through the channel which is represented

to be ideal '(e..g., brickwgll lowpass, etc.). So theapsforms by a transfer functiorC(z) and additive Gaussian noisén)
may not exist in any region of theplane. The notatiod (z) it power spectrunb,.(c“). The received signaj(n) is a

should bgwregarded as an abbreviation for&h&ourier rans- isiorted and noisy version af(n). The receiving filter bank
fo_rm H(e?). The Ia_nguage of multlratg signal processing [36@Hk(z)} separates this signal into the componeai&:) which
will be used extensively throughout this paper. A summary af. jistorted and noisy versions of the symbglén). The task

the most common ones follows. _ at this point is to detect the value of.(n) from y;(n) with
1) The building block] A in the figures denotes a dec'matoracceptable error probability.

with input/output refationy(n) = «(Mn). The building block | actual practice, the channel is a continuous-time system
T M denotes an expander with input/output relation C..(s) preceded byD /A conversion and followed byl/D con-
version. We have replaced this with discrete equivaléfits)
ande(n). The original motivation behind multitone modulation
_ [x(n/M), n =multiple of M [15] is that the power and/or bits could be allocated in an effi-
y(n) = { 0 otherwise. cient manner in the subchannels, depending on the channel gain

7
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Fig. 1. (a) The DMT communication system. (b) The interpolation or modulation performed by the transmittingfil¢r (c) An example of responses of the
transmitting filters.
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|C(e7)]2, and noise psd..(c’~) in that subchannel. In this might still have intraband ISI. Even if the filters have overlap
way, the classicalater filling idea for resource allocation [11],as in any practical implementation, we can still avoid both
[26] could be approximated. For a given transmitted power atygpes of ISI as long as (3) holds. In fact, the most popular DMT
probability of error, this yields a better bit rate than direct singlgystem uses a DFT filter bank where the filters have significant
tone modulation (assuming no channel coding). The DMT ide&erlap even though (3) holds.
is similar in principle tosubband codingwhere a signak(n) Biorthogonality: The filter bank{F;,,, Hy} is said to be
to be quantized is first decomposed into subbands. Backgrouidrthogonal if
material on the DMT system and more generally on the use of
digital filter banks in communications can be found in [1], [10], Hy(2)Fn(2)| = 6(k—m). 4)
[15], [17], [20], [33]. LM

This means that the impulse respongg,(n) of the product
A. Perfect Reconstruction filter Hy(2)F,.(z) has the Nyquisf{/) or zero-crossing prop-

In absence of the channel noisgr), the DMT system of €Y
Fig. 1(a) is LTI, with the transfer function from,,,(.) to yx(.) Gom(Mn) = 0
given by
for k # m andgr.(Mn) = 6(n). Under this biorthogonality
condition, we have perfect reconstruction onlydfz) = 1.

In this paper, we shall make the simplifying assumption
In general, the symboj(n) is therefore affected by,,(i) that{F,,, H} is biorthogonal and that the channel transfer
whenm # k, resulting ininterband interference. For the casefunction C(z) is equalized by using the inverse filter or
k = m, if the quantity Dy (=) is not a constant, thep.(n) is  zero-forcing equalized /C(z) just before entering the bank
affected by (i) whenn # i, and we havéntraband interfer-  of filters { Hy(#)}. The path fromz(n) to yx(n) now has
ence. The condition to eliminate these two interferences is the effective form shown in Fig. 2(&).In actual practice,
there are many ways to approximate this equalized system
Hy()O(2)Fn(z)| = 6(k —m). (3) (see [25] and references therein). One approach would be to
M use a time domain equalizer in cascade with the channel and
If interband and intraband interferences are eliminated, tfRduce the effective channel to be FIR with a short impulse
DMT system is said to be free fromtersymbol interference fesponse. This effective FIR filter is then compensated for by
(ISI). We then have the perfect reconstructionP@® property the use of ayclic prefix followed by appropriatg multipl_iers
ye(n) = xx(n) for all k (in absence of noise). If the filter &t the outputs o (=), called frequency domain equalizers.

responses in Fig. 1(b) are nonov_erlapping, then the subchannelge make the assumption that e’ # 0 for anyw. Otherwise, we have
are completely isolated. There is no interband ISI, though wleave out the offending frequency band.

Dim(z) = Hip(2)C(2)Fp(2) o
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Fig. 2. (a) The path from (n) to yi(n) in a DMT system with ideal equalizéy/ C'(z). (b) Noise processing in theth subchannel. (c) Complete noise model.

This is explained at length in [10] for DFT based DMT, and aquiprobable levels, its variance representsaterage power

modification for general DMT has been advanced in [22]. P, inthe symbolz,(n). The Gaussian channel noige:) is fil-
tered throught,,(»)/C(z) and decimated by/. For the pur-

B. Channel Noise Model pose of variance calculation, the model for the najs@:) at

Now consider the effect of channel noige). Assuming that the detector input can therefore be taken as in Fig. 2(c)tet
{F,., Hy} is biorthogonal and that/C(z) is inserted as shown P& the variance ofy.(n). Then, theprobability of error in de-
in Fig. 2(a), thekth received symbol at time is given by tecting the symbak;,(n) is given by [26]

) = ) + ) ® 7>6<k>=2<1—2—“>9< & ) ®

(22 — 1)o2,
whereg,(n) is the channel noise filtered throudhy.(z)/C(z)
and decimated [Fig. 2(b)]. If the channel noise is wide sense S{gsere Q(v) A [ v /2 du/\/27 (area of the normalized
tionary with power spectrurfic.(z) then, the variance @.(n)  Gaussian tail). Since th@-function can be inverted for any non-
IS negative argument, we can invert (8) to obtain

_ 27T See(ejw) Jw _
Tg = /0 (Gl 1He() 1 dof2m. ) Py = B(P.(K), bi) x 02, 9)

Notce e o v detecor it can e T SOSTE Ie Lctt,e totenate
the output of a maximally decimateahalysis bank{ H(z)} in ' P y b Y

response to aaffective noise source(n) with effective noise to be . (k) or less at the bit raté, then the power iy (n)
P @ has to be at least as large Bs. The required total transmitted

psd power is therefore
e See(e?®)
S (&) = ——=. 7 M—1 M-1
@)= e P=3" P=3 BPk)b)xoi.  (10)
k=0 k=0

This yields the noise model shown in Fig. 2(c).
Optimization of the DMT Filter BankWe see that there is Supposer(n) is converted into a continuous time signal¢)
some control on the variances@f(n), because we can chooseby the D/A converter at sampling ratgT” so thatz.(nT) =
the filters{ H:.(~)}. We can take advantage of this. Even if wex(n). If a voltage waveforme..(¢) V is applied across a &
assume that the filters are allowed to be ideal, it turns out thakistor, the power delivered is actualyW, regardless of the
the brickwall filter stacking shown in Fig. 1(c) is not necessarilgample spacin@’. The samples aof(n) are separated hy/T’
the best choice (Section IIl). For any given channel, we can de-With &, representing the number of bits per sample;ifn),
fine a filter bank called the principal component filter bank. Ththe kth subchannel therefore carries/M T bits/s. The total bit
frequency partitioning generated by such a filter bank is optimgdte is therefore
for the channel (Section V). M1

1 .
C. Probability of Error, Transmitted Power, and Bit Rate MT kz_o b bits/s

For simplicity, we assume tha.(n) are PAM symbols (Ap-
pendix A). Assuming that(n) is a random variable witB®*  or equivalentlyp/MT bits/s whereh 2 > by
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X where d(») is the delay chain vector defined by(») =
—’IE D B @_' 121 7(*% oo 2z~ M=DT The DMT system can Eh?arefore
bz Ty be redrawn as in Fig. 4(a). Using Noble identities [36] the
{ 1 decimator and expander can be moved as shown in Fig. 4(b).
. ‘fz 'y . This is the polyphase representation of the DMT filter bank.
: s Note that the noise model shown in Fig. 2(c) can be redrawn
z z in polyphase form as shown in Fig. 4(c). This will be quite
insightful as we shall see.
(@ The biorthogonality property (4) can be shown to be equiv-

A alent toE(z)R(z) = I. The special case where the matrix

E(e’*) is unitary for allw corresponds to orthonormal DMT

systems. In this case, we chodgée’*) = Ef(¢7+) (transpose

H@ | H@ | W |H@ conju_gate) for perfect_ reconstruction. The DMT systems v_vhere
R (=) is a constant unitary matri¥ has been of some practical

importance. In this case, the filtef§,(z) are FIR with lengths

() <M. This is the DMT counter part of theansform coder in

Fig. 3. Examples of orthonormal filter banks. (a) Delay chain system. (ubband coding theory. The example whirés the DFT ma-
Brickwall filter bank with contiguous stacking/ = 4). trix falls under this class

Ye

0 2n

D. Orthonormal DMT Systems
The set ofM filters { Hy(2)} is said to beorthonormal if

I1l. OPTIMAL CHOICE OFDMT FILTER BANK

To motivate the usefulness of optimizing the transmitter and
= §(k —m). (11) receiverfilters, consider Fig. 5(a). This shows an example of the
LM effective noise psd.(f) in terms of the continuous-time fre-
In an orthonormal DMT system we choose the transmit filteflency variablef. [The discretized version of this i$,,(c’*)
to be Fi.(¢/*) = Hj(e*), i.e., fu(n) = hi(—n). This en- defined in (7)]. This is assumed bandlimited to 1 MHz. The units
sures biorthogonality (4), and furthermore the filtgig, } sat- for 5.(f) are in milliwatts per hertz, and a decibel plot would
isfy I} (c7) Fp (%) = §(k — m). In terms of impulse showlOlog10 S.(f)in dB-m(Hz asin the figure. Using a sam-
this orth M lit dition i valent t pling rate of 2 MHz, the digital versiofi..(e’*)/|C(e“)|? of
responses, this orthonormality condition is equivalent to the psdS.(f) is as shown in Fig. 5(b) where= 2 10— (due
Z Fuln — M) FE (n — IM) = 8(k — m)8(i — £). tothe factorl/Tipthe Fouriertransf(')rm.aftersampling). These
— are not unrealistic numbers for typidalisted pair telephone

H;(ejw)Hm(ejw)

channels for which DMT modulation is the standard. The two

Thus, the composite signai(») in (2) can be regarded as apymps (each assumed 10-kHz wide) can be regarded as over-
superposition of elements from an orthonormal set. In fact, aBimplified versions of the effects of bridged taps (first bump)
subchannel signai,(n) is a superposition of eIeme.nts from thegnd AM noise (second bump) [31]. The rapid decay of channel
orthonormal se{ fx(n — M)} as seen from (1). Fig. 3 showsgain is not depicted in this “toy” example, but we shall do that
two extreme examples of orthonormal filter banks. The first ong section VI. Consider a two-band DMT systed/ (= 2).
is the delay chain systentfl(z) = »~* andF(z) = z*]and  One choice of the orthonormal filter bank, namely the brickwall
the second is the idedtickwall filter bank. . stacking, is shown in Fig. 5(c). With the effective pSg,(c/~)

Fork = m, (11) yields|Hy(c’*)[?| | as = 1. If the impulse a5 in Fig. 5(b) we can now calculate the varianegs Let us
response OfH,.(¢’~)|* is denoted agx(n) then the preceding pick some values for the remaining parameters.
condition is equivalent to the Nyquist() or zero-crossing 1) Error probabilitiesP, (0) = P.(1) = 10~°.
constraintgx(Mn) = &(n). Similarly, for biorthogonal filter 2) by = 6 andb; = 2. These are the bits in the PAM con-
banks, the product},(z)Fy(z) is Nyquist(). Orthonormal - ste|lations forzo(n) andz1(n). It makes sense to use smaller
filter banks have been thorou%tlly studied [36], [42]. Hergyjye forb; because there is more noise in the region covered
are some of their properties: Y [Hy(c’*)|*dw /27 = 1 py H,(c/). Since the average s is 4, the average bit rate
(unit energy property); 2)H;(e’“)|> < M (boundedness); for the 2-MHz sampling rate is 8 Mbits/s.
3) Ym0 [Hi(e’)|? = M (power complementarity). Stated The average poweP needed to meet these requirements can
here for{H(z)}, these also hold fofF}.(z)}. be calculated from (10), and the result turns out to be 56 mw.
Instead of using the brickwall filter bank suppose we use the
filter bank shown in Fig. 5(d) and (e). We still have two sub-

Using the polyphase notations described, for example, in [3fands (4 = 2) but each filter now has two passband regions. It
Ch. 5], we can express the row vector of transmitting filters anghn be verified that this filter bank still satisfies orthonormality
the column vector of receiving filters as (11). We can recalculate the varianegs now and compute the

S M average power. The result is 5.67 mW. Thus
[Fo(z) Fi(z) - Fu-1(z)]=d"(z7)R(z")

E. Polyphase Representation of DMT Systems

[Ho(z) Hi(z) --- Hy_1(2)]" =E(=")d(z) savings in total power= 56/5.67 ~ 9.9
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Fig. 4. (a) Polyphase representation of the DMT filter bank. (b) Simplification using multirate identities. (c) Noise model in polyphase form.
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Fig. 5. Demonstrating the effectiveness of good choice of filter banks in the DMT system. (a) Effective noise psd. (b) Digitized version. (ol tadikeall
filter bank for A/ = 2. (d) and (e) Different choice of filter bank.

or about 10 dB. In summary, the modified filter bank achieves The difference between the two filter banks in the example is
the bit rate of 8 Mbits/s and error probability of 10 using that the variancesgk (whose sum is fixed by orthonormality)
almost 10 dB less power! are distributed differently depending on the shape of the effec-
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tive noise psds,, (¢/*). The natural question then is: given arlation matrix of its input vector. IfT is chosen as the unitary
effective noise psd and an arbitraky, how do we choose the matrix diagonalizindR,, then, it defines the PCFB in this case.
orthonormal filter bank Hy,(¢?*)} to minimize the transmitted This T is nothing but the Karhunen—Loeve transform (KLT) of
power for fixed specifications? The answer is théaf; (c’<)}  the effective noise inpuf(n). This choice decorrelates the sig-
should be chosen aspincipal component filter bankor the nalsg; () for eachn. That is, the autocorrelation matrix of the
effective noise psd. vector

IV. PRINCIPAL COMPONENT FILTER BANKS [qo(n) ai(n) - qu-1(n)]" (12)

To define a PCFB first consider two sets &f nonnegative
numbers{a,, } and{b, }. We say thafa,,} majorizes {b,, } if,
after reordering such that, > a,4+1 andb,, > b,.1, we have

is diagonalized. For the ideal filter bank cla&g..;, the ma-
trix E(») could have infinite order ir=. This means in par-
ticular that ideal filtersHy(¢’~) are allowed. In this case, the

r r PCFB is such that the power spectrum of the vector (12) is di-
danz ) by agonalized which in particular means that the autocorrelation
n=0 n=0 matrix is diagonal as well. In short, the KLT forces the instan-

taneous decorrelation propery{gi(n)g’,(n)] = 0 for each

for0 < P < M - 1, with equality forP = M — 1. Thus, )
- - q y n, whereas the PCFB fdt, ., forces thetotal decorrelation

all the partial sums ida,, } dominate those ifb,, }. Consider a i oo

given clasg of M—baid 3niform orthonormgl filier banks. ThisP"OPerY Elax(n)qy, (i)] = 0 for all n, i (with k 3 m). In
class can be the cla€g. of transform coders (with filter lengths gdd|thn, the PCFB focid‘?al also mQUCQes the;pectral ma-
<M), or the clas¥;y..; Of ideal filter banks (filters allowed to jorization property. That |§Lassum|n@qi are in decreasing
have infinite order, like brickwall filters). Or it could be a pracOrder: the power spectié(c’) of ¢;(n) are ordered such that

tically attractive class like the FIR clasg,, with filter orders Si(e?) 2 Si41(e’) pointwise for allw. It has been shown in

bounded by a fixed integer, or the so-called cosine modulat@c?] that total decorrelation and spectral majorization are neces-

ClassC..., r» [36]. Given such a clasgand an input power spec- sary and sufficient for the PCFB property in the cl@sg,;. For

trum Sqq(ejw) we say that a filter bank€ in C is a principal c[qsses other thaf..; and the transform coderclas;, such con-

component filter bank oPCFB if the set{a;,} of its subband ditions for the PCFB property have not been established. In fact,

variances [i.e., variances?. of the signalsy (n) in Fig. 2(c)] the existence of a PCFB is not guaranteed for arbitrary classes
oy ko 9 .

majorizes the se{b } of subband variances of all other filterOf orthonormal fiI'Fer banks _(see [4] for c_ountere>_<ample). When
banks in the class. That is, with, > a.1 andb, > b,.41, a PCFB does exist, there is a sequential algorithm that can be

used to construct the filters [23], [4], [5].
ap > by, ag+ar >by+bi, ... Closely associated with PCFBs is the notion of an optimal
compaction filter H(c’*) for a signalg(n) with power spec-
and so forth. The equality", o' ax = Y41 by follows au-  trum S,,,(¢#*). Such a filter has the property that its output in
tomatically from orthonormality. response to the inpytn) has maximum variance subject to the
The advantage of PCFBs is that they are optimal for severgquist(i/) constraint| H (¢’*)|2| |, = 1. For the transform
problems. This includes subband coding with arbitrary (not negoder class, this filter can be constructed by makit{g) the
essarily high) bit rates, the denoising problem, and so forth, ST, and taking the receiver filter with largest variance as the
elaborated in [4]. These arise from the result (proved in [4]) thgblution. For the claggd..: the optimal compaction filter can be

any concavefunction¢ of the subband variance vector constructed graphically [37]. Typically, there are multiple pass-
ve[o2 of ... o ]T bands. Fpr egample, the power spe(_:trur_n in Fig. 6(a) has optimal
o Ta aa—1 compaction filter ford = 4 shown in Fig. 6(b). To construct

is minimized by a PCFBwhen one exists. Similarly any convexsuch a filter we proceed as follows: take any frequemgyin
function is maximized by a PCFB. Note that any permutation 8f< wo < 27/M and consider the set d frequencies

the filters in a PCFB retains the PCFB property. Thus, given a %rm
particular (concave or convex) objective, we have to choose the wo + M
right permutation so that the objective is optimized.

Using the preceding results we show in this paper, that PCF8Roose one frequency in this set such tﬁi@it(cjw) is a max-
also serve as optimal solutions to certain problems in commnithum in this set (if there are multiple maxima choose one arbi-
nication systems which use DMT modulation. It is possible thgfrily). Include this frequency in the passbandrfe’*), and
PCFBs do not exist for certain classes (e.g., see [4]). But whgie remainingl/ — 1 frequencies in the stopband. Repeat this
they exist, they have the stated optimality. Whenever we say that all wy in 0 < wo < 27 /M. Set the passband height equal
the PCFB is optimal for a problem, the implicit assumption i /A and stopband height equal to zero. This completely de-
that the class of filter banks searched is such that a PCFB exigé$mines the optimal compaction filtéd (c/~) for the power

0<m<M-1. (13)

. - spectrumS,, (e/*).
A. Construction of the PCFB, and Compaction Filters The PCFB can be constructed by designing the filters
For the transform coder cla€s. the filters have lengtkc M. Ho(e*), Hi(e/*), ... sequentially one at a time as follows

This means that the polyphase matii:) in Fig. 4(c) is a con- [37]. First, designH,(c’“) as an optimal compaction filter for
stant matrixT. SupposeR,, denotes thel/ x M autocorre- S,,(c?“). Then, define a partial power spectrum by removing or
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Fig. 6. (a) A power spectrum. (b) Optimum compaction filter idr = 4 for (a). (c) Partial power spectrum obtained by peeling. (d) PCFB/foe= 4. (e) A
monotone power spectrum. (f) PCFB fof = 4 for (e).

peeling off fromS,,(e’*) those parts that fall in the passband#. Minimizing Transmitted Power

of Ho(e’*) [Fig. 6(c)]. Design an optimal compaction filter peca)| that the total transmitted power can be expressed in

Hy(¢?) for this partial psd. Remove those parts of this partighymg of the error probability and noise variances as shown in
psd that fall under the passbandf (¢’*), and continue this (10)

until all the filters have been designed. Fig. 6(d) shows the

filters designed in this manner fad = 4. M-1 M—1
Filter banks constructed using this procedure have the fol- P= Z P, = Z B(Pe(k), bi) x o .
lowing properties. k=0 k=0

1) A filter Hy(c’*) may have more than one passband, bﬂt . -
; : : et us assume that the bit ratés and probabilities of error
:Ez E;imhct); ilfl tI;Se pzzs;tgzz%gv;?’;hz '3:1/(%61('26 to/Mt\’N?iﬂ P.(k) are fixed. For this desired combination ¢#;} and
Fig 6)9 P q g~ {P.(k)}, the total power required depends on the distribution

. . N . )
2) The passbands of any two filters are disjoint, and the filtemc noise varlancg$aqk }. These in turn de_pend upon t_he filters
. ﬁlk}. From (9) it follows that the required powet, in the
together cover the entire frequency range. L

. is a li i 2
3) For anyw, consider the set af/ frequencies in (13). Given hth baqd s a linear (hence concave) functiofio, . T_he total
. ,, ; transmitted powerP is therefore a concave function of the
any filter Hy(¢’“), exactly one of thes&/ frequencies be-

: noise variance v r
longs to its passband, and the others belong to the stolg-Se ariance vecto

band. This property implies two things: a) Each filter is an
aliasfree{M!) filter. In other words, its output can be deci-

mated byM without causing overlaps of the copies of th%rom Fig. 2(c), we see that this is the vector of subband vari-

spectrum gr‘eaQted by downsampling; b) The decimated v ices of the orthonormal filter badld;.(¢?“)} in response to
sion |H(e?“)[{,, = 1 for all w.

_ o _the power spectruns..(¢’«)/|C(c?<)|?. Recalling the discus-
It readily follows from these that the resulting filter bank ;5 on PCFBS from Section IV we now see that the orthonormal
orthonormal. The proof that this is actually a PCFB can be fourd . bank { Hy,(¢*)} which minimizes total power for fixed

in [37]. For the case of a monotodecreasingrower Spectium o6 propapilities and bit rates is indee@&FB for the effec-
Sqq(e?*) the compaction filter idowpass as demonstrated in tive noise power spectrum

Fig. 6(e) and (f). In this case, the PCFB happens to be the tradi-
tional brickwall stacking of bandpass filters as shown.

[02 62 ... o2 1%, (14)

4o q1 qnM—1

jwy A jw jw
Saq(€7%) = See(e?) /1C(7)[2.
V. OPTIMIZATION OF THE DMT FILTER BANK Having identified this PCFB, the varianceéfk are readily

In this section, we show how to optimize the orthonormaomputed, from which the powers), for fixed bit rate by,
filter bank used in a DMT system. We assume that the numbard error probability?.(k) can be found [using (9)]. The
of subchanneld/ is fixed. The channel transfer functi@(z) minimized power” can then be calculated.
and the noise power spectruip. (¢’~) are assumed to be fixed , o _ _ ,
. . . A linear function is also convex, so there is a permutation of the optimal

and kno_‘Nn as well. A brief overview of these results will aISQCFB which maximizes rather than minimizes power. Evidently it should be
appear in [40]. avoided!
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B. Maximizing Total Bit Rate

Returning to the error probability expression (8) let us now PzNzo
invert it to obtain a formula for the bit ratly,. This is tricky A
because of the way, occurs in two places. The factor—2—+) Po Py Ps
however is a weak function @f, in the sense that it varies from N3
0.5 to 1 ag, changes from one to infinity. Suppose we replace No

(1 — 2-*) with unity. Then, (8) yields M

3 Py

b, =05log, (14—~ % 15) Fig. 7. Optimal power allocation by water pouring.
c=05s, (1 oo g ) 09

The biorthogonal DMT system with ideal channel equalizer can

so the totab = 3, b is approximately be represented by

- =, 3 Py ye(n) = 2(n) + qu(n) 19)
b=03 2, loz, (+ ermmrr 7) 4o

This is the achievablé without channel coding, for a given
set of error probabilitieP.(k)} and signal to noise ratios
{Px/02, }. Sincelogy(1 + a/x) is convex inz (for a, z > 0),

the total bit rate is convex in the variance vector (14). Thus, t
orthonormal filter bank{ H;(¢’“)} which maximizes the bit
rate for fixed error probabilities and powers is again a PC
for the effective noise psf..(e/*)/|C(e/*)|? as before. This

wherez;(n) are the modulation symbols arg(») the noise
components shown in Fig. 2(c). In general it is not true that
the effective noise componenig(n) are Gaussian, white, and
uncorrelated. However, if the number of bandsis large, and

lée filters H; (=) are good approximations to ideal filters, then
this is nearly the case. In this case, the channel (19) is identical
Ftlg theparallel Gaussian channeblnd has information theoretic
capacity [11]

is intuitively appealing since the maximization of bit rate and M-1 P
minimization of total power are consistent goals. C=0.5 E log, <1 + —2> . (20)
Without the approximatiod — 27+ ~ 1 the closed form k=0 Tan

expression (16) is not possible, but the convexity cfin still

be proved in a more elaborate way as shown in Appendix B Since the noise varlance:%k depend on the filter¢ /., Hi},

"the above capacity also depends on them. For the case where
{H}} is an orthonormal filter bank thisapacity is maximized
if {Hy} is chosen as a PCFB for the effective noise psd
The preceding result is true regardless of how the total powgr, (¢/«)/|C(e/“)|2. The reason again is that (20) is convex in
P =737, Pisallocated among the bands. In particular we cahe variance vector (14). Moreover, as in [11], we can optimally

C. Optimal Power Allocation

performoptimum power allocation. We have allocate the power, under a power constraidt = >, P
M1 ' Equation (16) is thevit rgte achieved for fi>$ed .probabili—
b= 05 Z log <1 n ﬂ) 17) ties of'error{PF_,(k)}', and w@hout channel-cod!ng in subbands.
’ e &2 Ny Equation (20) is thénformation capacity, that is, the theoret-

ical upper bound on achievable bit rate with arbitrarily small
where N}, = o2 [Q~1(P.(k)/2)]?/3. The optimization of €rTor. We see that both (16) and (20) depend on the choice of
Ik € . . s
{P,} for fixed total powerP = 3", Py is a standard problem filter bank, and are maximized by the PCFB. Suppose the error

in information theory [11]. The solution is given by probabilities areP. (k) = 10~" for all k. A calculation of the
factor3/[Q~1(P.(k)/2)]? shows that if the two quantitiésand

C have to be equal then the total power in (16) shoulfl.i7d dB
more than the power used in (20). Channel coding is included
in many DMT systems in order to reduce this gap.

where A is chosen to meet the power constraint. This is the The preceding discussion on capacity should be interpreted
familiar water pouring rule [11] demonstrated in Fig. 7. Thigarefully. Indeed, the capacity of a channel is a property of the
power allocation is optimal regardless of the exact choice of tBaannel itself, and cannot depend on the filter bank. It depends
filter bank { Hy(#)}. In particular, if{ H(#)} is chosen as the on the power, the channel transfer function, and the noise. How-
optimal PCFB and then power is allocated as above, it provideger, in the preceding interpretation we imagine thafithéand

the maximum possible DMT bit ratefor fixed total power and transmitter filter bank and receiver filter bank are part of the
fixed set of error probabilities. Note that the power allocatioghannel. The number of bandg and the powerd P} are
automatically determindsit allocation because of the formula fixed, and the filter bank is assumed orthonormal. Under this

P, = { A— Ny,  ifthisis nonnegative, (18)

0 otherwise

7

(15). condition, (20) represents the capacity of the channel, and it de-
pends only on the noise variance distributiarf, } which can
D. Capacity be controlled by the receiver filters (the transmitter filters are

We_Observe some Sim"arities_ and diﬁerences between the AGrhjs gap is very similar to the gap between PCM rate and channel capacity
tual bit rate (16) and the theoretical capacity of the DMT systerar AWGN channels [19, Ch. 15].
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Fig. 8. Qualitative frequency-domain plots for ADSL service on the copper twisted-pair channel. (a) and (b) Transmitted psd masks; (c) CHafut¢)rain
(d) Various noise spectra. (€) Model for the bridged tap.

conjugates of the receiver filters by orthonormality and perfetalk or fext. These arise because several twisted pairs are typ-
reconstruction requirement). This is a useful interpretation bieally placed in a single cable and therefore suffer from elec-
cause of the close analog between (20) and the bit rate (16). Tinisnagnetic interference from each other. A great deal of study
capacity is maximized by choosing the filter bank to be a PCHi&as been done on this, both theoretical and measurement-based
and by performing power allocation as described earlier. Notif&l], [43]. Assuming that all the pairs in the cable are excited
finally that the bit rate equation (16) with nonzero error probwith the same input psd, the power spectra ofribgtandfext

ability is both practical and perfectly meaningful, and is in nooise sources can be estimated using standard procedures. Even
way affected by the preceding interpretation based on capachpugh the “next noise” is an interference, it has the character-
which in this context is only of aesthetic value. istic of Gaussian noise as shown in [18].

Fig. 8 demonstrates the relevant quantities with plots that
reasonably resemble what one might expect in practice. Parts
(a) and (b) show the transmitted downstream (telephone office

The data rate achievable on twisted-pair copper wires is line customer) and upstream (customer to telephone office)
ited by the channel noise and the gain of the |ifig f)|?, which  power distributions for ADSL service. These signals often
decreases with frequency and wire length. The signal to noisecupy nonoverlapping bands but sometimes they are in the
ratio deteriorates rapidly with frequency as well as wire lengtbame band, in which case echo cancelers are required [31]. The
Nevertheless, with typical noise sources of the kind encoutiewnstream bandwidth is larger because of higher rate (several
tered in a DSL environment and with typical transmitted powenegabits per second); upstream offers only a few hundred
levels, a wire of length 18 kft could achieve a rate well abouglobits per second. Fig. 8(c) shows a typical plot of the channel
1 Mbits/s. Shorter wires (e.g., 1 kft) can achieve much mogmin. The dips are due toridged tapstypically attached to
(40-60 Mbits/s) [31], [43]. This is done by allocating powetelephone lines in the US for service flexibility. Fig. 8(d) shows
and bits into a much wider bandwidth than the traditional void&e typical power spectra of tmextandfextnoises. The figure
band. also shows the typical interference on the phone line caused by

The purpose of this section is to demonstrate the improv&M radio waves (560 kHz—1.6 MHz) and from amateur radio
ment obtainable with optimal filter banks instead of a DF{1.81-29.7 MHz, which is outside the standard ADSL band as
based DMT system. A simplified model of the twisted paideployed today). These interferences depend of course on the
environment will be used. The model, while not accurate, helfiscation of the line, time of the day and many other varying
to demonstrate the ideas well. Only a real simulation wittactors.
published data on the channel can reveal the improvements$n any case, notice that the overall noise spectrum is far from
more accurately, but we shall not venture into that here. flat. The ratio of the noise spectrum to the channel gain given

The types of noise that are really important in a DSL ey Se. .(f)/|C.(f)|* is not monotone. Because of the many
vironment are near end cross talk mext and far end cross bumps and dips in this ratio, the PCFB is significantly different

VI. TWISTED PAIR CHANNEL
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from the contiguous brickwall stacking, and can therefore re- 1) Number of subchanneld/ = 8, sampling rate=

duce transmitted power significantly, similar to the example of 3.2 MHz, and probabilities of erroP, = 10~ in

Section Ill. This is demonstrated next. all subchannels. PAM constellations are used in each
subchannel.

A. Details 2) Twisted pair channel length = 3 kft, and number of

disturbers= 49 (for both next and fext).
3) One bridged tap witk = 1/60, Af, = 150 Hz and
f» = 123 kHz.
C(f)2 = /3@_0‘\/?[/[0 4) Two AM stations with BW 10 kHz each, having carrier
c frequencies 600 and 850 kHz with power spect@5
where/ is the length of the twisted pair line in kilofeet and dB-m/Hz and-90 dBm/Hz, res_pectlvely. _
Then, for a downstream ADSL bit rate of 3.2 Mbits/s, the

f is in kilohertz. The constants appearing in the equation are . X ) :
a = 1.158, 3 = 10-12, andf, = 18. Notice that this value of transmitted power is required to have the following values:

yields an attenuation of 12 dB at zero frequency. The preceding . yitional DET-multitone:

We assume that the channel giih( f)|? as a function of the
continuous-time frequency has the form [16]

. . : 4.68 mW
expression fotC.(f)|? is sometimes referred to as the RC-ap- DCT-multitone: 4.08 mW
proximation, and is valid for short lengths [16]. We approxi- KLT-muItitone'. 2.76 mw
mate each bridged tap with a multiplicative te®{ ) having Ideal FB [contiguous stacking, Fig. 3(b)]: 1.28 mW
the form shown in shown in Fig. 8(e). The expression used in Ideal PCFB (unconstrained cl;,xé§)' 0.94 mW.
the simulation is ' ' )

1 _ A The PCFB is, therefore, significantly better than the other filter
, |f = fol > Afy banks. C 4 10 the traditional h -
B(f) = 1 banks. Compare to.t e tra itional DFT, the savings in power
1- F(|f — fsl = Afy)?, otherwise. is about a factor of five. Fig. 9 shows the responses of two of
f the eight filters in the PCFB (normalized to unity). Notice that

the filters have multiple passbands. The plot&bi(c’“) shows
that its practical implementation could be expensive because of
the very narrow passbands. In fact, by a slight variation of the
PCFB design algorithm, it is possible to eliminate bands that
are narrower than a certain threshold. Such near-PCFB solutions
Soe o(f) = Suex Stex S (). will still have performance close to ideal. In any case, it is our
ee(f) f() + St (f) + ) opinion that the primary role of the PCFB is to provide bounds
For simplicity, the AM noise pstb...(f) for a given station on performance for fixed/. If the performance gap between a
is assumed to be a constant with total bandwidth of 10 kHpFactical system and the PCFB solution is small in a particular
around the station frequengfy. Its strengthL0log;p Sam(f) application, this gives the assurance that we are not very far from
can be specified in dn/Hz (typically between-80 and—120 ©OPtimality. _ _ _
dB-m/Hz on phone lines [31]). We consider the ADSL down- If we plot the required transmitted power as a function of the
stream channel for which theextandfextsources are, respec-"Umber of bands\/ (with all other parameters as in the pre-
tively, the upstream and downstream signals in the other twistd@Us €xample) the resultis as shown in Fig. 10. The plot shows
pairs in the cable. We assume the upstream and downstrddfresults fot/ =1, 2, 4, 8, 16, 32, 64, and 128. The PCFB
signal power spectrélu,(f) andSqn(f) to be as in the ADSL requires smaller power than all other methods (consistent with
up n . . . . .
issue 2 mask described in [31]. More specifically, these are takEntheoretical optimality). However, the difference between var-

to be the plots on pages 103 and 105 of [31] multiplied by tHaus filter banks becomes negligiblg M increases. This is
baseband pulse shaping function analogous to a well-known observation in subband coding [14];

namely the coding gain is relatively insensitive to the choice
sin(r £/ o)\ of filter bank asM' — oo. DMT systems based on fixed filter
<T/fo) banks such as the DFT or cosine modulated filter banks are at-
tractive because of their simplicity; they are non adaptive and
where f, = 2.208 MHz for downstream and 270 kHz for up-can be implemented efficiently [10], [27].
stream [31]. The psd afextandfextnoise sources are taken to
be VIl. SCALAR PREFILTERING BEFORE CHANNEL

This expression is used fgr> 0, and it definesB( ) for all f
becaus&(— f) = B(f). The center frequenc§ is determined
by the length of the bridged tap. The noise [&&d .(f) as a
function of continuous-time frequengyhas the form

_ 0.6 £1.5 Consider again, Fig. 1 whergH,} is orthonormal with
Snext () = en (N /49) 721 Sup(f) Fi.(e?*) = Hj(e’*). Assume as before thdt(z) has been
Stext(f) = e (N;/49)°C £20|Co( PP B(f)San(f) equalized by insertingl /C(z). Suppose this configuration
is further modified by insertion of a prefilter and postfilter
wherec,, = 107!* andc; = 9 x 10717, Here/ is the wire around the channel [Fig. 11(a)]. Thus the effective transmitting
length in kilofeet andf is in hertz. The integer®’,, andN are filters are F/(z) = Fir(2)D(z) and receiving filters are
the number ohextandfextdisturbers £49 in a 50-pair cable). H;(z) = Hy(z)/D(z). This defines a biorthogonal filter bank
For our example, we assume the following. {F}(#), H;(2)}. This system can achieve better performance
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Fig. 9. Two of theM filters in the PCFB which minimizes transmitted power
in the example.
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The interpolated signat;(n) [Fig. 11(b)] has a variance
which in general depends om. In fact, if we assume that
xr(n) is @ WSS process, the signgl(n) is cyclo WSS, and its
variance is a periodic function ef with periodAZ. The power
in the kth symbol is this variance averaged over a period. To
find this, redraw Fig. 11(b) as in Fig. 11(c) whekg,;(») are
the polyphase components & (2)D(z). We shall assume
that the symbols:;(n) arewhite with zero mean and variance
P,. This is consistent with the view that.(n) is generated by
parsing a binary i.i.d. sequence [8]. Thus the variance at the
output of R.x(2) is given by [ Pi|R.x(e’“)|? dw/2x. The
average variance af.(n) is then

M-1

Z / R ()2 dw /27
P. 27 . »
=F | F (7Y D(") 2 dw /2.
M Jo
Assuming further that(n) areuncorrelated for different £,
the total power input to the channel is the sum of these average
variances

M-1

MZ

The quantityP, is also the physical signal-power at the input of
the detector. The noise varian@% at the detector input can be
computed by referring to Fig. 2(c) and inserting the additional
factor1/D(z) in the noise transfer functions. Thus

27
Pk/ |F3(e?)D(7) | dw/2n.  (21)
0

2 _/277 See(e?)|Hr(e™) 2
“ o Jo o C(e)D(er)]?

SinceP;, = g[bx, P.

g

dw /2.

. (k)]o?, for somegl.,

27
bk7 € ]/

.], the total power is

M-

s

See (7)) Fr(e@)|? dw
|C(e)D(e)|2 27

M
|2dw

X /0 | By (7)) D(e?%) o

where we have substituted the preceding expressio:*ﬁ[omnd

used the factthail,.(e’~) = Fy(e’~) for any orthonormal filter

bank. For a given channef}(c’~) andS..(c’*) are fixed. As-
sume the set of error probabiliti€®, (k) } and bit rateg b, } are

also fixed. The total power input to the channel then depends on
the orthonormal filter bank#3(c’)} and the prefilteD (7).

The next result shows how this power can be minimized. Itis an
extension to the DMT system, of a familiar result in the subband
coding theory [12].

Theorem 1: Optimum Prefiltered Orthonormal FB for

DMT: Assume that the modulation symbalg(n) are white,
Fig. 10. A comparison of the PCFB with other filter banks as a function @nd uncorrelated for different. For fixed probabilities of

number of band$/.

error P.(k) and bit ratedy,, the combination of orthonormal

filter bank { H, } and prefilterD(z) which minimizes the total

than the orthonormal systefi#}, (=),

H; (2)}. Forexample, we required powerP is obtained as follows: 1) ChoosB(z)

can shape)(z) and{Fy(z)} such that the transmitted powemwith magnitude response (22); 2) MaKé{,,} = PCFB for

is minimized for fixed bit rates and probabilities of error.

VSee(e)/|C(7)]

o
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X O x(n) y, (")
M-
N Frvy BN e o) |+ c 1/0(z) |—{ 1/C(2) e
transmitting prefilter channel postfilter equalizer receiving
filters filters

noise e(n)

@)

x (1) F @D@|— s,(n)

(b) (©)
Fig. 11. (a) Pre and post filters in the DMT system. (b) Fitle subchannel symbol and its interpolation. (c) Equivalent polyphase diagram.

Proof: From the Cauchy—Schwartz inequality we have higher energy. Thus, in the subband coder, the frequency depen-
) dence of the input signal(») is exploited. In the DMT system,
See| Fi]? dw mpR™ S VSee|Fi)? dw the frequency dependence of the charfigl’~') and the noise
/ |CD]2 2r / D5 2 </ IC] %) S..(c7*) are exploited. The similarity of the two problems is
, exemplified by the fact that the PCFB serves as an optimal the-
where the argumertte’*) has been eliminated for simplicity. oretical benchmark in both cases. The complete duality between
Equality holds when the two integrands on the left are equghe optimization of subband coders and DMT systems can also
that is, be seen in a more basic way as explained in [21]. The use of
i i oy 2v1/4 nonuniform filter banks and PCFBs for DMT communication
[D(e”)] = (See(e)/|C(e™)[7) /7. (22)  has not been addressed in this paper. Such an extension finds
application in the so-called DWMT (discrete wavelet multitone)
odulation. We conclude with one further remark. The implicit
ssumption throughout has been that the channel and the noise
power spectrum are entirely known so that the optimal filter
bank can be identified. If there is an error in the estimation of

This is the optimumD(e’*)| no matter what the orthonormal
filter bank{ H;} is. With the prefilter chosen as above, the tot
transmitted power i = Zﬁigl albr, P(k)|ni/M where

. 2
2= < 2w \/See(ejw)|Hk(e]w)|2 dw/%) ' these channel parameters, then naturally the performance would
o |C(e+)] be suboptimal. An interesting research problem in this context
would be to analyze the extent to which the results will stray
Thus, P is a concave function ofp? #»7 --- mn3,_;]* from optimality.
which can be regarded as a subband variance vector from
an orthonormal analysis bank with input power spectrum APPENDIX A
V See(ei)/|C(e’)|. Applying the result of Section IV PARSING STAGE IN DMT COMMUNICATION

we conclude that the orthonormal filter barfl¢d;} mini- . , . .
mizing the total power is a PCFB for the power spectru Fig. 12(a) shows the first stage of multitone modulation [8],

\/W/W(CW)L e AnaY. rHO] called thepar;mg stage Here s(n) rep_resentsb_lnary.
. . . . ... data to be transmitted over a channel. This data is divided
Note that the solution (22) also arises in optimal prefllterm% . . L
: o : . oo to nonoverlapping-bit blocks. Theb bits in each block are
prior to scalar quantization, and is said to belt#f whitening . . . .
filter [14], [36] for the spectrumC{(ei=)[2/S.. (i) partl_tloned intoM groups, the_kth group being a collection of
' e ' by, bits (demonstrated in the figure faf = 3). Thus, the total
number of bitd per block can be expressedias 224:51 by..
Theb;, b in thekth group constitute theth symbolz; which
The DMT ideais similar in principle to subband coding wherean therefore be regarded a&:ab number. For theith block,
a signalz(n) to be quantized is first decomposed into sulthis symbolis denoted as.(n). Thisis themodulation symbol
bands. Depending on the power spectigim(c’* ) of the input, for the kth band. The vectdizo(n) z1(n) - xap—1(n)]* is
there is a certain distribution of signal energy across the sudmmetimes referred to as tbT symbol. For the case of pulse
bands. This distribution is exploited in the coding process by oamplitude modulation (PAM), the samplg () is a quantized
timal bit allocation: we allocate more bits to the subband havimgal number as demonstrated in Fig. 12(c)pr= 3. For the

VIIl. CONCLUDING REMARKS
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I X (M b, bits

b, b, b, by b, b, by, b, | b2 | XX serial x.(7) b, bits
0000000000000000000000000000000000000 <——  binary sin)—»| © !
| I I | | | data, s(n) parallel ——
«— p|—r | |—— I
b-bit block b-bit block b-bit block ]
L [ %, b, bits
(@) (b)
4-bit QAM or
16-QAM
o O (o]
3-bit PAM or
8-PAM © ojo o
[0
7Sy -Bsx  -3s¢ -8k Sk 35, 5s, 75k © ol
O O O > o ©O o O

(© (d)
Fig. 12. (a) and (b) Explanation of the parsing stage in DMT. (c) The 8-PAM constellation (3 b). (d) the 16-QAM constellation (4 b).

case of quadrature amplitude modulation (QAM)~) can be tion b = Q1(v) has derivativelb/dv = —/2mel@ /2,
regarded as a complex number, taking on2’epossible values Using these we verify that
from a rectangular constellation as demonstrated in Fig. 12(d).

!

More efficient constellations exist [26]. R'(b)  4v2r(log, 2)Qx)e” /2 N <Q($) - (7%/2))
R P, P
APPENDIX B A
PROOF OFCONVEXITY OF BIT RATE wherex = Q 1[(P./2)/(1 — 27°)]. Now the rang&min <

The following proof was first presented in [6]. Consider (8
and delete all dependence bifor simplicity. Without using the
approximatiorl —2~" ~ 1 we will show thath is convex ins?2.
First notice that

< oo translates td) < = < Q7(P./2). In this range,
%Q(a:) — (P./2)]/x is decreasing. So, it is sufficient to show
that Q(x)e“”z/Q is decreasing im:, or its derivative is negative.
This is equivalent to showing thgf2r Q(x) < e=* /2 /2. Now

o0 o0 —y2 2
a_g_ (b) = |:Ql < Pe )}_2 1 \/ﬁQ(a:):/ e_yz/Qdy:—/ d(e—/)
sp 9V T 21— 2°Y) 9% _1° z z v
. Using integration by parts this indeed becomes
As b increases fronb,,;,, = —log,(1 — P.) to oo, the quan-
tity g(b) decreases fromo to zero. We will show thag(b) is —=2/2 o —y?/2 —=2/2
convex forba, < b < oc. Since the inverse of a decreasing V27 Q(z) = —/ s dy < —
convex function is convex (Appendix C), this will prove that i Y
b= g~!(o2/3P) is convex ino2. For convenience define
APPENDIX C
h(b) = [Q™HP./[2(1 — 27 DECREASING CONVEX FUNCTIONS

To verify that the inverse of a decreasing convex function is
convex, lety = f(x) be an invertible convex function (in some
, ) ) rangex € R). We havef(uxzo + (1 — p)z1) < pf(xo) +

> h (fb) 210%: 2 2102%)6 2 > (1 —p)f(zy) for 0 < p < 1. Substitutingyy = f(zo) and
h2(0)(220 = 1) © h(D)(2% —1) ~ A(D)(2* - 1) 2o = f~(yo), and similarly fory,, we get

where the primes denote derivatives with respeét e know -1 _ -1 < _
g(b) is convex if its second derivative is nonnegative. So it is Ff = o) + (1 = )~ (wn)) < o + (1 = )
sufficient to show that-¢'(b) is decreasing. Botli/A(b) and ¢ () is a decreasing function, then this implies
1/(2% — 1) are positive and decreasing bp,;, < b < oo,
and soh/(b) > 0 as well. It is therefore sufficient to show that -1 _ )t -1 _

= o2 wf ™ (o) + (L= ) f ™ (w1) 2 S~ (o + (1 = )un)
K (b)/h(b) decreases. Sinc@(b) = [, ¢~ /2 du/v/2m, it ’ : ’ :
follows thatdQ(b)/db = —e=*"/2/\/2x. Similarly, the func- proving thatf=1(y) is convex as well. \AvAV)

Then,g(b) = 1/[h(b)(22° — 1)], and—dg(b)/db becomes
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